Electronic Journal of Differential Equations, Vol. 2002(2002), No. 58, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

BOUNDARY-VALUE PROBLEMS FOR THE BIHARMONIC EQUATION WITH A LINEAR PARAMETER

YAKOV YAKUBOV

Abstract. We consider two boundary-value problems for the equation

$$\Delta^2 u(x,y) - \lambda \Delta u(x,y) = f(x,y)$$

with a linear parameter on a domain consisting of an infinite strip. These problems are not elliptic boundary-value problems with a parameter and therefore they are non-standard. We show that they are uniquely solvable in the corresponding Sobolev spaces and prove that their generalized resolvent decreases as $1/|\lambda|$ at infinity in $L_2(\mathbb{R} \times (0,1))$ and $W_2^1(\mathbb{R} \times (0,1))$.

1. Formulation of the problem

The main objective of this paper is to find estimates for the generalized resolvent for the problem

$$L(\lambda, D_x, D_y)u := \Delta^2 u(x, y) - \lambda \Delta u(x, y) = f(x, y), \quad (x, y) \in \Omega,$$
 (1.1)

$$u(x,0) = u(x,1) = \frac{\partial u(x,0)}{\partial y} = \frac{\partial u(x,1)}{\partial y} = 0, \quad x \in \mathbb{R},$$
 (1.2)

where $D_x = \frac{\partial}{\partial x}$, $D_y = \frac{\partial}{\partial y}$, $\lambda \in \mathbb{C}$ and $\Omega := (-\infty, \infty) \times [0, 1] \subset \mathbb{R}^2$. Known results on this subject treat elliptic boundary-value problems with a parameter, mostly in bounded domains [1, 2, 4, 5, 8, 9]. Note that (1.1)–(1.2) is not an elliptic boundary-value problem with a parameter [5, p. 98] (one should add a term such as $\lambda^2 u(x, y)$ to get ellipticity with a parameter). Moreover, Ω is an unbounded domain. This fact makes the problem non-standard and known results for boundary-value problems do not apply.

We denote by $F_{x\to\sigma}$ the one-dimensional Fourier transform with respect to x, where σ is the dual variable. Applying the operator $F_{x\to\sigma}$ to problem (1.1)–(1.2) we obtain a boundary value problem for an ordinary differential equation of the

 $^{2000\} Mathematics\ Subject\ Classification.\ 35 J40.$

 $Key\ words\ and\ phrases.$ Biharmonic equation, isomorphism, boundary-value problem.

^{©2002} Southwest Texas State University.

Submitted April 25, 2002. Published June 18, 2002.

fourth order with 2 parameters

$$L(\lambda, i\sigma, D_y)\widehat{u} := \left[\frac{d^4}{dy^4} - (2\sigma^2 + \lambda)\frac{d^2}{dy^2} + \sigma^4 + \lambda\sigma^2\right]\widehat{u}(\sigma, y) = \widehat{f}(\sigma, y), \quad y \in [0, 1],$$
(1.3)

$$\widehat{u}(\sigma,0) = \widehat{u}(\sigma,1) = \frac{d\widehat{u}(\sigma,0)}{dy} = \frac{d\widehat{u}(\sigma,1)}{dy} = 0, \tag{1.4}$$

where $\lambda \in \mathbb{C}$ and $\sigma \in \mathbb{R}$ are parameters, $\widehat{u}(\sigma, y) := (F_{x \to \sigma} u(x, y))(\sigma, y)$.

To solve our main question, we start from the solvability of problem (1.3)–(1.4) and get estimates of its solution depending on the parameters λ and σ .

2. ISOMORPHISM AND COERCIVENESS OF THE EQUATION ON THE WHOLE AXIS Consider equation (1.3) on the whole axis, i.e.,

$$L(\lambda, i\sigma, D_y)u := \left[\frac{d^4}{dy^4} - (2\sigma^2 + \lambda)\frac{d^2}{dy^2} + \sigma^4 + \lambda\sigma^2\right]u(y) = f(y), \quad y \in \mathbb{R}. \quad (2.1)$$

Theorem 2.1. For all complex numbers λ satisfying $|\arg \lambda| \leq \pi - \varepsilon$, where $\varepsilon > 0$ is arbitrary, and $\sigma \in \mathbb{R}$, the operator $\mathbb{L}(\lambda, \sigma) : u \to \mathbb{L}(\lambda, \sigma)u := L(\lambda, i\sigma, D_y)u$ from $W_q^4(\mathbb{R})$ onto $L_q(\mathbb{R})$, where $q \in (1, \infty)$, is an isomorphism and for these λ the following estimates hold for solutions of (2.1)

$$||u||_{W_q^4(\mathbb{R})} + \sigma^2 ||u||_{W_q^2(\mathbb{R})} + \sigma^4 ||u||_{L_q(\mathbb{R})} \le C(\varepsilon) ||f||_{L_q(\mathbb{R})}, \quad |\arg \lambda| \le \pi - \varepsilon, \quad \sigma \in \mathbb{R},$$
(2.2)

$$||u||_{W_q^2(\mathbb{R})} + \sigma^2 ||u||_{L_q(\mathbb{R})} \le \frac{C(\varepsilon)}{|\lambda|} ||f||_{L_q(\mathbb{R})}, \quad |\arg \lambda| \le \pi - \varepsilon, \quad \sigma \in \mathbb{R}.$$
 (2.3)

Proof. The operator $\mathbb{L}(\lambda, \sigma)$ acts from $W_q^4(\mathbb{R})$ into $L_q(\mathbb{R})$ linearly and continuously. Let us prove that if $f \in L_q(\mathbb{R})$ then (2.1) has a solution u in $W_q^4(\mathbb{R})$ and for this solution estimates (2.2)-(2.3) hold. With the substitution

$$u''(y) - \sigma^2 u(y) = v(y), \quad y \in \mathbb{R}, \tag{2.4}$$

equation (2.1) is reduced to

$$v''(y) - (\sigma^2 + \lambda)v(y) = f(y), \quad y \in \mathbb{R}. \tag{2.5}$$

By a theorem in [9, p. 109], equation (2.5), for $|\arg \lambda| \le \pi - \varepsilon$, $\sigma \in \mathbb{R}$, has a solution $v \in W_q^2(\mathbb{R})$ and

$$||v||_{W_q^2(\mathbb{R})} + |\lambda + \sigma^2|||v||_{L_q(\mathbb{R})} \le C(\varepsilon)||f||_{L_q(\mathbb{R})}, \quad |\arg \lambda| \le \pi - \varepsilon, \ \sigma \in \mathbb{R}.$$
 (2.6)

Apply now the same theorem [9, p. 109] to (2.4). Then for $\sigma \in \mathbb{R}$, and for $v \in W_q^2(\mathbb{R})$, (2.4) has a solution $u \in W_q^4(\mathbb{R})$ and

$$||u||_{W_q^4(\mathbb{R})} + \sigma^2 ||u||_{W_q^2(\mathbb{R})} + \sigma^4 ||u||_{L_q(\mathbb{R})} \le C(||v||_{W_q^2(\mathbb{R})} + \sigma^2 ||v||_{L_q(\mathbb{R})}), \quad \sigma \in \mathbb{R},$$
(2.7)

$$||u||_{W_q^2(\mathbb{R})} + \sigma^2 ||u||_{L_q(\mathbb{R})} \le C||v||_{L_q(\mathbb{R})}, \quad \sigma \in \mathbb{R}.$$
 (2.8)

Consequently, from (2.6) and (2.7) it follows that for $|\arg \lambda| \leq \pi - \varepsilon$ and $\sigma \in \mathbb{R}$, (2.1) has a solution $u \in W_q^4(\mathbb{R})$ and

$$||u||_{W_{q}^{4}(\mathbb{R})} + \sigma^{2}||u||_{W_{q}^{2}(\mathbb{R})} + \sigma^{4}||u||_{L_{q}(\mathbb{R})} \leq C(\varepsilon)(||f||_{L_{q}(\mathbb{R})} + \frac{\sigma^{2}}{|\lambda + \sigma^{2}|}||f||_{L_{q}(\mathbb{R})})$$

$$\leq C(\varepsilon)||f||_{L_{q}(\mathbb{R})}, \quad |\arg \lambda| \leq \pi - \varepsilon, \quad \sigma \in \mathbb{R},$$

i.e., estimate (2.2) has been proved. In the last inequality we have used that

$$|\lambda + \sigma^2| \ge C(\varepsilon)(|\lambda| + \sigma^2), \quad |\arg \lambda| \le \pi - \varepsilon, \ \sigma \in \mathbb{R},$$

which can be easily checked. In what follows we will often use the fact. On the other hand, from (2.6) and (2.8), it follows that

$$||u||_{W_q^2(\mathbb{R})} + \sigma^2 ||u||_{L_q(\mathbb{R})} \le \frac{C(\varepsilon)}{|\lambda + \sigma^2|} ||f||_{L_q(\mathbb{R})} \le \frac{C(\varepsilon)}{|\lambda|} ||f||_{L_q(\mathbb{R})},$$

with $|\arg \lambda| \le \pi - \varepsilon$ and $\sigma \in \mathbb{R}$; i.e., estimate (2.3) holds.

3. Solvability of the boundary-value problem for the homogeneous equation

Consider a boundary-value problem for the ordinary differential equation of the fourth order on [0,1]

$$L(\lambda, i\sigma, D_y)u := \left[\frac{d^4}{dy^4} - (2\sigma^2 + \lambda)\frac{d^2}{dy^2} + \sigma^4 + \lambda\sigma^2\right]u(y) = 0, \quad y \in [0, 1], \quad (3.1)$$

$$u(0) = f_1, \quad u(1) = f_2, \quad \frac{du(0)}{dy} = f_3, \quad \frac{du(1)}{dy} = f_4,$$
 (3.2)

where $\lambda \in \mathbb{C}$ and $\sigma \in \mathbb{R}$ are parameters, f_{ν} are complex numbers. Here (1.3) is homogeneous but the boundary conditions (1.4) are not.

Theorem 3.1. For each $\varepsilon > 0$ there exists M > 0 such that for all complex numbers λ satisfying $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$ and for all real numbers $\sigma \in \mathbb{R}$, $\sigma \ne 0$ problem (3.1)-(3.2) has a unique solution u(y) that belongs to $C^{\infty}[0,1]$ and for this solution the following inequality holds for $n = 0, 1, 2, \ldots$

$$||u^{(n)}||_{L_q(0,1)} (3.3)$$

$$\leq C(\varepsilon,K) \begin{cases} (|\lambda|^{\frac{n-1}{2} - \frac{1}{2q}} + |\sigma|^{n-1})(|f_1| + |f_2|) \\ + (|\lambda|^{\frac{n-1}{2} - \frac{1}{2q}} + \frac{|\sigma|^{n-1}}{|\lambda|^{1/2}})(|f_3| + |f_4|), & 0 < |\sigma| \leq K, \\ (\frac{(|\lambda| + \sigma^2)^{\frac{n+1}{2} - \frac{1}{2q}} |\sigma|}{|\lambda|} + \frac{(|\lambda| + \sigma^2)|\sigma|^{n-\frac{1}{q}}}{|\lambda|})(|f_1| + |f_2|) \\ + (\frac{(|\lambda| + \sigma^2)^{\frac{n+1}{2} - \frac{1}{2q}}}{|\lambda|} + \frac{(|\lambda| + \sigma^2)^{1/2}|\sigma|^{n-\frac{1}{q}}}{|\lambda|})(|f_3| + |f_4|), & |\sigma| > K. \end{cases}$$

Proof. Let us prove that for any complex numbers f_{ν} , $\nu = 1, ..., 4$, problem (3.1)–(3.2) has a unique solution u(y) in $C^{\infty}[0,1]$ and let us estimate this solution.

A characteristic equation of (3.1) has the form

$$\omega^4 - (2\sigma^2 + \lambda)\omega^2 + \sigma^4 + \lambda\sigma^2 = 0 \tag{3.4}$$

which has the following roots

$$\omega_1 = -|\sigma^2 + \lambda|^{\frac{1}{2}} e^{i\frac{\arg(\sigma^2 + \lambda)}{2}}, \quad \omega_2 = -|\sigma|, \quad \omega_3 = |\sigma^2 + \lambda|^{\frac{1}{2}} e^{i\frac{\arg(\sigma^2 + \lambda)}{2}}, \quad \omega_4 = |\sigma|.$$

Then for $|\arg \lambda| \le \pi - \varepsilon$, $\sigma \in \mathbb{R}$, $\sigma \ne 0$, the general solution of (3.1) has the form

$$u(y) = C_1 e^{\omega_1 y} + C_2 e^{\omega_2 y} + C_3 e^{\omega_3 (y-1)} + C_4 e^{\omega_4 (y-1)}.$$
 (3.5)

Substituting (3.5) into (3.2), we obtain a system for finding C_i , i = 1, ..., 4,

$$C_{1} + C_{2} + C_{3}e^{-\omega_{3}} + C_{4}e^{-\omega_{4}} = f_{1},$$

$$C_{1}e^{\omega_{1}} + C_{2}e^{\omega_{2}} + C_{3} + C_{4} = f_{2},$$

$$C_{1}\omega_{1} + C_{2}\omega_{2} + C_{3}\omega_{3}e^{-\omega_{3}} + C_{4}\omega_{4}e^{-\omega_{4}} = f_{3},$$

$$C_{1}\omega_{1}e^{\omega_{1}} + C_{2}\omega_{2}e^{\omega_{2}} + C_{3}\omega_{3} + C_{4}\omega_{4} = f_{4}.$$

$$(3.6)$$

Since for $|\arg \lambda| \le \pi - \varepsilon$, $\sigma \in \mathbb{R}$ we have $\frac{\pi}{2} + \frac{\varepsilon}{2} < \arg \omega_1 < \frac{3\pi}{2} - \frac{\varepsilon}{2}$ and $|\arg \omega_3| < \frac{3\pi}{2} - \frac{\varepsilon}{2}$ $\frac{\pi}{2} - \frac{\varepsilon}{2}$, then $\operatorname{Re} \omega_1 < -\delta(\varepsilon)(|\lambda|^{\frac{1}{2}} + |\sigma|)$ and $-\operatorname{Re} \omega_3 < -\delta(\varepsilon)(|\lambda|^{\frac{1}{2}} + |\sigma|)$, where $\bar{\delta}(\varepsilon) > 0$. The determinant of system (3.6) is

$$D(\lambda, \sigma) = \begin{vmatrix} 1 & 1 & e^{-\omega_3} & e^{-\omega_4} \\ e^{\omega_1} & e^{\omega_2} & 1 & 1 \\ \omega_1 & \omega_2 & \omega_3 e^{-\omega_3} & \omega_4 e^{-\omega_4} \\ \omega_1 e^{\omega_1} & \omega_2 e^{\omega_2} & \omega_3 & \omega_4 \end{vmatrix}.$$

Calculating this determinant and taking into account that $\omega_3 = -\omega_1$ and $\omega_4 = -\omega_2$,

$$D(\lambda, \sigma) = \omega_2 \Big[(\omega_1^2 + \omega_2^2) (1 - e^{2\omega_1}) \frac{1 - e^{2\omega_2}}{\omega_2} - 2\omega_1 (1 + e^{2(\omega_1 + \omega_2)} + e^{2\omega_2} + e^{2\omega_1} - 4e^{\omega_1 + \omega_2}) \Big].$$

Let $0<|\sigma|\leq K$. Because of $\lim_{\sigma\to 0}\frac{1-\mathrm{e}^{2\omega_2}}{\omega_2}=-2\neq 0$, one can choose M such a big that for all $|\arg\lambda|\leq \pi-\varepsilon$, $|\lambda|\geq M$ the following true $(\omega_1^2=\omega_2^2+\lambda=\sigma^2+\lambda)$

$$|(\omega_1^2 + \omega_2^2)(1 - e^{2\omega_1})\frac{1 - e^{2\omega_2}}{\omega_2}| \ge C(K, \varepsilon)(|\lambda| + \sigma^2)$$

and

$$|2\omega_1(1 + e^{2(\omega_1 + \omega_2)} + e^{2\omega_2} + e^{2\omega_1} - 4e^{\omega_1 + \omega_2})| \le \frac{C(K, \varepsilon)}{2}(|\lambda| + \sigma^2).$$

Then $|D(\lambda, \sigma)| \ge \frac{C(K, \varepsilon)}{2} |\sigma| (|\lambda| + \sigma^2)$. In the case of $|\sigma| > K$, we write the determinant as

$$D(\lambda, \sigma) = [\omega_2(1 - e^{\omega_1}) - \omega_1(1 - e^{\omega_2})][\omega_2(1 + e^{\omega_1}) - \omega_1(1 + e^{\omega_2})] + (\omega_2 - \omega_1)^2 e^{2(\omega_1 + \omega_2)} + R(\lambda, \sigma),$$

where $|R(\lambda,\sigma)| \leq C(|\lambda|^{1/2} + |\sigma|)/e^{C(\varepsilon)|\sigma|}$. Using that $\omega_1^2 = \omega_2^2 + \lambda$ we have

$$\begin{split} D(\lambda,\sigma) = & \frac{-\lambda(1-\mathrm{e}^{\omega_2})^2 + 2\omega_2^2\mathrm{e}^{\omega_2} - \omega_2^2\mathrm{e}^{2\omega_2} - 2\omega_2^2\mathrm{e}^{\omega_1} + \omega_2^2\mathrm{e}^{2\omega_1}}{\omega_2(1-\mathrm{e}^{\omega_1}) + \omega_1(1-\mathrm{e}^{\omega_2})} \\ & \times \frac{-\lambda(1+\mathrm{e}^{\omega_2})^2 - 2\omega_2^2\mathrm{e}^{\omega_2} - \omega_2^2\mathrm{e}^{2\omega_2} + 2\omega_2^2\mathrm{e}^{\omega_1} + \omega_2^2\mathrm{e}^{2\omega_1}}{\omega_2(1+\mathrm{e}^{\omega_1}) + \omega_1(1+\mathrm{e}^{\omega_2})} \\ & + \frac{\lambda^2}{(\omega_2+\omega_1)^2}\mathrm{e}^{2(\omega_1+\omega_2)} + R(\lambda,\sigma). \end{split}$$

We have $|\omega_2 + \omega_1|^2 = (\operatorname{Re}(\omega_2 + \omega_1))^2 + (\operatorname{Im}(\omega_2 + \omega_1))^2 = (-|\sigma| + \operatorname{Re}\omega_1)^2 + (\operatorname{Im}\omega_1)^2 = \sigma^2 + |\omega_1|^2 - 2|\sigma| \operatorname{Re}\omega_1 \ge \sigma^2 + |\lambda + \sigma^2| \ge C(\varepsilon)(|\lambda| + \sigma^2)$, because $\operatorname{Re}\omega_1 < 0$. Therefore,

for all $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$ and $|\sigma| > K$,

$$\begin{split} |D(\lambda,\sigma)| &\geq C(K) \frac{|\lambda|^2}{|\lambda| + \sigma^2} - C(\varepsilon) \frac{|\lambda|^2}{(|\lambda| + \sigma^2) e^{C(\varepsilon)(|\lambda|^{1/2} + |\sigma|)}} - C \frac{|\lambda|^{1/2} + |\sigma|}{e^{C(\varepsilon)|\sigma|}} \\ &\geq \frac{C(K)}{2} \frac{|\lambda|^2}{|\lambda| + \sigma^2}. \end{split}$$

Hence, for $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$ and $\sigma \in \mathbb{R}$, $\sigma \ne 0$, system (3.6) has a unique solution

$$C_{1} = \frac{\begin{vmatrix} f_{1} & 1 & \mathrm{e}^{-\omega_{3}} & \mathrm{e}^{-\omega_{4}} \\ f_{2} & \mathrm{e}^{\omega_{2}} & 1 & 1 \\ f_{3} & \omega_{2} & \omega_{3}\mathrm{e}^{-\omega_{3}} & \omega_{4}\mathrm{e}^{-\omega_{4}} \\ f_{4} & \omega_{2}\mathrm{e}^{\omega_{2}} & \omega_{3} & \omega_{4} \end{vmatrix}}{D(\lambda, \sigma)}, \quad C_{2} = \frac{\begin{vmatrix} 1 & f_{1} & \mathrm{e}^{-\omega_{3}} & \mathrm{e}^{-\omega_{4}} \\ \mathrm{e}^{\omega_{1}} & f_{2} & 1 & 1 \\ \omega_{1} & f_{3} & \omega_{3}\mathrm{e}^{-\omega_{3}} & \omega_{4}\mathrm{e}^{-\omega_{4}} \\ \omega_{1}\mathrm{e}^{\omega_{1}} & f_{4} & \omega_{3} & \omega_{4} \end{vmatrix}}{D(\lambda, \sigma)}, \quad C_{3} = \frac{\begin{vmatrix} 1 & 1 & \mathrm{e}^{-\omega_{3}} & f_{1} \\ \mathrm{e}^{\omega_{1}} & \mathrm{e}^{\omega_{2}} & f_{2} & 1 \\ \omega_{1} & \omega_{2} & f_{3} & \omega_{4}\mathrm{e}^{-\omega_{4}} \\ \omega_{1}\mathrm{e}^{\omega_{1}} & \omega_{2}\mathrm{e}^{\omega_{2}} & f_{4} & \omega_{4} \end{vmatrix}}, \quad C_{4} = \frac{\begin{vmatrix} 1 & 1 & \mathrm{e}^{-\omega_{3}} & f_{1} \\ \mathrm{e}^{\omega_{1}} & \mathrm{e}^{\omega_{2}} & 1 & f_{2} \\ \omega_{1} & \omega_{2} & \omega_{3}\mathrm{e}^{-\omega_{3}} & f_{3} \\ \omega_{1}\mathrm{e}^{\omega_{1}} & \omega_{2}\mathrm{e}^{\omega_{2}} & \omega_{3} & f_{4} \end{vmatrix}}{D(\lambda, \sigma)},$$

where

$$|D(\lambda, \sigma)| \ge C(\varepsilon, K) \begin{cases} |\sigma|(|\lambda| + \sigma^2), & 0 < |\sigma| \le K, \\ \frac{|\lambda|^2}{|\lambda| + \sigma^2}, & |\sigma| > K. \end{cases}$$

Calculating these determinants one can obtain that

$$|C_{1,3}| \leq C(\varepsilon,K) \begin{cases} \frac{|\lambda|}{(|\lambda| + \sigma^2)^{\frac{3}{2}}} [|f_1| + |f_2| + (|f_3| + |f_4|) \frac{|\lambda| + \sigma^2}{|\lambda|}], & 0 < |\sigma| \leq K, \\ \frac{(|\lambda| + \sigma^2)^{1/2}}{|\lambda|} [(|f_1| + |f_2|)|\sigma| + |f_3| + |f_4|], & |\sigma| > K, \end{cases}$$

and

$$|C_{2,4}| \le C(\varepsilon, K) \begin{cases} \frac{|\lambda|}{|\sigma|(|\lambda| + \sigma^2)^{\frac{3}{2}}} [(|f_1| + |f_2|)(|\lambda| + \sigma^2)^{1/2} + |f_3| + |f_4|], & 0 < |\sigma| \le K, \\ \frac{(|\lambda| + \sigma^2)^{1/2}}{|\lambda|} [(|f_1| + |f_2|)(|\lambda| + \sigma^2)^{1/2} + |f_3| + |f_4|], & |\sigma| > K, \end{cases}$$

or

$$|C_{1,3}| \leq C(\varepsilon, K) \begin{cases} \frac{1}{|\lambda|^{1/2}} [|f_1| + |f_2| + |f_3| + |f_4|], & 0 < |\sigma| \leq K, \\ \frac{(|\lambda| + \sigma^2)^{1/2}}{|\lambda|} [(|f_1| + |f_2|)|\sigma| + |f_3| + |f_4|], & |\sigma| > K, \end{cases}$$

and

$$|C_{2,4}| \le C(\varepsilon, K) \begin{cases} \frac{1}{|\sigma|} [|f_1| + |f_2| + \frac{1}{|\lambda|^{1/2}} (|f_3| + |f_4|)], & 0 < |\sigma| \le K, \\ \frac{(|\lambda| + \sigma^2)^{1/2}}{|\lambda|} [(|f_1| + |f_2|) (|\lambda| + \sigma^2)^{1/2} + |f_3| + |f_4|], & |\sigma| > K. \end{cases}$$

6

From (3.5) for n = 0, 1, 2, ..., we have

$$\begin{split} &\|u^{(n)}\|_{L_{q}(0,1)} \\ &\leq |C_{1}||\omega_{1}|^{n}\|\mathrm{e}^{\omega_{1}\cdot}\|_{L_{q}(0,1)} + |C_{2}||\omega_{2}|^{n}\|\mathrm{e}^{\omega_{2}\cdot}\|_{L_{q}(0,1)} \\ &+ |C_{3}||\omega_{3}|^{n}\|\mathrm{e}^{\omega_{3}(\cdot-1)}\|_{L_{q}(0,1)} + |C_{4}||\omega_{4}|^{n}\|\mathrm{e}^{\omega_{4}(\cdot-1)}\|_{L_{q}(0,1)} \\ &\leq C(\varepsilon)[(|C_{1}| + |C_{3}|)(|\lambda| + \sigma^{2})^{\frac{n}{2} - \frac{1}{2q}} + (|C_{2}| + |C_{4}|)|\sigma|^{n} \left(\frac{1 - \mathrm{e}^{-|\sigma|q}}{|\sigma|}\right)^{1/q}] \\ &\leq C(\varepsilon, K) \begin{cases} (|\lambda|^{\frac{n-1}{2} - \frac{1}{2q}} + |\sigma|^{n-1})(|f_{1}| + |f_{2}|) \\ + (|\lambda|^{\frac{n-1}{2} - \frac{1}{2q}} + \frac{|\sigma|^{n-1}}{|\lambda|^{1/2}})(|f_{3}| + |f_{4}|), & 0 < |\sigma| \leq K, \\ (\frac{(|\lambda| + \sigma^{2})^{\frac{n+1}{2} - \frac{1}{2q}}|\sigma|}{|\lambda|} + \frac{(|\lambda| + \sigma^{2})|\sigma|^{n-\frac{1}{q}}}{|\lambda|})(|f_{1}| + |f_{2}|) \\ + (\frac{(|\lambda| + \sigma^{2})^{\frac{n+1}{2} - \frac{1}{2q}}|\sigma|}{|\lambda|} + \frac{(|\lambda| + \sigma^{2})^{1/2}|\sigma|^{n-\frac{1}{q}}}{|\lambda|})(|f_{3}| + |f_{4}|), & |\sigma| > K. \end{cases} \end{split}$$

From (3.3), in particular, follows

 $||u(\cdot)||_{L_{q}(0,1)} \leq C(\varepsilon,K) \begin{cases} \frac{1}{|\sigma|} (|f_{1}| + |f_{2}|) + \frac{1}{|\sigma||\lambda|^{\frac{1}{2}}} (|f_{3}| + |f_{4}|), & 0 < |\sigma| \leq K, \\ \frac{|\lambda| + \sigma^{2}}{|\lambda||\sigma|^{1/q}} (|f_{1}| + |f_{2}|) + \frac{(|\lambda| + \sigma^{2})^{1/2}}{|\lambda||\sigma|^{1/q}} (|f_{3}| + |f_{4}|), & |\sigma| > K, \end{cases}$ (3.7)

and

$$||u'(\cdot)||_{L_{q}(0,1)} \leq C(\varepsilon, K) \begin{cases} |f_{1}| + |f_{2}| + \frac{1}{1 - \frac{1}{2q}} (|f_{3}| + |f_{4}|), & 0 < |\sigma| \leq K, \\ \frac{(|\lambda| + \sigma^{2})|\sigma|^{1 - \frac{1}{q}}}{|\lambda|} (|f_{1}| + |f_{2}|) \\ + \frac{(|\lambda| + \sigma^{2})^{1 - \frac{1}{2q}}}{|\lambda|} (|f_{3}| + |f_{4}|), & |\sigma| > K. \end{cases}$$

$$(3.8)$$

4. Isomorphism of the boundary value problem with a linear parameter and estimates for its solution

Now we consider the main problem (1.1)–(1.2).

Theorem 4.1. For each $\varepsilon > 0$ there exists M > 0 such that for all complex numbers λ satisfying $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$, the operator $\mathbb{L}(\lambda) : u \to \mathbb{L}(\lambda)u := L(\lambda, D_x, D_y)u$ from $W_2^{s+4}(\mathbb{R} \times (0,1), u(x,0) = u(x,1) = u_y'(x,0) = u_y'(x,1))$ onto $W_2^s(\mathbb{R} \times (0,1))$, where $s \ge 0$, is an isomorphism and for these λ the following estimates hold

$$||u||_{W_2^k(\mathbb{R}\times(0,1))} \le C(\varepsilon) \frac{1}{|\lambda|} ||f||_{W_2^k(\mathbb{R}\times(0,1))}, \quad k = 0, 1,$$

where u(x, y) is a solution of (1.1)–(1.2).

Proof. Fix λ such that $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$. In this case problem (1.1)–(1.2) becomes an elliptic boundary value problem with constant coefficients (for the definition see, e.g., [6]). Then, the required isomorphism follows from [6, Theorem 1.1, p.44]. Indeed, to check the condition there, one should prove that there is no

eigenvalue μ on the imaginary axis of the spectral problem

$$u^{(4)}(y) + (2\mu^2 - \lambda)u''(y) + (\mu^4 - \lambda\mu^2)u(y) = 0, \quad y \in (0, 1),$$

$$u(0) = u(1) = u'(0) = u'(1) = 0.$$

Let us prove this by contradiction. If there is such μ then $\mu^2 \leq 0$ and there is an eigenfunction $u, u \not\equiv 0$, i.e., $\int\limits_0^1 |u(y)|^2 dy > 0$. Moreover, $\int\limits_0^1 |u'(y)|^2 dy > 0$, otherwise u(y) would be constant and, taking into account $u(0) = 0, u(y) \equiv 0$.

Multiply the first equation of the above spectral problem by $\overline{u(y)}$ and integrate by parts on (0,1). Then, using boundary conditions, we get

$$\int_0^1 |u''(y)|^2 dy + (\lambda - 2\mu^2) \int_0^1 |u'(y)|^2 dy + \mu^2 (\mu^2 - \lambda) \int_0^1 |u(y)|^2 dy = 0,$$

i.e.,

$$\begin{split} \int\limits_0^1 |u''(y)|^2 dy + (\operatorname{Re} \lambda - 2\mu^2) \int\limits_0^1 |u'(y)|^2 dy + \mu^2 (\mu^2 - \operatorname{Re} \lambda) \int\limits_0^1 |u(y)|^2 dy &= 0, \\ \operatorname{Im} \lambda \int\limits_0^1 |u'(y)|^2 dy - \mu^2 \operatorname{Im} \lambda \int\limits_0^1 |u(y)|^2 dy &= 0. \end{split}$$

But from the second equation follows that $\operatorname{Im} \lambda = 0$. Then $\operatorname{Re} \lambda \geq M > 0$ and this contradicts to the first equation.

Now prove estimates of the theorem. First, consider a solution of problem (1.3)–(1.4). We find the solution of problem (1.3)–(1.4) in the form $\hat{u} = u_1 + u_2$, where u_1 is a restriction on [0,1] of a solution \tilde{u}_1 of the equation

$$\left[\frac{d^4}{dy^4} - (2\sigma^2 + \lambda)\frac{d^2}{dy^2} + \sigma^4 + \lambda\sigma^2\right]\tilde{u}_1(\sigma, y) = \tilde{f}(\sigma, y), \quad y \in \mathbb{R},$$

where $\tilde{f} \in L_q(\mathbb{R})$ is an extension of $\hat{f} \in L_q(0,1)$ such that the extension operator $\hat{f} \to \tilde{f} : L_q(0,1) \to L_q(\mathbb{R})$ is bounded [7, p.314]. Then for u_1 , from Theorem 2.1, estimates (2.2)-(2.3) hold, i.e.,

$$||u_{1}(\sigma,\cdot)||_{W_{q}^{4}(0,1)} + \sigma^{2}||u_{1}(\sigma,\cdot)||_{W_{q}^{2}(0,1)} + \sigma^{4}||u_{1}(\sigma,\cdot)||_{L_{q}(0,1)} \leq C(\varepsilon)||\widehat{f}(\sigma,\cdot)||_{L_{q}(0,1)},$$

$$||u_{1}(\sigma,\cdot)||_{W_{q}^{2}(0,1)} + \sigma^{2}||u_{1}(\sigma,\cdot)||_{L_{q}(0,1)} \leq \frac{C(\varepsilon)}{|\lambda|}||\widehat{f}(\sigma,\cdot)||_{L_{q}(0,1)},$$

$$(4.1)$$

where $|\arg \lambda| \leq \pi - \varepsilon$, $\sigma \in \mathbb{R}$. The second summand u_2 in the form of \widehat{u} is, by virtue of Theorem 3.1, a unique solution of the problem

$$\left[\frac{d^4}{dy^4} - (2\sigma^2 + \lambda)\frac{d^2}{dy^2} + \sigma^4 + \lambda\sigma^2\right]u_2(\sigma, y) = 0, \quad y \in [0, 1],
u_2(\sigma, 0) = -u_1(\sigma, 0), \quad u_2(\sigma, 1) = -u_1(\sigma, 1),
\frac{du_2(\sigma, 0)}{dy} = -\frac{du_1(\sigma, 0)}{dy}, \quad \frac{du_2(\sigma, 1)}{dy} = -\frac{du_1(\sigma, 1)}{dy},$$
(4.2)

where $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$, and $\sigma \in \mathbb{R}$, $\sigma \ne 0$. Then from (3.7) for the solution u_2 of problem (4.2) we have

$$||u_{2}(\sigma,\cdot)||_{L_{q}(0,1)} \leq C(\varepsilon,K) \begin{cases} \frac{1}{|\sigma|} (|u_{1}(\sigma,0)| + |u_{1}(\sigma,1)|) \\ + \frac{1}{|\sigma||\lambda|^{1/2}} (|u'_{1}(\sigma,0)| + |u'_{1}(\sigma,1)|), & 0 < |\sigma| \leq K, \\ \frac{|\lambda| + \sigma^{2}}{|\lambda||\sigma|^{1/q}} (|u_{1}(\sigma,0)| + |u_{1}(\sigma,1)|) \\ + \frac{(|\lambda| + \sigma^{2})^{1/2}}{|\lambda||\sigma|^{1/q}} (|u'_{1}(\sigma,0)| + |u'_{1}(\sigma,1)|), & |\sigma| > K, \end{cases}$$

$$(4.3)$$

and from (3.8),

$$\left\| \frac{du_{2}(\sigma, \cdot)}{dy} \right\|_{L_{q}(0,1)} \leq C(\varepsilon, K) \begin{cases} |u_{1}(\sigma, 0)| + |u_{1}(\sigma, 1)| \\ + \frac{1}{|\lambda|^{\frac{1}{2q}}} (|u'_{1}(\sigma, 0)| + |u'_{1}(\sigma, 1)|), & 0 < |\sigma| \leq K, \\ \frac{(|\lambda| + \sigma^{2})|\sigma|^{1 - \frac{1}{q}}}{|\lambda|} (|u_{1}(\sigma, 0)| + |u_{1}(\sigma, 1)|) \\ + \frac{(|\lambda| + \sigma^{2})^{1 - \frac{1}{2q}}}{|\lambda|} (|u'_{1}(\sigma, 0)| + |u'_{1}(\sigma, 1)|), & |\sigma| > K. \end{cases}$$

$$(4.4)$$

From [3, Ch.3, §10, Theorem 10.4] it follows that

$$\|u^{(j)}\|_{C[0,1]} \leq C(h^{1-\gamma}\|u^{(\ell)}\|_{L_q(0,1)} + h^{-\gamma}\|u\|_{L_q(0,1)}),$$

where $j < \ell$, $0 < h < h_0$, $\gamma = (j + \frac{1}{q})/\ell$. Choose j = 0, 1, $\ell = 2$, $h = \mu^{-2}$, and $\mu \gg 1$. Then

$$|u(y)| \le C(\mu^{-2+\frac{1}{q}} ||u''||_{L_q(0,1)} + \mu^{1/q} ||u||_{L_q(0,1)}), \quad y \in [0,1],$$

$$|u'(y)| \le C(\mu^{-1+\frac{1}{q}} ||u''||_{L_q(0,1)} + \mu^{1+\frac{1}{q}} ||u||_{L_q(0,1)}), \quad y \in [0,1].$$
(4.5)

From (4.3) and (4.5) we have for $|\sigma| > K$,

$$\begin{split} \|u_2(\sigma,\cdot)\|_{L_q(0,1)} \leq &C(\varepsilon,K) \frac{(|\lambda| + \sigma^2)^{1/2} |\sigma|^{1-\frac{1}{q}}}{|\lambda| |\sigma|} [(|u_1(\sigma,0)| + |u_1(\sigma,1)|)(|\lambda| + \sigma^2)^{1/2} \\ &+ |u_1'(\sigma,0)| + |u_1'(\sigma,1)|] \\ \leq &C(\varepsilon,K) \frac{|\sigma|^{1-\frac{1}{q}}}{|\lambda|^{1/2}} [(|u_1(\sigma,0)| + |u_1(\sigma,1)|)|\lambda|^{1/2} \\ &+ (|u_1(\sigma,0)| + |u_1(\sigma,1)|)|\sigma| + |u_1'(\sigma,0)| + |u_1'(\sigma,1)|] \\ \leq &C(\varepsilon,K) [(|u_1(\sigma,0)| + |u_1(\sigma,1)|)|\sigma|^{1-\frac{1}{q}} \\ &+ (|u_1(\sigma,0)| + |u_1(\sigma,1)|) \frac{|\sigma|^2}{|\lambda|^{1/2}} + (|u_1'(\sigma,0)| + |u_1'(\sigma,1)|) \frac{|\sigma|^{1-\frac{1}{q}}}{|\lambda|^{1/2}}] \\ \leq &C(\varepsilon,K) [\mu_1^{-2+\frac{1}{q}} |\sigma|^{1-\frac{1}{q}} ||u_1''(\sigma,\cdot)||_{L_q(0,1)} \\ &+ \mu_1^{1/q} |\sigma|^{1-\frac{1}{q}} ||u_1(\sigma,\cdot)||_{L_q(0,1)} + \mu_2^{-2+\frac{1}{q}} \frac{|\sigma|^2}{|\lambda|^{1/2}} ||u_1''(\sigma,\cdot)||_{L_q(0,1)} \\ &+ \mu_2^{1/q} \frac{|\sigma|^2}{|\lambda|^{1/2}} ||u_1(\sigma,\cdot)||_{L_q(0,1)} + \mu_3^{-1+\frac{1}{q}} \frac{|\sigma|^{1-\frac{1}{q}}}{|\lambda|^{1/2}} ||u_1''(\sigma,\cdot)||_{L_q(0,1)} \\ &+ \mu_3^{1+\frac{1}{q}} \frac{|\sigma|^{1-\frac{1}{q}}}{|\lambda|^{1/2}} ||u_1(\sigma,\cdot)||_{L_q(0,1)}]. \end{split}$$

Choose $\mu_1 = |\sigma|^{1+q}$, $\mu_2 = |\lambda|^{\frac{q}{2}}$, $\mu_3^{1+\frac{1}{q}} = |\lambda|^{1/2} |\sigma|^{1+\frac{1}{q}}$, where $|\sigma| > K \gg 1$ and $|\lambda| \ge M \gg 1$. Then, by virtue of (4.1), we obtain

$$||u_{2}(\sigma,\cdot)||_{L_{q}(0,1)} \leq C(\varepsilon,K)[||u_{1}''(\sigma,\cdot)||_{L_{q}(0,1)} + \sigma^{2}||u_{1}(\sigma,\cdot)||_{L_{q}(0,1)} + |\lambda|^{-q}\sigma^{2}||u_{1}''(\sigma,\cdot)||_{L_{q}(0,1)} + \sigma^{2}||u_{1}(\sigma,\cdot)||_{L_{q}(0,1)} + |\lambda|^{-\frac{q}{q+1}}||u_{1}''(\sigma,\cdot)||_{L_{q}(0,1)} + \sigma^{2}||u_{1}(\sigma,\cdot)||_{L_{q}(0,1)}] \leq C(\varepsilon,K)\frac{1}{|\lambda|}||\widehat{f}(\sigma,\cdot)||_{L_{q}(0,1)}, \quad |\sigma| > K.$$

$$(4.6)$$

On the other hand, for $0 < |\sigma| \le K$, from (4.3) and (4.5) we have $(|\lambda| \ge M)$

$$\begin{split} \|u_2(\sigma,\cdot)\|_{L_q(0,1)} \leq & C(\varepsilon,K) \big[\frac{1}{|\sigma|} (|u_1(\sigma,0)| + |u_1(\sigma,1)|) \\ & + \frac{1}{|\sigma||\lambda|^{1/2}} (|u_1'(\sigma,0)| + |u_1'(\sigma,1)|) \big] \\ \leq & C(\varepsilon,K) \frac{1}{|\sigma|} \big[\mu_1^{-2+\frac{1}{q}} \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \mu_1^{1/q} \|u_1(\sigma,\cdot)\|_{L_q(0,1)} \\ & + \mu_2^{-1+\frac{1}{q}} \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \mu_2^{1+\frac{1}{q}} \|u_1(\sigma,\cdot)\|_{L_q(0,1)} \big]. \end{split}$$

Choose $\mu_1 = \mu_2 = R \gg 1$. It implies, by virtue of (4.1), that

$$||u_2(\sigma,\cdot)||_{L_q(0,1)} \le C(\varepsilon,K) \frac{1}{|\sigma||\lambda|} ||\widehat{f}(\sigma,\cdot)||_{L_q(0,1)}, \quad 0 < |\sigma| \le K.$$

The last inequality with (4.6) taking into account gives us the following estimate for a solution of (4.2) for $\sigma \in \mathbb{R}$, $\sigma \neq 0$

$$||u_2(\sigma,\cdot)||_{L_q(0,1)} \le C(\varepsilon) \frac{1}{|\lambda|} \left(||\widehat{f}(\sigma,\cdot)||_{L_q(0,1)} + \frac{1}{|\sigma|} ||\widehat{f}(\sigma,\cdot)||_{L_q(0,1)} \right). \tag{4.7}$$

Then from (4.1) and (4.7) for a solution $\widehat{u}(\sigma,y) = u_1(\sigma,y) + u_2(\sigma,y)$ of problem (1.3)-(1.4) we have

$$\|\widehat{u}(\sigma,\cdot)\|_{L_q(0,1)} \le C(\varepsilon) \frac{1}{|\lambda|} (\|\widehat{f}(\sigma,\cdot)\|_{L_q(0,1)} + \frac{1}{|\sigma|} \|\widehat{f}(\sigma,\cdot)\|_{L_q(0,1)}),$$

where $\sigma \in \mathbb{R}$, $\sigma \neq 0$, $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$. Multiplying the last inequality on $|\sigma|$ we obtain

$$\|\widehat{u'_x}(\sigma,\cdot)\|_{L_q(0,1)} \le C(\varepsilon) \frac{1}{|\lambda|} (\|\widehat{f'_x}(\sigma,\cdot)\|_{L_q(0,1)} + \|\widehat{f}(\sigma,\cdot)\|_{L_q(0,1)}), \tag{4.8}$$

where $\sigma \in \mathbb{R}$, $\sigma \neq 0$, $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$. From (4.4) and (4.5) we have for $0 < |\sigma| \leq K$ and $|\lambda| \geq M$

$$\begin{split} \left\| \frac{du_2(\sigma,\cdot)}{dy} \right\|_{L_q(0,1)} &\leq C(\varepsilon,K) [|u_1(\sigma,0)| + |u_1(\sigma,1)| + |u_1'(\sigma,0)| + |u_1'(\sigma,1)|] \\ &\leq C(\varepsilon,K) [\mu_1^{-2+\frac{1}{q}} \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \mu_1^{1/q} \|u_1(\sigma,\cdot)\|_{L_q(0,1)} \\ &+ \mu_2^{-1+\frac{1}{q}} \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \mu_2^{1+\frac{1}{q}} \|u_1(\sigma,\cdot)\|_{L_q(0,1)}]. \end{split}$$

Choose $\mu_1 = \mu_2 = R \gg 1$. Then (4.1) implies

$$\left\| \frac{du_2(\sigma, \cdot)}{dy} \right\|_{L_q(0,1)} \le C(\varepsilon, K) \frac{1}{|\lambda|} \|\widehat{f}(\sigma, \cdot)\|_{L_q(0,1)}, \quad 0 < |\sigma| \le K.$$
 (4.9)

On the other hand, from (4.4) and (4.5), we have for $|\sigma| > K$

$$\begin{split} \left\| \frac{du_2(\sigma,\cdot)}{dy} \right\|_{L_q(0,1)} \leq &C(\varepsilon,K)[|\sigma|^{1-\frac{1}{q}}(|u_1(\sigma,0)| + |u_1(\sigma,1)|) \\ &+ \frac{|\sigma|^{3-\frac{1}{q}}}{|\lambda|}(|u_1(\sigma,0)| + |u_1(\sigma,1)|) + |\lambda|^{-\frac{1}{2q}}(|u_1'(\sigma,0)| + |u_1'(\sigma,1)|) \\ &+ \frac{|\sigma|^{2-\frac{1}{q}}}{|\lambda|}(|u_1'(\sigma,0)| + |u_1'(\sigma,1)|)] \\ \leq &C(\varepsilon,K)[\mu_1^{-2+\frac{1}{q}}|\sigma|^{1-\frac{1}{q}}\|u_1''(\sigma,\cdot)\|_{L_q(0,1)} \\ &+ \mu_1^{1/q}|\sigma|^{1-\frac{1}{q}}\|u_1(\sigma,\cdot)\|_{L_q(0,1)} + \mu_2^{-2+\frac{1}{q}}\frac{|\sigma|^{3-\frac{1}{q}}}{|\lambda|}\|u_1''(\sigma,\cdot)\|_{L_q(0,1)} \\ &+ \mu_2^{1/q}\frac{|\sigma|^{3-\frac{1}{q}}}{|\lambda|}\|u_1(\sigma,\cdot)\|_{L_q(0,1)} + \mu_3^{-1+\frac{1}{q}}\|u_1''(\sigma,\cdot)\|_{L_q(0,1)} \\ &+ \mu_3^{1+\frac{1}{q}}\|u_1(\sigma,\cdot)\|_{L_q(0,1)} + \mu_4^{-1+\frac{1}{q}}\frac{|\sigma|^{2-\frac{1}{q}}}{|\lambda|}\|u_1''(\sigma,\cdot)\|_{L_q(0,1)} \\ &+ \mu_4^{1+\frac{1}{q}}\frac{|\sigma|^{2-\frac{1}{q}}}{|\lambda|}\|u_1(\sigma,\cdot)\|_{L_q(0,1)}]. \end{split}$$

Choose $\mu_1 = \mu_2 = |\sigma|^{1+q}$, $\mu_3 = R \gg 1$, $\mu_4 = |\sigma|^{\frac{2q+1}{q+1}}$, where $|\sigma| > K \gg 1$. Then, by (4.1),

$$\begin{split} \left\| \frac{du_2(\sigma,\cdot)}{dy} \right\|_{L_q(0,1)} & \leq C(\varepsilon,K) [\|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \sigma^2 \|u_1(\sigma,\cdot)\|_{L_q(0,1)} \\ & + \frac{1}{|\lambda|} \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \frac{1}{|\lambda|} \sigma^4 \|u_1(\sigma,\cdot)\|_{L_q(0,1)} \\ & + \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} + \|u_1(\sigma,\cdot)\|_{L_q(0,1)} + \frac{|\sigma|}{|\lambda|} \|u_1''(\sigma,\cdot)\|_{L_q(0,1)} \\ & + \frac{1}{|\lambda|} \sigma^4 \|u_1(\sigma,\cdot)\|_{L_q(0,1)}] \\ & \leq C(\varepsilon,K) \frac{1}{|\lambda|} \|\widehat{f}(\sigma,\cdot)\|_{L_q(0,1)}, \quad |\sigma| > K. \end{split}$$

(4.10)

Therefore, for a solution $\widehat{u}(\sigma, y) = u_1(\sigma, y) + u_2(\sigma, y)$ of problem (1.3)–(1.4) from (4.1), (4.9), (4.10), and $\widehat{u'_y}(\sigma, y) = \widehat{u'_y}(\sigma, y)$ we have

$$\|\widehat{u}_{y}'(\sigma,\cdot)\|_{L_{q}(0,1)} = \|\widehat{u}_{y}'(\sigma,\cdot)\|_{L_{q}(0,1)} \le C(\varepsilon) \frac{1}{|\lambda|} \|\widehat{f}(\sigma,\cdot)\|_{L_{q}(0,1)}, \tag{4.11}$$

where $\sigma \in \mathbb{R}$, $\sigma \neq 0$, $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$.

Consider now a solution u(x,y) of the main problem (1.1)–(1.2). Since u(x,0)=u(x,1)=0, for all $x\in\mathbb{R},$

$$||u||_{L_q(\mathbb{R}\times(0,1))} \le C||u_y'||_{L_q(\mathbb{R}\times(0,1))},$$

$$||u||_{W_x^1(\mathbb{R}\times(0,1))} \le C(||u_y'||_{L_q(\mathbb{R}\times(0,1))} + ||u_x'||_{L_q(\mathbb{R}\times(0,1))}).$$
(4.12)

Finally, taking q = 2, from (4.8), (4.11), (4.12) and the Parseval equality, for a solution u(x, y) of problem (1.1)–(1.2) we have

$$||u||_{L_2(\mathbb{R}\times(0,1))} \le C||u_y'||_{L_2(\mathbb{R}\times(0,1))} = C||\widehat{u_y'}||_{L_2(\mathbb{R}\times(0,1))} \le C(\varepsilon) \frac{1}{|\lambda|} ||f||_{L_2(\mathbb{R}\times(0,1))},$$

and

$$\begin{split} \|u\|_{W_{2}^{1}(\mathbb{R}\times(0,1))} &\leq C(\|\widehat{u_{y}'}\|_{L_{2}(\mathbb{R}\times(0,1))} + \|\widehat{u_{x}'}\|_{L_{2}(\mathbb{R}\times(0,1))}) \\ &\leq C(\varepsilon)\frac{1}{|\lambda|}(\|f_{x}'\|_{L_{2}(\mathbb{R}\times(0,1))} + \|f\|_{L_{2}(\mathbb{R}\times(0,1))}) \\ &\leq C(\varepsilon)\frac{1}{|\lambda|}\|f\|_{W_{2}^{1}(\mathbb{R}\times(0,1))}, \end{split}$$

where $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$.

5. A BOUNDARY VALUE PROBLEM FOR THE BIHARMONIC EQUATION WITH THE SECOND ORDER DERIVATIVE IN BOUNDARY CONDITIONS

Consider now the following problem in the strip $\Omega := (-\infty, \infty) \times [0, 1] \subset \mathbb{R}^2$,

$$L(\lambda, D_x, D_y)u := \Delta^2 u(x, y) - \lambda \Delta u(x, y) = f(x, y), \quad (x, y) \in \Omega,$$

$$L_1 u := u(x, 0) = 0, \quad L_2 u := u(x, 1) = 0$$
(5.1)

$$L_3 u := \frac{\partial^2 u(x,0)}{\partial y^2} = 0, \quad L_4 u := \frac{\partial^2 u(x,1)}{\partial y^2} = 0, \quad x \in \mathbb{R}.$$
 (5.2)

Applying the Fourier transform operator $F_{x\to\sigma}$ to (5.1)–(5.2), we obtain a boundary-value problem for an ordinary differential equation of the fourth order with 2 parameters

$$L(\lambda, i\sigma, D_y)\widehat{u} := \left[\frac{d^4}{dy^4} - (2\sigma^2 + \lambda)\frac{d^2}{dy^2} + \sigma^4 + \lambda\sigma^2\right]\widehat{u}(\sigma, y) = \widehat{f}(\sigma, y), \quad y \in [0, 1],$$
(5.3)

$$\widehat{u}(\sigma,0) = \widehat{u}(\sigma,1) = \frac{d^2\widehat{u}(\sigma,0)}{dy^2} = \frac{d^2\widehat{u}(\sigma,1)}{dy^2} = 0,$$
(5.4)

where $\lambda \in \mathbb{C}$ and $\sigma \in \mathbb{R}$ are parameters, $\widehat{u}(\sigma, y) := (F_{x \to \sigma} u(x, y))(\sigma, y)$.

These two problems, (5.1)–(5.2) and (5.3)–(5.4), are much more easier to handle than (1.1)–(1.2) and (1.3)–(1.4), respectively. Moreover, we can get here a more complete result.

Theorem 5.1. For each $\varepsilon > 0$ there exists M > 0 such that for all complex numbers λ satisfying $|\arg \lambda| \le \pi - \varepsilon$, $|\lambda| \ge M$, the operator $\mathbb{L}(\lambda) : u \to \mathbb{L}(\lambda)u := L(\lambda, D_x, D_y)u$ from $W_2^4(\mathbb{R} \times (0,1), L_\nu u = 0, \nu = 1, \ldots, 4)$ onto $L_2(\mathbb{R} \times (0,1))$ is an isomorphism and for these λ the following estimates hold

$$||u||_{W_{\sigma}^{4}(\mathbb{R}\times(0,1))} \le C(\varepsilon)||f||_{L_{2}(\mathbb{R}\times(0,1))},$$
 (5.5)

and

$$||u||_{W_2^2(\mathbb{R}\times(0,1))} \le C(\varepsilon) \frac{1}{|\lambda|} ||f||_{L_2(\mathbb{R}\times(0,1))},$$
 (5.6)

for a solution u(x, y) of problem (5.1)–(5.2).

12 YAKOV YAKUBOV EJDE-2002/58

Proof. The required isomorphism follows from [6, Theorem 1.1, p.44] (the proof is done as in the proof of Theorem 4.1). To get estimates (5.5) and (5.6), first consider a solution $\widehat{u}(\sigma,y)$ of problem (5.3)–(5.4). Substituting $v(\sigma,y) := \frac{d^2\widehat{u}(\sigma,y)}{dy^2} - \sigma^2\widehat{u}(\sigma,y)$, one can consider, instead of (5.3)–(5.4), the two problems

$$\frac{d^2\widehat{u}(\sigma, y)}{dy^2} - \sigma^2\widehat{u}(\sigma, y) = v(\sigma, y), \ y \in [0, 1],$$

$$\widehat{u}(\sigma, 0) = \widehat{u}(\sigma, 1) = 0,$$
(5.7)

and

$$\frac{d^2v(\sigma, y)}{dy^2} - (\sigma^2 + \lambda)v(\sigma, y) = \hat{f}(\sigma, y), \ y \in [0, 1],
v(\sigma, 0) = v(\sigma, 1) = 0.$$
(5.8)

From a theorem in [9, p. 110] for problem (5.7) for each fixed σ , such that $|\sigma| > K$ an isomorphism from $W_q^4(0,1)$ onto $W_q^2(0,1)$ follows and for a solution $\widehat{u}(\sigma,y)$ of problem (5.7) the following estimate holds

$$\sum_{k=0}^{4} |\sigma|^{4-k} \|\widehat{u}(\sigma,\cdot)\|_{W_q^k(0,1)} \le C(\|v(\sigma,\cdot)\|_{W_q^2(0,1)} + |\sigma|^2 \|v(\sigma,\cdot)\|_{L_q(0,1)}), \quad |\sigma| > K.$$
(5.9)

For $|\sigma| \leq K$ one can easily obtain that for a solution of (5.7),

$$\|\widehat{u}(\sigma,\cdot)\|_{W^4_{\sigma}(0,1)} \le C\|v(\sigma,\cdot)\|_{W^2_{\sigma}(0,1)}, \ |\sigma| \le K.$$
 (5.10)

From the same theorem [9, p. 110] for problem (5.8) for each fixed $\sigma \in \mathbb{R}$ an isomorphism from $W_q^2(0,1)$ onto $L_q(0,1)$ follows and for a solution $v(\sigma,y)$ of problem (5.8) the following estimate holds

$$||v(\sigma,\cdot)||_{W_{\sigma}^{2}(0,1)} + |\lambda + \sigma^{2}|||v(\sigma,\cdot)||_{L_{q}(0,1)} \le C(\varepsilon)||\widehat{f}(\sigma,\cdot)||_{L_{q}(0,1)}, \tag{5.11}$$

where $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$. We have $|\lambda + \sigma^2| \geq C(\varepsilon)(|\lambda| + \sigma^2)$ (see section 2). Then, from (5.9), (5.10), and (5.11) for problem (5.3)–(5.4) an isomorphism from $W_q^4((0,1), L_\nu \widehat{u} = 0, \nu = 1, \ldots, 4)$ onto $L_q(0,1)$ follows for $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$ for each fixed $\sigma \in \mathbb{R}$. Moreover, for a solution $\widehat{u}(\sigma, y)$ of problem (5.3)–(5.4) the following estimate holds

$$\sum_{k=0}^{4} |\sigma|^{4-k} \|\widehat{u}(\sigma, \cdot)\|_{W_q^k(0,1)} \le C(\varepsilon) \|\widehat{f}(\sigma, \cdot)\|_{L_q(0,1)}, \tag{5.12}$$

where $\sigma \in \mathbb{R}$, $|\arg \lambda| \leq \pi - \varepsilon$, $|\lambda| \geq M$. Taking now q = 2 and using the Parseval equality to (5.12) we obtain for a solution u(x,y) of problem (5.1)–(5.2) estimate (5.5). From (5.5) and equation (5.1) follows

$$|\lambda| \|\Delta u\|_{L_2(\mathbb{R}\times(0,1))} \le C(\varepsilon) \|f\|_{L_2(\mathbb{R}\times(0,1))}.$$
 (5.13)

On the other hand, from [6, Theorem 1.1, p.44] it follows that

$$||u||_{W_{\sigma}^{2}(\mathbb{R}\times(0,1))} \le C||\Delta u||_{L_{2}(\mathbb{R}\times(0,1))}.$$
(5.14)

From (5.13) and (5.14) we obtain estimate (5.6).

References

- [1] Agmon, S. and Nirenberg, L., Properties of solutions of ordinary differential equations in Banach spaces, Comm. Pure Appl. Math., 16 (1963), 121–239.
- [2] Agranovich, M. S. and Vishik, M. I., Elliptic problems with a parameter and parabolic problems of general type, Uspekhi Mat. Nauk, 19, 3 (1964), 53-161 (Russian; English translation in Russian Math. Surveys, 19, 3 (1964), 53-159).
- [3] Besov, O. V., Ilin, V. P. and Nikolskii, S. M., Integral Representations of Functions and Embedding Theorems, Halsted Press, New York, v.I, 1978.
- [4] Kozlov, V. A. and Maz'ya, V. G., Differential Equations with Operator Coefficients, Springer,
- [5] Kozlov, V. A., Maz'ya, V. G. and Rossmann, J., Elliptic Boundary Value Problems in Domains with Point Singularities, AMS, Math. Surv. and Monogr., v.52, 1997.
- [6] Nazarov, S. A. and Plamenevskii, B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994.
- [7] Triebel, H., Interpolation Theory. Function Spaces. Differential Operators, North-Holland, Amsterdam, 1978.
- [8] Yakubov, S., Completeness of Root Functions of Regular Differential Operators, Longman, Scientific and Technical, New York, 1994.
- [9] Yakubov, S. and Yakubov, Ya., Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman and Hall/CRC, Boca Raton, 2000.

YAKOV YAKUBOV

RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES SCHOOL OF MATHEMATICAL SCIENCES, TEL-AVIV UNIVERSITY Ramat-Aviv 69978, Israel

 $E ext{-}mail\ address: yakubov@post.tau.ac.il}$