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POSITIVE SOLUTIONS AND NONLINEAR EIGENVALUE
PROBLEMS FOR RETARDED SECOND ORDER DIFFERENTIAL

EQUATIONS

G. L. KARAKOSTAS & P. CH. TSAMATOS

Abstract. We investigate the eigenvalues of a nonlocal boundary value prob-
lem for a second order retarded differential equation. We provide information

on norm estimates, uniqueness, and continuity of solutions.

1. Introduction

We study the set of positive values λ for which second order nonlinear differen-
tial equations with retarded arguments admit a positive, nondecreasing, concave
solution. Consider

(p(t)x′(t))′ + λ
k∑
j=0

qj(t)fj(x(t), x(hj(t))) = 0, a.a. t ∈ [0, 1] (1.1)

with the initial condition
x(0) = 0 (1.2)

and the nonlocal boundary condition

x′(1) =
∫ 1

0

x′(s)dg(s), (1.3)

where g is a nondecreasing function and the integral is meant in the Riemann-
Stieljes sense. Boundary-value problems involving retarded and functional differ-
ential equations were recently studied by many authors using various methods. We
especially refer to [1, 2, 4, 5, 7, 12, 13] and to [6, 8, 10] which were the motivation
for this work. Our main results in this paper refer to the values of the positive
real parameter λ for which the problem (1.1)-(1.3) has a solution. Note that the
problem of finding eigenvalues, for which a second or a higher order differential
equation with various boundary conditions has positive solutions, has been studied
by several authors in the last decade. See for example the papers [2, 3, 6, 7, 10]
and the references therein.
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Problem of this type are usually transformed into operator equations of the form

Ax = λ−1x, (1.4)

where A is an appropriate completely continuous operator. (Obviously the form
(1.4) justifies the term “eigenvalue problems” we use in the title of this article.)

Equation (1.4) is written as x = Tx, where T := λA and in a great number of
works the following theorem is applied.

Theorem 1.1 (Krasnoselskii [11]). Let B be a Banach space and let K be a cone in
B. Assume that Ω1 and Ω2 are open bounded subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let

T : K ∩ (Ω2 \ Ω1)→ K

be a completely continuous operator such that, either

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

In this paper we are interested in the existence of positive solutions and our
approach is based on Theorem 1.1.

Note that, as the literature shows, in almost all the cases where Theorem 1.1
applies, concavity is the most significant property of te solutions. Indeed, the idea is
to use concavity of the real valued functions x defined on the interval [0, 1] =: I and
which constitute the elements of a cone K, the domain of the operator T . Then two
elementary facts are the major steps in our proofs. The first fact read as follows:

Fact 1.2. Let x : I → R be a nonnegative, nondecreasing and concave function.
Then, for any τ ∈ [0, 1] it holds

x(t) ≥ τ‖x‖, t ∈ [τ, 1],

where ‖x‖ is the sup-norm of x.

Proof. From the concavity of x we have

x(t) ≥ x(τ) = x ((1− τ)0 + τ1) ≥ (1− τ)x(0) + τx(1) ≥ τx(1) = τ‖x‖,

for all t ∈ [τ, 1]. �

The second fact is that the image Ax of a point x of the cone K is a concave
function. And in case p(t) = 1, t ∈ I this fact is obvious. (Indeed, one can show that
the second derivative is nonnegative.) In the general case an additional assumption
on p is needed. This step, which notice that, though it seems to be obvious, it
should be added to the proofs of the main theorems in [8, 9], lies on the following
elementary lemma:

Lemma 1.3. Let a, b two real valued functions defined on I. If the product ab is a
non-increasing function, then b is also non-increasing provided that, either

(i) a, b are nonnegative functions and a is nondecreasing, or
(ii) a is nonnegative and non-increasing and b is non-positive.
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Proof. For each t1, t2 ∈ I with t1 ≤ t2, it holds

a(t1)[b(t2)− b(t1)] = a(t1)b(t2)− a(t1)b(t1)

≤ a(t1)b(t2)− a(t2)b(t2) = [a(t1)− a(t2)]b(t2) ≤ 0.

Thus, in any case, we have b(t2) ≤ b(t1). �

From this lemma we get the following statement.

Fact 1.4. If y : I → R is a differentiable function with y′ ≥ 0 and p : I → R is a
positive and nondecreasing function such that (p(t)y′(t))′ ≤ 0, for all t ∈ I, then y
is concave.

Proof. We apply Lemma 1.3(i) with a = p, b = y′ and conclude that y′ is non-
increasing. This implies that y is concave. �

Apart of positivity and concavity properties of the solutions which are guaranteed
by applying Theorem 1.1 we know also monotonicity of them. Moreover we can
have some information on the estimates of their sup-norm. Finally, some Lipschitz
type conditions may provide uniqueness results as well as continuous dependence
of the solutions under the corresponding eigenvalues.

2. Preliminaries and the assumptions

In the sequel we shall denote by R the real line and by I the interval [0, 1]. Then
C(I) will denote the space of all continuous functions x : I → R. This is a Banach
space when it is furnished with the usual supremum norm ‖ · ‖.

Consider equation (1.1) associated with the conditions (1.2 ), (1.3 ). By a so-
lution of the problem (1.1)-(1.3) we mean a function x ∈ C(I), whose the first
derivative x′ is absolutely continuous on I and which satisfies equation (1.1) for
almost all t ∈ I, as well as conditions (1.2), (1.3).

The basic assumptions on the functions involved are the following:

(H1) The function p : I → (0,+∞) is continuous and nondecreasing.
(H2) The functions qj : I → R, j = 0, 1, . . . , k are continuous and such that

qj(t) ≥ 0, t ∈ I, j = 0, . . . , k, as well as q0(1) > 0.
(H3) The function g : I → R is nondecreasing and such that∫ 1

0

1
p(s)

dg(s) <
1
p(1)

.

(H4) The retardations hj : I → I (j = 0, . . . , k) satisfy

0 ≤ hj(t) ≤ h0(t) ≤ t, t ∈ I, j = 1, . . . , k

and moreover h0 is a nondecreasing function not identically zero.
(H5) The functions fj : R × R → R, 0 = 1, . . . , k are continuous and such that

fj(u, v) ≥ 0, when u ≥ 0 and v ≥ 0, for all j = 0, 1, . . . , k. Also, if for some
j0 ∈ {1, 2, . . . , k} there is a point t ∈ I such that hj0(t) < h0(t), then we
assume that the function fj0(u, v) is nondecreasing with respect to v for all
u ≥ 0.

The first step in our approach is to reformulate the problem (1.1)-(1.3) as an op-
erator equation of the form (1.4) for an appropriate operator A, which does not
depend on the parameter λ. Note that our requirement is λ > 0. To find such an
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operator A we integrate (1.1) from t to 1 and get

x′(t) =
1
p(t)

p(1)x′(1) +
λ

p(t)

∫ 1

t

z(s)ds, (2.1)

where

z(t) :=
k∑
j=0

qj(t)fj(x(t), x(hj(t))).

Taking into account condition (1.3) we obtain

x′(1) =
∫ 1

0

x′(s)dg(s) = p(1)x′(1)
∫ 1

0

1
p(s)

dg(s) +
∫ 1

0

λ

p(s)

∫ 1

s

z(r)dr dg(s),

from which it follows that

p(1)x′(1) = γλ

∫ 1

0

1
p(s)

∫ 1

s

z(r)drdg(s),

where the constant γ is

γ :=
( 1
p(1)

−
∫ 1

0

1
p(s)

dg(s)
)−1

.

Then, from (2.1) and (1.2), we derive

x(t) = λγ

∫ 1

0

1
p(s)

∫ 1

s

z(r)dr dg(s)
∫ t

0

1
p(s)

ds+ λ

∫ t

0

1
p(s)

∫ 1

s

z(r)dr ds.

This fact shows that if x solves the boundary-value problem (1.1)-(1.3), then it
solves the operator equation λAx = x, where A is the operator defined by

Ax(t) :=γP (t)
∫ 1

0

1
p(s)

∫ 1

s

k∑
j=0

qj(r)fj(x(r), x(hj(r)))dr dg(s)

+
∫ t

0

1
p(s)

∫ 1

s

k∑
j=0

qj(r)fj(x(r), x(hj(r)))dr ds.

(2.2)

Here we have set

P (t) :=
∫ t

0

1
p(s)

ds, t ∈ I.

Lemma 2.1. A function x ∈ C(I) is a solution of the boundary value problem
(1.1)-(1.3) if and only if x solves the operator equation (1.4), where A is defined
by (2.2). Also, any nonnegative solution of (1.4) is an increasing and concave
function.
Proof. The “only if” part was shown above. For the “if” part assume that x solves
(1.4). Then, for every t ∈ I we have

x(t) = λAx(t) = λγP (t)
∫ 1

0

1
p(s)

∫ 1

s

z(r)dr dg(s) + λ

∫ t

0

1
p(s)

∫ 1

s

z(r)dr ds.

Therefore

x′(t) = λγ
1
p(t)

∫ 1

0

1
p(s)

∫ 1

s

z(r)dr dg(s) + λ
1
p(t)

∫ 1

t

z(r)dr ds .
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and

(p(t)x′(t))′ = −λz(t) = −λ
k∑
j=0

qj(t)fj(x(t), x(hj(t))).

Hence, if x = λAx, then x satisfies (1.1) and, moreover, since x(0) = λAx(0) = 0,
it follows that x satisfies (1.2). Also, for every t ∈ I we have

∫ 1

0

x′(t)dg(t) =λγ
∫ 1

0

1
p(t)

dg(t) ·
∫ 1

0

1
p(s)

∫ 1

s

z(r)dr dg(s)

+ λ

∫ 1

0

1
p(t)

∫ 1

t

z(r)dr dg(t)

=λ
[
γ

∫ 1

0

1
p(t)

dg(t) + 1
] ∫ 1

0

1
p(t)

∫ 1

t

z(r)dr dg(t)

=λ
[ ∫ 1

0
1
p(t)dg(t)

1
p(1) −

∫ 1

0
1
p(t)dg(t)

+ 1
] ∫ 1

0

1
p(t)

∫ 1

t

z(r)dr dg(t)

=
λγ

p(1)

∫ 1

0

1
p(t)

∫ 1

t

z(r)dr dg(t) = x′(1).

Thus x satisfies (1.3). The additional properties, which the lemma claims that any
x ≥ 0 with x = λAx has, are implied from the fact that x′ ≥ 0, (p(t)x′(t))′ ≤ 0 and
Fact 1.4. We keep in mind that λ > 0. �

By using the continuity of the functions fj , qj and p it is not hard to show that
A is a completely continuous operator.

Now consider the set

K := {x ∈ C(I) : x(0) = 0, x ≥ 0, x′ ≥ 0 and x concave},

which, obviously, is a cone in C(I). We show that the operator λA maps the cone
K into itself. Indeed we have the following statement.

Lemma 2.2. Consider functions p, g, fj , qj , hj, (j = 0, 1, . . . , k), satisfying the
assumptions (H1)-(H5). Then

λA(K) ⊂ K.

Proof. Let x ∈ K be fixed. Then we observe that Ax(0) = 0, Ax ≥ 0 and (Ax)′ ≥ 0.
Moreover, since, obviously,

(
p(t)(Ax)′(t)

)′ ≤ 0 for all t ∈ I, by Fact 1.4, we know
that the function y = λAx is concave and the proof is complete. �

3. Existence Results

Let x be a function in the cone K. Then x is nondecreasing and nonnegative,
hence ‖x‖ = x(1). Also, from Lemma 2.1 we have λAx ∈ K, thus ‖Ax‖ = Ax(1).
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But then we have

‖Ax‖ = Ax(1) =γP (1)
∫ 1

0

1
p(s)

∫ 1

s

k∑
j=0

qj(r)fj(x(r), x(hj(r)))dr dg(s)

+
∫ 1

0

1
p(s)

∫ 1

s

k∑
j=0

qj(r)fj(x(r), x(hj(r)))drds

=
∫ 1

0

1
p(s)

∫ 1

s

k∑
j=0

qj(r)fj(x(r), x(hj(r)))drdk(s),

where k(s) := s+ γP (1)g(s), s ∈ I. Applying Fubini’s Theorem we get

‖Ax‖ =
∫ 1

0

k∑
j=0

qj(s)fj(x(s), x(hj(s)))R(s)ds, (3.1)

where

R(s) :=
∫ s

0

1
p(r)

dk(r).

Next, let 0 < K < S < M < +∞ be fixed and define the functions

Φ(u, v) := sup{f0(u′, v′) : 0 ≤ u′ ≤ u, 0 ≤ v′ ≤ v}, u, v ∈ [0,K]

φ(u, v) := inf{f0(u′, v′) : u ≤ u′ ≤M, v ≤ v′ ≤M}, u, v ∈ [S,M ].

It is clear that both the functions Φ and φ are nondecreasing with respect to their
variables and they satisfy

f0(u, v) ≤ Φ(u, v), u, v ∈ [0,K] (3.2)

f0(u, v) ≥ φ(u, v), u, v ∈ [S,M ]. (3.3)

Also we make the following assumption

(H6) The following quantities are finite numbers:

Lj := sup
0<v≤u<K

fj(u, v)
f0(u, v)

, j = 1, 2, . . . , k,

Now we define the set

E(S,M) :=
{
η ∈ I : S < h0(η)M

}
,

which maybe empty. Also we define the following real numbers:

ζ := sup
{
h0(η)

∫ 1

η

q0(s)R(s)ds : η ∈ E(S,M)
}
,

ξ :=
∫ 1

0

(
q0 +

k∑
j=1

Ljqj(s)
)
R(s)ds,

b(S,M) :=
1
ζ

sup
u∈[S,M ]

u

φ(u, u)
,

B(K) :=
1
ξ

K

Φ(K,K)
.
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Theorem 3.1. Assume that p, g, fj , qj , hj (j = 0, . . . , k) are functions which satisfy
assumptions (H1)-(H6). Then for every λ such that b(S,M) < λ < B(K), the
boundary value problem (1.1)-(1.3) admits at least one positive, nondecreasing and
concave solution x such that K < ‖x‖ < M .

Proof. We set T := λA. First we shall prove that

if x ∈ K and ‖x‖ = M, then ‖Tx‖ > M. (3.4)

Indeed, assume on the contrary, that there is a x in K such that

‖x‖ = M and ‖Tx‖ ≤M (3.5)

and consider any η ∈ E(S,M) fixed. Then η > 0 and h0(η)M > S. Also for all
s ∈ [η, 1] we have h0(s) ≥ h0(η) := τ . From the concavity and monotonicity of x
and Fact 1.2 we have

M = ‖x‖ ≥ x(s) ≥ x(h0(s)) ≥ τ‖x‖ = h0(η)M.

Now taking into account (3.1) and (3.3) from (3.5) we get

M ≥ λ
∫ 1

0

q0(s)f0(x(s), x(h0(s)))R(s)ds

≥ λ
∫ 1

η

q0(s)f0(x(s), x(h0(s)))R(s)ds

≥ λφ
(
h0(η)M,h0(η)M

) ∫ 1

η

q0(s)R(s)ds.

So
h0(η)M

φ
(
h0(η)M,h0(η)M

) ≥ λh0(η)
∫ 1

η

q0(s)R(s)ds. (3.6)

This implies that

sup
u∈[S,M ]

u

φ(u, u)
≥ λζ, (3.7)

which contradicts to the fact that λ > b(S,M). Thus (3.4) holds.
Next we claim that

if x ∈ K and ‖x‖ = K, then ‖Tx‖ < K. (3.8)

Indeed if not, then assume that for some x ∈ K with ‖x‖ = K we have ‖Tx‖ ≥ K.
The first one implies that 0 ≤ x(s) ≤ K, s ∈ I and so, taking into account (3.1),
(3.2), assumptions (H5), (H6) and the fact that x is nondecreasing we get in any
case that

K ≤ λ
∫ 1

0

k∑
j=0

qj(s)fj(x(s), x(hj(s)))R(s)ds

≤ λ
∫ 1

0

k∑
j=0

qj(s)fj(x(s), x(h0(s)))R(s)ds

≤ λ
∫ 1

0

(
q0(s) +

k∑
j=1

Ljqj(s)
)
f0(x(s), x(h0(s)))R(s)ds.

(3.9)



8 G. L. KARAKOSTAS & P. CH. TSAMATOS EJDE–2002/59

Now, from (3.2) it follows that

K ≤ λΦ(K,K)
∫ 1

0

(
q0(s) +

k∑
j=1

Ljqj(s)
)
R(s)ds = λΦ(K,K)ξ. (3.10)

Hence it holds
K

Φ(K,K)
< λξ,

which contradicts to the fact that λ < B(K) and our claim is proved.
Finally, we set Ω1 := {x ∈ C(I) : ‖x‖ < K} and Ω2 := {x ∈ C(I) : ‖x‖ < M}.

Note that K < M . Taking into account that T is a completely continuous operator
and Lemma 2.2, from Theorem 1.1 we conclude that there exists a solution x of
the boundary value problem (1.1)− (1.3) such that K ≤ ‖x‖ ≤M . From (3.4) and
(3.8) we see that equalities ‖x‖ = K and ‖x‖ = M cannot hold. �

One of the main questions, on the existence problem solved above, is whether
we may enlarge the set of eigenvalues. Partial answers to this question are given in
the following theorems.

Theorem 3.2. Assume that p, g, fj , qj , hj, (j = 0, . . . , k) satisfy assumptions (H1)-
(H6) and moreover that

f0(u, v) = 0 and u ≥ v ≥ 0 imply v = 0.

Also let h0 be a continuous function, with h0(1) > 0. If b(S,M) ≤ λ < B(K)),
then there is a positive, nondecreasing and concave solution x of the boundary value
problem (1.1)-(1.3) such that K < ‖x‖ < M .

Proof. As in Theorem 3.1 we have that x ∈ K and ‖x‖ = K imply ‖Ax‖ < K and
we will show that x ∈ K and ‖x‖ = M imply ‖Ax‖ > M . To do this we proceed as
in Theorem 3.1 and obtain (3.6).

Now, if for some η′ ∈ I equality holds, we must have h0(η) > S
M and∫ η

0

q0(s)f0(x(s), x(h0(s)))R(s)ds = 0

for all η ∈ [η′, 1]. Since q0(s) ≥ 0 and q0(1) > 0 it follows that for all s close to 1 it
holds

f0(x(s), x(h0(s))) = 0

and so, by our hypothesis we have x(h0(s)) = 0 for all s > 0 close to 1. This gives
h0(s) = 0, because of Fact 1.2, hence, by continuity, h0(1) = 0, a contradiction.

Therefore in (3.6) we have the strict inequality. Since both sides are continuous
functions of η, it follows that (3.7) holds as a strict inequality, which contradicts to
b(S,M) ≤ λ. Now the result follows as in Theorem 3.1. �

Theorem 3.3. Assume that p, g, fj , qj , hj, (j = 0, . . . , k) satisfy (H1)-(H6) and
moreover assume that there is an index j1 ∈ {1, . . . , k} such that meas{s ∈ I :
qj1(s) 6= 0} > 0 and for all u ∈ (0,K] and v ∈ (0, u] it holds

fj1(u, v) < Lj1f0(u, v). (3.11)

If b(S,M) < λ ≤ B(K), then there is a positive, nondecreasing and concave solution
x of the boundary-value problem (1.1)-(1.3) such that K < ‖x‖ < M .
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Proof. As in Theorem 3.1 we can show that x ∈ K and ‖x‖ = M imply ‖Ax‖ > M .
It remains to show that if x ∈ K and ‖x‖ = K, then ‖Ax‖ < K. To do this we
obtain (3.10) and we will show that equality cannot hold. Indeed if it is so, then
taking into account (3.9) we conclude that for all j = 1, . . . , k it holds

qj(s)fj(x(s), x(hj(s))) = qj(s)Ljf0(x(s), x(hj(s))),

where all these quantities are nonnegative. But for j = j1, (3.11) cannot be true,
thus in (3.10) we have the strict inequality, a contradiction. �

4. Uniqueness and continuous dependence Results

Here we give results on the uniqueness and the continuous dependence of the
solutions on the eigenvalues. For this we make the following condition.

(H7) For every j = 0, . . . , k there exist real nonnegative constants ρj , σj such
that

|fj(u, v)− fj(u′, v′)| ≤ ρj |u− v|+ σj |u′ − v′|
for all u, v, u′, v′ ∈ [0,+∞).

Theorem 4.1. Assume that p, g, fj , qj , hj , ρj , σj, (j = 0, . . . , k) satisfy (H1)-(H7)
and

c := B(K)
k∑
j=0

(ρj + σj)
∫ 1

0

qj(s)R(s)ds < 1. (4.1)

Then for every λ ∈ (b(S,M), B(K)) there exists exactly one positive (nondecreasing
and concave) solution xλ of the boundary value problem (1.1) − (1.3). Also the
function λ→ xλ is uniformly continuous.
Proof. It is clear that conditions (H7) and (4.1) imply that the operator T = λA is
a contraction. Hence, by the Contraction Principle, for every λ ∈ (b(S,M), B(K))
the solution xλ, say, obtained by Theorem 3.1 is unique.

Now, consider the solutions xλ1 , xλ2 , where λ1, λ2 ∈ (b(S,M), B(K)). Then, for
any t ∈ I we have

|xλ1(t)− xλ2(t)| ≤ |λ1 − λ2||Axλ1(t)|+B(K)|Axλ1(t)| −Axλ2(t)|

≤ |λ1 − λ2|
b(S,M)

‖xλ1‖+ c‖xλ1 − xλ2‖.

Therefore,

‖xλ1 − xλ2‖ ≤
1

b(S,M)(1− c)
|λ1 − λ2|

which completes our proof. �

5. Some Applications

(a) Consider the equation

x′′(t)+λ
[
xµ(t)xν(h(t))+θ

∣∣sin[x(t)x(h(t))]
∣∣xµ−1(t)xν−1(h(t))

]
= 0, t ∈ I, (5.1)

associated with the conditions (1.2) and (1.3). The function h is any retardation,
θ ≥ 0 and µ, ν > 0 with µ + ν > 1. Also consider the constants ξ and ζ as in
Theorem 3.1. Here we have

f0(u, v) = φ(u, v) = Φ(u, v) := uµvν ,

f1(u, v) := |sin(uv)|uµ−1vν−1.
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Take any constants ε,Θ such that 0 < εζ < Θξ < +∞ and consider constants
K,S(> 0) so that

Kµ+ν−1 < (Θξ)−1 < (εζ)−1 < Sµ+ν−1.

Fix any M > S. Then observe that L1 = 1, as well as

b(S,M) =
1
ζ

sup
u∈[S,M ]

u

Φ(u, u)
=

1
ζ

sup
u∈[S,M ]

1
uµ+ν−1

=
1
ζ

1
Sµ+ν−1

< ε

and
B(K) =

1
ξ

1
Kµ+ν−1

> Θ.

Since ε,Θ are arbitrary, we have the following statement.
Corollary 5.1. Assume that g, h : I → R are nondecreasing functions (with h not
identically zero) and such that g(1) − g(0) < 1 and 0 ≤ h(t) ≤ t, t ∈ I. Then
for every λ > 0 the boundary value problem (5.1),(1.2),(1.3) admits at least one
positive, nondecreasing and concave solution x such that K < ‖x‖ < M .
(b) Consider the retarded differential equation

x′′(t) + λ[xm+1(t) + ρxn+1(t2)] = 0, t ∈ [0, 1], (5.2)

with initial condition (1.2), i.e. x(0) = 0 and the boundary condition

x′(1) = δx(1) (5.3)

where m,n, λ, ρ, δ are real positive numbers with δ < 1. To apply Theorem 3.1 we
write this problem in the form (1.1)-(1.3) by setting

p(t) := 1, q0(t) := 1, g(t) := δt, h0(t) := t2, t ∈ I,
and

f0(u, v) := φ(u, v) = Φ(u, v) = um+1 + ρvn+1, fj(u, v) := 0, (j = 1, . . . , k).

Then we obtain
γ =

1
1− δ

and R(t) =
t

1− δ
, t ∈ I.

Choose S := 1, M := 2 and observe that E(S,M) = (2−1/2, 1]. Thus, we have

ζ = sup
{ 1

2(1− δ)
η2(1− η2) : η ∈ (2−1/2, 1]

}
=

1
8(1− δ)

,

ξ =
1

2(1− δ)
, sup

u∈[1,2]

u

φ(u, u)
=

1
1 + ρ

K

φ(K,K)
=

1
Km+1 + ρKn+1

.

Therefore, Theorem 3.2 applies and the following result follows.
Corollary 5.2. Assume that m,n, λ, ρ, δ are real positive numbers with δ < 1.
Then for any K > 0, with

Km+1 + ρKn+1 <
1
4

(1 + ρ)

and any λ such that

8(1− δ)
1 + ρ

≤ λ < 2(1− δ)
Km+1 + ρKn+1

,

the boundary value problem (5.2), (1.2), (5.3) admits at least one solution x which
is a positive, nondecreasing and concave function such that K < ‖x‖ < 2.
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