
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 63, pp. 1–28.

ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu

ftp ejde.math.swt.edu (login: ftp)

ROBUST EXPONENTIAL ATTRACTORS FOR SINGULARLY
PERTURBED PHASE-FIELD TYPE EQUATIONS

ALAIN MIRANVILLE & SERGEY ZELIK

Abstract. In this article, we construct robust (i.e. lower and upper semi-
continuous) exponential attractors for singularly perturbed phase-field type

equations. Moreover, we obtain estimates for the symmetric distance between
these exponential attractors and that of the limit Cahn-Hilliard equation in

terms of the perturbation parameter. We can note that the continuity is ob-

tained without time shifts as it is the case in previous results.

Introduction

In this article, we are interested in the study of the asymptotic behavior of
phase-field type equations. The corresponding equations consist of a system of two
parabolic equations involving two unknowns, namely the temperature u(t, x) at
point x and time t of a substance which can appear in two different phases (e.g.
liquid-solid) and a phase-field function φ(t, x), also called order parameter, which
describes the current phase at x and t. Such models were introduced in order to
study the evolution of interfaces in phase transitions. They have also led to other
models of phase transitions and motion of interfaces as singular limits (e.g. the
Stefan, Hele-Shaw and Cahn-Hilliard models). We refer the interested reader to
[6, 7, 8, 9, 10, 19, 20, 21, 25, 27] and the references therein for more details.

The long time behavior of such models was extensively studied in [2, 3, 4, 5, 10,
11, 12, 13, 17]. In particular, the existence of the global attractor and exponential
attractors is obtained in [3, 4, 5]. Furthermore, the upper semicontinuity of the
global attractor for a singularly perturbed phase-field model is proved in [12] (see
also [11] for a logarithmic nonlinearity) for two limit equations, namely the viscous
Cahn-Hilliard and Cahn-Hilliard equations. The lower semicontinuity of the global
attractor was studied in [10], but only in one space dimension. In that case, the
authors do not need any assumption on the hyperbolicity of the stationary solutions,
as it is usually the case to obtain the lower semicontinuity of the global attractor
for dynamical systems which possess a global Lyapunov function [1, 22].
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In [14, 15], we constructed families of robust (i.e. upper and lower semicontin-
uous) exponential attractors for singularly perturbed viscous Cahn-Hilliard equa-
tions and damped wave equations. We can note that these results are not based
on the study of stationary solutions and their unstable manifolds, as it is the case
for regular global attractors [1, 22]; in particular, this allows us to obtain explicit
estimates on the different constants (appearing e.g. in the estimate for the symmet-
ric distance between the exponential attractors of the perturbed and unperturbed
problems, see [14], [15] and below).

Our aim in this article is to obtain a similar result for singularly perturbed phase-
field equations. Actually, we consider a more general system of equations, which
does not possess a global Lyapunov function, by adding a nonlinear term in the
equation for the temperature u.

In Section 1, we derive uniform estimates which are necessary for the study
of the singular limit. Then, in Section 2, we study the asymptotic expansion of
the solutions with respect to the singular perturbation parameter ε and obtain
estimates on the difference of solutions which are essential for our construction of
exponential attractors. Finally, in Section 3, we construct a family of continuous
exponential attractors for our problem and obtain in particular an explicit estimate
for the symmetric distance between the exponential attractors of the perturbed and
unperturbed equations in terms of the perturbation parameter ε (see Theorem 3.1
below). The case of Neumann boundary conditions is briefly addressed in Section 4.

Setting of the problem. We consider the following system of singularly per-
turbed reaction-diffusion equations:

δ∂tφ = ∆xφ− f1(φ) + u+ g1, φ
∣∣
∂Ω

= 0,

ε∂tu+ ∂tφ = ∆xu− f2(u) + g2, u
∣∣
∂Ω

= 0,

φ
∣∣
t=0

= φ0, u
∣∣
t=0

= u0,

(0.1)

where Ω is a bounded regular domain of R3, (φ(t, x), u(t, x)) is an unknown pair of
functions, ∆x is the Laplacian with respect to the variable x, gi = gi(x) ∈ L2(Ω),
i = 1, 2, are given external forces and δ and ε > 0 are given constants.

We assume that the nonlinear terms fi belong to C3(R,R), i = 1, 2, and satisfy
the following dissipativity conditions:

f1(v).v ≥ −C, C ≥ 0

f ′1(v) ≥ −K, K ≥ 0

f ′2(v) ≥ 0, f2(0) = 0.

(0.2)

Finally, we assume that the initial data (φ0, u0) belongs to the phase space Φ,
defined by

Φ :=
(
H2(Ω) ∩H1

0 (Ω)
)
×
(
H2(Ω) ∩H1

0 (Ω)
)
. (0.3)

Remark 0.1. Taking f2 ≡ 0 in (0.1), we recover the phase-field system considered
in [2, 3, 4, 5, 10, 11, 12, 13, 17].

1. Uniform a priori estimates

In this section, we derive several uniform (with respect to ε � 1) estimates for
the solutions of problem (0.1) which are necessary for the study of the singular limit
ε→ 0. We start with the following lemma.
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Lemma 1.1. Let the above assumptions hold and let the pair (φ(t), u(t)) ∈ C(R,Φ)
be a solution of (0.1). Then, the following estimate is valid:

‖∇xφ(t)‖2L2 + ε‖u(t)‖2L2 + (F1(φ(t)), 1) +

+
∫ t+1

t

(
‖∂tφ(s)‖2L2 + ‖∇xu(s)‖2L2 + (f2(u(s)), u(s))

)
ds ≤

≤ C
(
‖∇xφ(0)‖2L2 + ε‖u(0)‖2L2 + (F1(φ(0)), 1)

)
e−γt+

+ C
(
‖g1‖2L2 + ‖g2‖2L2

)
, (1.1)

where F1(v) :=
∫ v

0
f1(s) ds, (·, ·) denotes the standard inner product in L2(Ω) and

the positive constants C1, C2 and γ are independent of ε.

Proof. Taking the inner product in L2(Ω) of the first equation of (0.1) by ∂tφ(t)
and of the second equation by u(t) and summing the relations that we obtain, we
have

∂t[δ‖∇xφ(t)‖2L2 + 2(F1(φ(t)), 1) + ε‖u(t)‖2L2 − 2(g1, φ(t))]+

+ 2δ‖∂tφ(t)‖2L2 + 2‖∇xu(t)‖2L2 + 2(f2(u(t)), u(t))− 2(g2, u(t)) = 0. (1.2)

Taking now the inner product in L2(Ω) of the first equation of (0.1) by 2βφ(t),
where β is a sufficiently small positive number, and summing the relation that we
obtain with equation (1.2), we find

∂tE(t) + γE(t) = h(t), (1.3)

where

E(t) := δ‖∇xφ(t)‖2L2 + 2(F1(φ(t)), 1) + ε‖u(t)‖2L2 − 2(g1, φ(t)) + βδ‖φ(t)‖2L2 ,

0 < γ < β is another small positive parameter which will be fixed below and

h(t) := (γδ − 2β)‖∇xφ(t)‖2L2 + 2γ (F1(φ(t))− f1(φ(t))φ(t), 1) +

+ 2(γ − β)(f1(φ(t)), φ(t))− 2δ‖∂tφ(t)‖2L2 − 2‖∇xu(t)‖2L2−
− 2(f2(u(t)), u(t)) + 2(g2, u(t)) + γε‖u(t)‖2L2 + 2(β − γ)(g1, φ(t))+

+ βδγ‖φ(t)‖2L2 + 2β(u(t), φ(t)). (1.4)

It follows from conditions (0.2) that

f1(v).v +K|v|2 ≥ F1(v), ∀v ∈ R, (1.5)

(see e.g. [26]). Consequently, it is possible to fix the small positive parameters β
and γ (which are independent of 0 < ε < 1) such that the following estimate holds:

h(t) ≤ C1

(
1 + ‖g1‖2L2 + ‖g2‖2L2

)
, (1.6)

where C1 is independent of ε. Applying now Gronwall’s inequality to relation (1.3)
and using estimate (1.6) and equation (1.2), we find estimate (1.1) and Lemma 1.1
is proved. �

The next lemma gives uniform (with respect to ε) estimates of (φ, u) in the space
H2(Ω)×H1(Ω).
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Lemma 1.2. Let the above assumptions hold. Then, the following estimate is valid
for a solution (φ(t), u(t)) of equation (0.1):

‖φ(t)‖2H2 +‖∂tφ(t)‖2L2 + ‖u(t)‖2H1 +
∫ t+1

t

(
‖∂tφ(s)‖2H1 +ε‖∂tu(s)‖2L2

)
ds ≤

≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H1)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2), (1.7)

where the constant γ > 0 and the monotonic function Q are independent of ε > 0.
Proof. We set ψ(t) := ∂tφ(t). Then, this function satisfies

δ∂tψ = ∆xψ − f ′1(φ)ψ + ∂tu, ψ(0) = δ−1 (∆xφ(0)− f1(φ(0)) + u(0) + g1) . (1.8)

Taking the inner product in L2(Ω) of the equation by ψ(t) and of the second
equation of (0.1) by ∂tu and summing the relations that we obtain, we have

∂t[δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 + 2(F2(u(t)), 1)− 2(g2, u(t))]+

+ [δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 + 2(F2(u(t)), 1)− 2(g2, u(t))]+

+ 2‖∇xψ(t)‖2L2 + 2ε‖∂tu(t)‖2L2 = h1(t), (1.9)

where F2(v) :=
∫ v

0
f2(s) ds and

h1(t) := [δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 + 2(F2(u(t)), 1)− 2(g2, u(t))]+

+ 2(g1, ∂tφ(t))− 2(f ′1(φ(t))∂tφ(t), ∂tφ(t)). (1.10)

Analogously to (1.5), we have

f2(v).v ≥ F2(v). (1.11)

Furthermore, thanks to (0.2) and (1.11), we find

h1(t) ≤ C1

(
1 + ‖g1‖2L2 + ‖g2‖2L2

)
+

+ C2

(
(f2(u(t)), u(t)) + ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2

)
. (1.12)

Applying Gronwall’s inequality to relation (1.9) and using estimates (1.1) and
(1.12), we obtain

‖∂tφ(t)‖2L2 + ‖u(t)‖2H1 +
∫ t+1

t

(
‖∂tφ(s)‖2H1 + ε‖∂tu(s)‖2L2

)
ds ≤

≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H1)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2), (1.13)

for appropriate constant γ > 0 and monotonic function Q which are independent
of ε. There now remains to estimate the H2-norm of φ(t). To this end, we rewrite
the first equation of (0.1) in the form

∆xφ(t)− f1(φ(t)) = h2(t), φ(t)
∣∣
∂Ω

= 0, (1.14)

where h2(t) := δ∂tφ(t)− u(t)− g1. Indeed, according to estimate (1.13), we have

‖h2(t)‖2L2 ≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H1)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2). (1.15)

Taking then the inner product in L2(Ω) of equation (1.14) by ∆xφ(t) and using
(0.2), we obtain

‖∆xφ(t)‖2L2 ≤ 2K‖∇xφ(t)‖2L2 + 2‖h2(t)‖2L2 . (1.16)

Inserting finally estimates (1.15) and (1.13) into the right-hand side of (1.16), we
derive the necessary estimate for the H2-norm of φ(t) and Lemma 1.2 is proved. �
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We are now in a position to derive a priori estimates for the solutions of (0.1) in
the phase space Φ.
Lemma 1.3. Let the above assumptions hold. Then, the following estimate holds,
for every solution (φ(t), u(t)) of problem (0.1):

‖φ(t)‖2H2 + ‖u(t)‖2H2 + ε2‖∂tu(t)‖2L2 ≤
≤ Q(‖φ(0)‖H2 + ‖u(0)‖H2)e−αt +Q(‖g1‖L2 + ‖g2‖L2), (1.17)

where the positive constant α and the monotonic function Q are independent of ε.
Proof. We rewrite the second equation of system (0.1) in the form

ε∂tu−∆xu+ f2(u) = h(t) := g2 − ∂tφ(t). (1.18)

Rescaling now the time variable (t := ετ), we have

∂τu−∆xu+ f2(u) = h̃(τ) := h(ετ), u
∣∣
τ=0

= u0. (1.19)

Moreover, it follows from (1.7) that

‖h̃(τ)‖L2 ≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H1)e−γετ +Q(‖g1‖2L2 + ‖g2‖2L2), (1.20)

where Q and α are independent of ε. Applying the standard maximum principle
to equation (1.19), using the fact that f2(u).u ≥ 0 and noting that H2 ⊂ C (since
n = 3), we obtain the estimate

‖u(τ)‖L∞ ≤ C‖u(0)‖H2e−βτ + C sup
s∈[0,τ ]

{
e−β(τ−s)‖h̃(s)‖L2

}
, (1.21)

for appropriate positive constants β and C (see e.g. [18] for details). Inserting
estimate (1.20) into the right-hand side of (1.21) and returning to the time variable
t, we find

‖u(t)‖L∞ ≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2), (1.22)

where the constant γ and the function Q are independent of ε.
Let us now derive a uniform estimate for the H2-norm of u(t). To this end, we

introduce the functions Gi = Gi(x) := (−∆x)−1gi, i = 1, 2, and split the solution
(φ(t), u(t)) as follows:

φ(t) := G1 + φ1(t) + φ2(t), u(t) := G2 + u1(t) + u2(t) + u3(t), (1.23)

where u1(t) solves
ε∂tu1 = ∆xu1, u1

∣∣
t=0

= u0 −G2, (1.24)
the function u2(t) is solution of

ε∂tu2 = ∆xu2 − ∂tφ1, u2

∣∣
t=0

= 0, (1.25)

with
δ∂tφ1 = ∆xφ1, φ1

∣∣
t=0

= φ0 −G1, (1.26)
and the function u3(t) solves

ε∂tu3 −∆xu3 = h3(t) := −∂tφ2(t)− f2(u(t)), u3

∣∣
t=0

= 0, (1.27)

with
δ∂tφ2 −∆xφ2 = h4(t) := u(t)− f1(φ(t)), φ2

∣∣
t=0

= 0. (1.28)

Obviously, Gi ∈ H2(Ω) and

‖Gi‖H2 ≤ C‖gi‖L2 , i = 1, 2. (1.29)
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Moreover, since −∆x generates an analytic semigroup in H2(Ω), then

‖u1(t)‖H2 ≤ Ce−γt/ε (‖u0‖H2 + ‖g2‖L2) , (1.30)

where the constants C and γ are independent of ε. Let us then estimate u2(t). To
this end, we note that

u2(t) =
δ

δ − ε
(φ1(t)− ũ0(t)) , (1.31)

for ε� 1, where the function ũ0(t) solves the problem

ε∂tũ0 = ∆xũ0, ũ0

∣∣
t=0

= φ0 −G1.

Analogously to (1.30), we have

‖u2(t)‖H2 ≤ Ce−βt (‖φ0‖H2 + ‖g1‖L2) , (1.32)

where C and β are independent of ε. So, there only remains to estimate u3(t). To
this end, we note that, due to estimate (1.7) and due to the fact that H2 ⊂ C, the
function h4 defined in (1.28) satisfies

‖h4(t)‖H1 ≤ Q(‖φ(0)‖H2 + ‖u(0)‖H2)e−γt +Q(‖g1‖L2 + ‖g2‖L2), (1.33)

for appropriate γ and Q which are independent of ε. Applying the parabolic regu-
larity theorem (see e.g. [18]) to equation (1.28), we obtain

‖∂tφ2(t)‖H1−β ≤ Qβ(‖φ(0)‖H2 + ‖u(0)‖H2)e−γt +Qβ(‖g1‖L2 + ‖g2‖L2), (1.34)

where 0 < β < 1 and γ and Qβ are independent of ε. Consequently, according to
(1.7), (1.22) and (1.34), we have the following estimate for the function h3(t) in the
right-hand side of (1.17):

‖h3(t)‖H1−β ≤ Qβ(‖φ(0)‖H2 + ‖u(0)‖H2)e−γt +Qβ(‖g1‖L2 + ‖g2‖L2), (1.35)

for appropriate γ and Qβ which are independent of ε. Applying now the standard
parabolic regularity theorem to equation (1.27) and rescaling the time as above
(t := ετ) in order to eliminate the dependence on ε (analogously to (1.18)–(1.22)),
we deduce from (1.35) that

‖u3(t)‖H2 ≤ Q(‖φ(0)‖H2 + ‖u(0)‖H2)e−γt +Q(‖g1‖L2 + ‖g2‖L2), (1.36)

where the positive constant γ and the monotonic function Q are independent of ε.
Combining (1.29), (1.30), (1.32) and (1.36), we finally have

‖u(t)‖H2 ≤ Q(‖φ(0)‖H2 + ‖u(0)‖H2)e−γt +Q(‖g1‖L2 + ‖g2‖L2), (1.37)

for some new positive constant γ and monotonic function Q which are independent
of ε. Thus, the uniform estimate for the H2-norm of u(t) is obtained. The uniform
estimate for the L2-norm of ε∂tu(t) is an immediate corollary of (1.7), (1.37) and
of the second equation in (0.1). This finishes the proof of Lemma 1.3. �

Lemma 1.4. Let the above assumptions hold. Then, for every (φ0, u0) ∈ Φ,
problem (0.1) has a unique solution (φ(t), u(t)) ∈ C(R,Φ) which satisfies estimate
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(1.17). Moreover, for any solutions (φi(t), ui(t)) ∈ Φ, i = 1, 2, the following in-
equality holds:

‖φ1(t)− φ2(t)‖2H1 + ε‖u1(t)− u2(t)‖2L2+

+
∫ t+1

t

(
‖∂tφ1(s)− ∂tφ2(s)‖2L2 + ‖∇xu1(s)−∇xu2(s)‖2L2

)
ds ≤

≤ CeLt
(
‖φ1(0)− φ2(0)‖2H1 + ε‖u1(0)− u2(0)‖2L2

)
, (1.38)

where the constants C and L depend on ‖φi(0)‖H2 and on ‖ui(0)‖H2 , but are in-
dependent of ε.
Proof. The existence of a solution can be proved in a standard way, based on a priori
estimate (1.17) and on the Leray-Schauder fixed point theorem (see e.g. [18]). So,
there remains to deduce estimate (1.38). To this end, we set v(t) := φ1(t) − φ2(t)
and w(t) := u1(t)− u2(t). These functions satisfy the equations

δ∂tv = ∆xv − l1(t)v + w, v
∣∣
t=0

= φ1(0)− φ2(0), v
∣∣
∂Ω

= 0,

ε∂tw + ∂tv = ∆xw − l2(t)w, w
∣∣
t=0

= u1(0)− u2(0), w
∣∣
∂Ω

= 0,
(1.39)

where

l1(t) :=
∫ 1

0

f ′1(sφ1(t) + (1− s)φ2(t)) ds, l2(t) :=
∫ 1

0

f ′2(su1(t) + (1− s)u2(t)) ds.

It now follows from estimates (1.7) and (1.17) and from the embedding H2 ⊂ C
that

‖l1(t)‖H2 + ‖∂tl1(t)‖L2 + ‖l2(t)‖H2 ≤
≤ L := Q(‖(φ1(0), u1(0))‖Φ + ‖(φ2(0), u2(0))‖Φ), (1.40)

for a monotonic function Q which is independent of ε. Moreover, due to our as-
sumptions on f ′2, we have

l2(t) ≥ 0. (1.41)

Multiplying now the first equation of (1.39) by ∂tv(t) and the second one by w(t),
integrating over Ω and summing the relations that we obtain, we find, taking into
account estimates (1.40) and (1.41)

∂t[‖∇xv(t)‖2L2 + ε‖w(t)‖2L2 ] + 2δ‖∂tv(t)‖2L2 + 2‖∇xw(t)‖2L2 ≤
≤ L2δ−1‖v(t)‖2L2 + δ‖∂tv(t)‖2L2 . (1.42)

Applying Gronwall’s inequality to this relation, we derive estimate (1.38) and Lem-
ma 1.4 is proved. �

Corollary 1.5. Let the above assumptions hold. Then, for every ε > 0, problem
(0.1) defines a semigroup Sεt in the phase space Φ by

Sεt : Φ→ Φ, Sεt (φ0, u0) = (φ(t), u(t)), (1.43)

where the function (φ(t), u(t)) solves (0.1).
Let us now consider the limit equation of (0.1) (i.e. ε = 0 in (0.1)):

δ∂tφ̄0 = ∆xφ̄0 − f1(φ̄0) + ū0 + g1, φ̄0

∣∣
t=0

= φ0, φ̄0

∣∣
∂Ω

= 0,

∂tφ̄0 = ∆xū0 − f2(ū0) + g2, ū0

∣∣
∂Ω

= 0.
(1.44)
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We note that, in contrast to the case ε > 0, the values of (φ̄0(t), ū0(t)) are not
independent in that case. Indeed, it follows from (1.44) that

δ∆xū0(t)− δf2(ū0(t))− ū0(t) = ∆xφ̄0(t)− f1(φ̄0(t)) + g1 − δg2. (1.45)

Moroever, as shown in the following proposition, the value of ū0(t) is uniquely
defined by (1.45), if the value φ̄0(t) is known.
Proposition 1.6. Let the above assumptions hold. Then, the nonlinear operator
in the left-hand side of (1.45) is invertible in H2(Ω) ∩ H1

0 (Ω), i.e. there exists a
nonlinear C1-operator

L ∈ C1(H2(Ω) ∩H1
0 (Ω),H2(Ω) ∩H1

0 (Ω)), (1.46)

such that (1.45) is equivalent to

ū0(t) = L(φ̄0(t)). (1.47)

This proposition is an immediate corollary of the condition f ′2(v) ≥ 0 (which
provides the invertibility of the operator in the left-hand side of (1.45)) and of
standard elliptic estimates.

Thus, the solution (φ̄0(t), ū0(t)) of problem (1.44) exists only for initial data
(φ0, u0) that belong to the infinite dimensional submanifold L of the phase space
Φ defined by

L := {(φ0, u0) ∈ Φ, u0 = L(φ0)} ⊂ Φ. (1.48)

Lemma 1.7. Let the above assumptions hold. Then, for every (φ0, u0) ∈ L, prob-
lem (1.44) has a unique solution (φ̄0(t), ū0(t)) ∈ L, for t ≥ 0, which satisfies the
estimate

‖φ̄0(t)‖2H2 + ‖∂tφ̄0(t)‖2L2 + ‖ū0(t)‖2H2 +
∫ t+1

t

‖∂tφ̄0(s)‖2H1 ds ≤

≤ Q(‖φ̄0(0)‖2H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2), (1.49)

for a positive constant γ and a monotonic function Q. Consequently, equation
(1.44) defines a semigroup S0

t on the manifold L by

S0
t : L→ L, S0

t (φ0, u0) := (φ̄0(t), ū0(t)), (1.50)

where the function (φ̄0(t), ū0(t)) solves (1.44).
Proof. Since estimates (1.7) and (1.17) are uniform with respect to ε, then, passing
to the limit ε→ 0 in equations (0.1), we obtain a solution (φ̄0(t), ū0(t)) for problem
(1.44) which satisfies (1.49). The uniqueness of this solution can be proved exactly
as in Lemma 1.4. �

In the sequel, we will also need the estimates for ∂tū0 and ∂2
t ū0 that are given

in the following lemma.
Lemma 1.8. Let the above assumptions hold. Then, the following estimate is valid
for the solution (φ̄0(t), ū0(t)) of problem (1.44):

‖∂tū0(t)‖2L2 +
∫ t+1

t

(
‖∂tū0(s)‖2H1 + ‖∂2

t ū0(s)‖2H−1

)
ds ≤

≤ Q(‖φ̄0(0)‖2H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2), (1.51)

for a positive constant γ and a monotonic function Q.
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Proof. Let us first derive estimate (1.51) for the first derivative ∂tū0(t). To this
end, we differentiate relation (1.45) with respect to t and split ∂tū0 as follows:

∂tū0(t) = δ−1∂tφ̄0(t) + ψ0(t). (1.52)

After straightforward substitutions, we find

δ∆xψ0(t)− δf ′2(ū0(t))ψ0(t)− ψ0(t) =

= (f ′2(ū0(t))− f ′1(φ̄0(t)) + δ−1)∂tφ̄0(t) := Ψ(t). (1.53)

It then follows from (1.49) that

‖Ψ(t)‖L2 ≤ Q(‖φ̄0(0)‖H2)e−γt +Q(‖g1‖L2 + ‖g2‖L2),

and, consequently, due to the assumption f ′2 ≥ 0, it follows from (1.53) (using
standard elliptic estimates) that

‖ψ0(t)‖H2 ≤ Q(‖φ̄0(0)‖H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2). (1.54)

Estimates (1.49) and (1.54) imply the part of (1.51) for ∂tū0. So, there remains to
estimate ∂2

t ū0 only. To this end, we differentiate the first equation of (1.44) with
respect to t:

δ∂2
t φ̄0(t) = ∆x∂tφ̄0(t)− f ′1(φ̄0(t))∂tφ̄0(t) + δ−1∂tφ̄0(t) + ψ0(t), (1.55)

and obtain, using (1.49) and (1.54)∫ t+1

t

‖∂2
t φ̄0(s)‖2H−1 ds ≤ Q(‖φ̄0(0)‖2H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2). (1.56)

Differentiating now equation (1.53) with respect to t and setting θ0(t) := ∂tψ0(t),
we have

δ∆xθ0 − δf ′2(ū0)θ0 − θ0 =
[
(f ′2(ū0)− f ′1(φ̄0) + δ−1)∂2

t φ̄0

]
+

+
[
(δ−1f ′′2 (ū0)− f ′′1 (φ̄0))(∂tφ̄0)2

]
+
[
f ′′2 (ū0)(δψ0 + 2∂tφ̄0)ψ0

]
:=

:= I1(t) + I2(t) + I3(t). (1.57)

Multiplying (1.57) by θ0(t), integrating over Ω and noting that f ′2 ≥ 0, we obtain
the inequality

δ‖∇xθ0(t)‖2L2 + ‖θ0(t)‖2L2 ≤
≤ | (I1(t), θ0(t)) |+ | (I2(t), θ0(t)) |+ | (I3(t), θ0(t)) |. (1.58)

Let us estimate each term in the right-hand side of (1.58). Using Schwarz’ inequality
and the embeddings H2 ⊂ C and H1 ⊂ L6, we have

| (I1(t), θ0(t)) | ≤
≤ C‖∂2

t φ̄0(t)‖H−1‖∇x[(f ′2(ū0(t))− f ′1(φ̄0(t)) + δ−1)θ0(t)]‖L2 ≤
≤ Q(‖φ̄0(t)‖H2)‖∂2

t φ̄0(t)‖H−1‖∇xθ0(t)‖L2 ≤

≤ δ

4
‖∇xθ0(t)‖2L2 +Q1(‖φ̄0(t)‖H2)‖∂2

t φ̄0(t)‖2H−1 , (1.59)
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where Q and Q1 are appropriate monotonic functions (here, we implicitly used for-
mula (1.47) in order to estimate ‖ū0(t)‖H2 through ‖φ̄0(t)‖H2). Thanks to Hölder’s
inequality, we can estimate the second term:

| (I2(t), θ0(t)) | ≤ Q(‖φ̄0(t)‖H2)‖∂tφ̄0(t)‖L2‖∂tφ̄0(t)‖L3‖θ0(t)‖L6 ≤

≤ Q1(‖φ̄0(t)‖H2)‖∂tφ̄0(t)‖2L2‖∂tφ̄0(t)‖2H1 +
δ

4
‖∇xθ0(t)‖2L2 . (1.60)

Finally, using estimates (1.49) and (1.54), we have

| (I3(t), θ0(t)) | ≤ ‖θ0(t)‖2L2 +Q(‖φ̄0(0)‖H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2). (1.61)

Inserting estimates (1.59)-(1.61) into (1.58), integrating the inequality that we ob-
tain over [t, t+ 1] and using estimates (1.49) and (1.54) again, we find∫ t+1

t

‖θ0(s)‖2H1 ds ≤ Q(‖φ̄0(0)‖2H2)e−γt +Q(‖g1‖2L2 + ‖g2‖2L2), (1.62)

for a positive constant γ and a monotonic function Q. There now remains to recall
that ∂2

t ū0 := δ−1∂2
t φ̄0 + θ0 and that the appropriate estimate for ∂2

t φ̄0 is given by
(1.56) to finish the proof of the lemma. �

2. Estimates on the difference of solutions

In this section, we derive several estimates on the difference of two solutions of
problem (0.1) which are of fundamental significance for our study of exponential
attractors.

We start with computing the first terms of the asymptotic expansions of the
solution (φ(t), u(t)) of problem (0.1) as ε → 0. To this end, following the general
procedure (see e.g. [24]), we introduce the fast variable τ := t

ε and expand the
solution as follows:

φ(t) = φ0(t, τ) + εφ1(t, τ) + · · · , u(t) = u0(t, τ) + εu1(t, τ) + · · · , (2.1)

where the functions ui(t, τ) are of the form

ui(t, τ) := ūi(t) + ũi(τ), φi(t, τ) := φ̄i(t) + φ̃i(τ), (2.2)

and satisfy the additional conditions

lim
τ→∞

ũi(τ) = lim
τ→∞

φ̃(τ) = 0. (2.3)

Inserting these expansions into system (0.1) and assuming that the ui(t, τ) are
independent of ε, we can obtain the recurrent equations for ui(t, τ) and φi(t, τ).
Indeed, at order ε−1, it follows from the first equation of (0.1) that

∂τ φ̃0(τ) = 0 and, consequently, φ̃0(τ) ≡ 0.

At order ε0, we obtain

δ∂τ φ̃1(τ) = ũ0(τ), δ∂tφ̄0(t) = ∆xφ̄0(t)− f1(φ̄0) + ū0 + g1.

Analogously, we deduce from the second equation of (0.1) that

∂tφ̄0(t) = ∆xū0(t)− f2(ū0(t)) + g2,

and
∂τ ũ0(τ) = ∆xũ0(τ)− [f2(ū0(0) + ũ0(τ))− f2(ū0(0))]− ∂τ φ̃1(τ).
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Expanding now the initial data for (φ(t), u(t)), we have

φ̄0(0) = φ(0), φ̄1(0) + φ̃1(0) = 0, ũ(0) = u(0)− ū0(0).

Thus, the function (φ̄0(t), ū0(t)) solves equation (1.44) with initial data φ̄0(0) =
φ(0), i.e.

(φ̄0(t), ū0(t)) = S0
t (φ(0),L(φ(0))), (2.4)

and the first boundary layer term ũ0(τ) can be found as a solution of the following
problem:

∂τ ũ0(τ) = ∆xũ0(τ)− [f2(ū0(0) + ũ0(τ))− f2(ū0(0))]− δ−1ũ0(τ),

ũ0(0) = u(0)− L(φ(0)), ũ0

∣∣
∂Ω

= 0. (2.5)

Then, the boundary layer term φ̃1(τ) is given by

φ̃1(τ) = δ−1

∫ ∞
τ

ũ0(s) ds. (2.6)

We restrict ourselves to the first boundary layer term in the asymptotic expansions
(2.1) only and estimate the rest (which is in fact sufficient for our purposes). To
be more precise, we seek for a solution of equations (0.1) of the form

φ(t) := φ̄0(t) + εφ̃(t/ε) + εφ̂(t), u(t) := ū0(t) + ũ(t/ε) + εû(t), (2.7)

where (φ̄0(t), ū0(t)) solves the limit problem (1.44), the boundary layer term ũ(τ)
solves

∂τ ũ(τ) = ∆xũ(τ)− [f2(ū0(ετ) + ũ(τ))− f2(ū0(ετ))]− δ−1ũ(τ),

ũ(0) = u(0)− L(φ(0)), ũ
∣∣
∂Ω

= 0, (2.8)

and the boundary layer term φ̃(τ) is defined by

φ̃(τ) = δ−1

∫ ∞
τ

ũ(s) ds. (2.9)

Equation (2.8) on ũ(τ) differs slightly from equation (2.5) for the function ũ0(τ)
(the term ū0(0) is replaced by ū0(t) := ū0(ετ)). We note however that the difference
ũ(τ) − ũ0(τ) is of order ε1 and, consequently, can be interpreted as a part of the
rest in the asymptotic expansions (2.1).

The next lemma shows that the function ũ(τ), solution of equation (2.8), is
indeed a boundary layer term.

Lemma 2.1. Let the above assumptions hold. Then, the solution ũ(τ) of problem
(2.8) satisfies the estimate

‖ũ(τ)‖H2 + ‖∂τ ũ(τ)‖L2 ≤ Q
(
‖(φ(0), u(0))‖Φ

)
‖ũ(0)‖H2e−γτ , (2.10)

where γ > 0 is a positive constant and Q is a monotonic function that are both
independent of ε.
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Proof. We set ṽ(τ) := ũ(τ)2. Then, due to the assumption f ′2 ≥ 0, this function
satisfies the inequation

∂τ ṽ(τ)−∆xṽ(τ)− 2δ−1ṽ(τ) ≤ 0, ṽ(0) = ũ(0)2,

and, consequently, due to the comparison principle, we have

‖ũ(τ)‖L∞ ≤ C‖ũ(0)‖L∞e−γt. (2.11)

Having estimate (2.11) for the L∞-norm of ũ(τ) and estimates (1.49) and (1.51)
for ū0(t), we deduce (2.10) by applying standard parabolic regularity arguments to
equation (2.8) and Lemma 2.1 is proved. �

We are now in a position to estimate the rest (φ̂(t), û(t)) in expansions (2.7).

Lemma 2.2. Let the above assumptions hold. Then, the rest (φ̂(t), û(t)) in the
asymptotic expansions (2.7) enjoys the following estimate:

‖φ̂(t)‖H2 + ‖û(t)‖H2 + ‖∂tφ̂(t)‖L2 + ε‖∂tû(t)‖L2 ≤ CeLt, (2.12)

where the constants C and L depend on ‖(φ(0), u(0))‖Φ, but are independent of ε.

Proof. The functions φ̂(t) and û(t) satisfy the equations

δ∂tφ̂ = ∆xφ̂−
1
ε

[
f1(φ̄0 + εφ̃+ εφ̂)− f1(φ̄0)

]
+ û+ ∆xφ̃,

ε∂tû = ∆xû−
1
ε

[
f2(ū0 + ũ+ εû)− f2(ū0 + ũ)

]
− ∂tφ̂− ∂tū0,

φ̂
∣∣
t=0

= −φ̃(0), û
∣∣
t=0

= 0.

(2.13)

We first note that, according to (2.9) and (2.10), we have

‖φ̃(τ)‖H2 ≤ Q
(
‖(φ(0), u(0))‖Φ

)
‖ũ(0)‖H2e−γτ , (2.14)

whereQ is independent of ε, and, consequently, the initial data in (2.13) is uniformly
bounded in H2(Ω) as ε→ 0.

Multiplying the first equation of (2.13) by φ̂(t) and integrating over Ω, we have,
noting that f ′1 ≥ −K

δ∂t‖φ̂(t)‖2L2 +
3
2
‖∇xφ̂(t)‖2L2 ≤ 2K‖φ̂(t)‖2L2+

+ C

(
‖û(t)‖2L2 + ‖∇xφ̃(

t

ε
)‖2L2

)
. (2.15)

We now differentiate the first equation of (2.13) with respect to t, multiply the
relation that we obtain by ∂tφ̂(t) and integrate over Ω to find

δ∂t‖∂tφ̂(t)‖2L2 + 2‖∇x∂tφ̂(t)‖2L2 − 2(∂tφ̂(t), ∂tû(t)) ≤ 2K‖∂tφ̂(t)‖2L2−

− 2
ε

(
[f ′1(φ̄0 + εφ̃+ εφ̂)− f ′1(φ̄0)]∂tφ̄0, ∂tφ̂

)
− 2(f ′1(φ̄0 + εφ̃+ εφ̂)∂tφ̃, ∂tφ̂)+

+ ‖∂t∆xφ̃‖L2

(
1 + ‖∂tφ̂(t)‖2L2

)
. (2.16)
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Since the functions φ̃ and εφ̂ are uniformly bounded (with respect to ε) in H2(Ω)
and ∂tφ̄0 is bounded in L2(Ω) (see (1.17), (1.51) and (2.14)), it follows that

2
ε

(
[f ′1(φ̄0)− f ′1(φ̄0 + εφ̃+ εφ̂)]∂tφ̄0, ∂tφ̂

)
≤ C

(
(1 + |φ̂|)|∂tφ̄0|, |∂tφ̂|

)
≤

≤ C
(

1 + ‖∂tφ̂(t)‖2L2 + ‖φ̂(t)‖2L2

)
+

1
2
‖∇xφ̂(t)‖2L2 + ‖∇x∂tφ̂(t)‖2L2 , (2.17)

where the constant C depends on ‖(φ0, u0)‖Φ, but is independent of ε. Analogously,
we have

2|(f ′1(φ̄0 + εφ̃+ εφ̂)∂tφ̃, ∂tφ̂)| ≤ C‖∂tφ̃‖H2(1 + ‖∂tφ̂(t)‖2L2), (2.18)

where C is independent of ε. Inserting estimates (2.17) and (2.18) into estimate
(2.16) and summing the relation that we obtain with inequality (2.15), we find

δ∂t

(
‖φ̂(t)‖2L2 + ‖∂tφ̂(t)‖2L2 + 1

)
+ ‖∇x∂tφ̂(t)‖2L2 + ‖∇xφ̂(t)‖2L2−

− 2
(
∂tφ̂(t), ∂tû(t)

)
≤

≤ C
(

1 + ‖∂tφ̃‖H2

)(
1 + ‖φ̂(t)‖2L2 + ‖∂tφ̂(t)‖2L2 + ‖û(t)‖2L2

)
, (2.19)

where the constant C depends on ‖(φ0, u0)‖Φ, but is independent of ε.
Multiplying now the second equation of (2.13) by ∂tû(t) and integrating over Ω,

we have

∂t
(
‖∇xu(t)‖2L2 − 2(∂tū0(t), û(t))

)
+ 2(∂tφ̂(t), ∂tû(t)) + ε‖∂tû(t)‖2L2 ≤

≤ −2
ε

([f2(ū0 + ũ+ εû)− f2(ū0 + ũ)], ∂tû(t))−

− ‖∂2
t ū0‖H−1(1 + ‖û(t)‖2H1). (2.20)

In order to transform (2.20), we use the following identity:

1
ε

([f2(ū0 + ũ+ εû)− f2(ū0 + ũ)], ∂tû(t)) =

= ∂t

[
1
ε2

(F2(ū0 + ũ+ εû)− F2(ū0 + ũ)− εf2(ū0 + ũ)û, 1)
]
−

−
[

1
ε2

(f2(ū0 + ũ+ εû)− f2(ū0 + ũ0)− εf ′2(ū0 + ũ)û, ∂tū0 + ∂tũ)
]

:=

:= ∂tΘε(t)− θε(t), (2.21)

where F2(v) :=
∫ v

0
f2(s) ds. We now note that, due to the assumption f ′2(v) ≥ 0

and due to the condition û(0) = 0, we have

Θε(t) ≥ 0, Θε(0) = 0. (2.22)

Moreover, arguing in a standard way, we can obtain the following estimate for θε(t):

|θε(t)| ≤ C
(
|û(t)|2, |∂tũ|+ |∂tū0|

)
≤ C1(‖∂tũ‖L2 + 1)‖û(t)‖2H1 , (2.23)

where the constants C and C1 depend on ‖(φ0, u0)‖Φ, but are independent of ε.
Inserting identity (2.21) and inequality (2.23) into relation (2.20) and summing the



14 ALAIN MIRANVILLE & SERGEY ZELIK EJDE–2002/63

relation that we obtain with inequality (2.19), we finally find

∂t

[
δ‖φ̂(t)‖2L2 + δ‖∂tφ̂(t)‖2L2 + ‖û(t)‖2H1 − 2(∂tū0(t), û(t)) + 2Θε(t) + C2

]
≤

≤ C3

(
1 + ‖∂tφ̃(t/ε)‖H2 + ‖∂tũ(t/ε)‖L2 + ‖∂2

t ū0(t)‖2H−1

)
×

×
[
δ‖φ̂(t)‖2L2 + δ‖∂tφ̂(t)‖2L2 + ‖û(t)‖2H1 − 2(∂tū0(t), û(t)) + 2Θε(t) + C2

]
,

where the constants C2 and C3 depend on ‖(φ0, u0)‖Φ, but are independent of
ε. Moreover, the constant C2 can be chosen such that the expression in square
brackets in the right-hand side of the above inequality is positive (it is possible to
do so thanks to estimates (1.51) and (2.22)). Applying Gronwall’s inequality to
this relation and noting that (1.51) and (2.10) yield the estimate∫ t+1

t

(
‖∂tφ̃(s/ε)‖H2 + ‖∂tũ(s/ε)‖L2 + ‖∂2

t ū0(s)‖2H−1

)
ds ≤ C4, (2.24)

where C4 is independent of ε, we find the estimate

‖φ̂(t)‖2L2 + ‖∂tφ̂(t)‖2L2 + ‖û(t)‖2H1 ≤ C5e
L1t, (2.25)

where the constants C5 and L1 depend on ‖(φ0, u0)‖Φ, but are independent of ε.
Estimate (2.12) can be deduced from estimate (2.25), based on standard para-

bolic regularity arguments, exactly as in the proof of Lemma 1.3, which finishes the
proof of Lemma 2.2. �

Let us now formulate several useful corollaries of estimate (2.12).

Corollary 2.3. Let the above assumptions hold. We also assume that (φ(t), u(t)) is
solution of equation (0.1) and (φ̄0(t), ū0(t)) is solution of the limit problem (1.44),
with φ̄0(0) = φ(0). Then, the following estimate is valid:

‖φ(t)− φ̄0(t)‖H2 + ‖u(t)− ū0(t)‖H2 + ‖∂tφ(t)− ∂tφ̄0(t)‖L2+

+ ε‖∂tu(t)− ∂tū0(t)‖L2 ≤ C
(
‖u(0)− L(φ(0))‖H2e−γ

t
ε + εeLt

)
, (2.26)

where γ > 0 is a positive constant depending only on Ω and the constants C and L
depend on ‖(φ(0), u(0))‖Φ, but are independent of ε.

Indeed, estimate (2.26) is an immediate corollary of the asymptotic expansions
(2.7) and of estimates (2.10), (2.12) and (2.14).

Corollary 2.4. Let the above assumptions hold and let (φ(t), u(t)) be solution of
problem (0.1). Then, the following estimates hold:

‖∂tu(t)‖L2 ≤ Q (‖(φ(0), u(0))‖Φ)
(

1 +
1
ε
‖u(0)− L(φ(0))‖H2e−γ

t
ε

)
, (2.27)

and

‖u(t)− L(φ(t))‖H2 ≤ Q (‖(φ(0), u(0))‖Φ)
(
ε+ ‖u(0)− L(φ(0))‖H2e−γ

t
ε

)
, (2.28)

where the constant γ > 0 and the function Q are independent of ε.
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Proof. Without loss of generality, we can derive estimates (2.27) and (2.28) for t ≤ 1
only. Now, estimate (2.27) is an immediate corollary of (2.26) and (1.51). So, there
only remains to deduce estimate (2.28). To this end, we recall that, by definition
of the operator L, we have ū0(t) = L(φ̄0(t)) and, consequently

‖u(t)− L(φ(t))‖H2 ≤ ‖u(t)− ū0(t)‖H2 + ‖L(φ(t))− L(φ̄0(t))‖H2 . (2.29)

Estimate (2.28) is now a corollary of (2.26), (2.29) and of Proposition 1.6. �

Remark 2.5. Let the function Ũ(τ) be solution of the problem

∂τ Ũ = ∆xŨ − δ−1Ũ , Ũ
∣∣
t=0

= u(0)− L(φ(0)), (2.30)

i.e. Ũ(τ) := e−(−∆x+δ−1I)τ (u(0)− L(φ(0))). Then, it is not difficult to verify that
the quantity ũ(t/ε)−Ũ(t/ε) is of order ε1 as ε→ 0 and, consequently, the boundary
layer term in expansions (2.7) can be simplified as follows:

u(t) = ū0(t) + e−(−∆x+δ−1I) tε [u(0)− ū0(0)] +O(ε). (2.31)

We are now able to verify the uniform (with respect to ε) Lipschitz continuity
of the semigroups Sεt associated with problem (0.1) in the phase space Φ.
Lemma 2.6. Let the assumptions of Lemma 1.1 hold and let (φ1(t), u1(t)) and
(φ2(t), u2(t)) be two solutions of problem (0.1) with initial data in Φ. Then, the
following estimate is valid:

‖φ1(t)− φ2(t)‖2H2 + ‖u1(t)− u2(t)‖2H2 + ‖∂tφ1(t)− ∂tφ2(t)‖2L2+

+ ε2‖∂tu1(t)− ∂tu2(t)‖2L2 ≤
≤ CeLt

(
‖φ1(0)− φ2(0)‖2H2 + ‖u1(0)− u2(0)‖2H2

)
, (2.32)

where the constants C and L depend on ‖φi(0)‖H2 and on ‖ui(0)‖H2 , but are in-
dependent of ε.
Proof. We set v(t) := φ1(t)−φ2(t) and w(t) := u1(t)−u2(t). These functions satisfy
equation (1.39). Moreover, due to estimate (2.27) as well as (1.40) and (1.41), we
also have the uniform estimate∫ t+1

t

‖∂tl2(s)‖L2 ds ≤ L. (2.33)

Differentiating now the first equation of (1.39) with respect to t, multiplying by
∂tv(t), summing the relation that we obtain with the second equation of (1.39)
multiplied by ∂tw(t) and integrating over Ω, we obtain

∂t[δ‖∂tv(t)‖2L2 + ‖∇xw(t)‖2L2 + (l2(t)w(t), w(t))] + 2‖∇x∂tv(t)‖2L2 ≤
≤ −2(l1(t)∂tv(t), ∂tv(t))− 2(∂tl1(t)v(t), ∂tv(t)) + (∂tl2(t)w(t), w(t)), (2.34)

where

l1(t) :=
∫ 1

0

f ′1(sφ1(t) + (1− s)φ2(t)) ds, l2(t) :=
∫ 1

0

f ′2(su1(t) + (1− s)u2(t)) ds.

Estimates (2.34), (1.40) and (1.41) imply that

∂t[δ‖∂tv(t)‖2L2 + ‖∇xw(t)‖2L2 + (l2(t)w(t), w(t))] + 2‖∇x∂tv(t)‖2L2 ≤
≤ C (1 + ‖∂tl2(t)‖L2) [δ‖∂tv(t)‖2L2 + ‖∇xw(t)‖2L2 + (l2(t)w(t), w(t))+

+ 2‖∇x∂tv(t)‖2L2 ] + C‖v(t)‖2L2 , (2.35)
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where the constant C depends on ‖(φi(0), ui(0))‖Φ, but is independent of ε. Ap-
plying Gronwall’s inequality to relation (2.35) and taking into account inequalities
(2.33) and (1.38), we find

‖∂tv(t)‖2L2 + ‖w(t)‖2H1 ≤ CeLt
(
‖v(0)‖2H2 + ‖w(0)‖2H1

)
, (2.36)

where the constants C and L depend on ‖(φi(0), ui(0))‖Φ, but are independent of ε.
Estimate (2.32) is a corollary of (2.36) and of standard parabolic regularity

arguments (see the proof of Lemma 1.3). This finishes the proof of Lemma 2.6. �
To conclude this section, we finally derive standard smoothing estimates for the

difference of solutions of (0.1) which are necessary for our construction of exponen-
tial attractors.
Lemma 2.7. Let the assumptions of Lemma 1.1 hold and let (φ1(t), u1(t)) and
(φ2(t), u2(t)) be two solutions of problem (0.1) with initial data in Φ. Then, the
following estimate is valid:

‖φ1(t)− φ2(t)‖2H3 + ‖u1(t)− u2(t)‖2H3 ≤

≤ CeLt t+ 1
t

(
‖φ1(0)− φ2(0)‖2H2 + ‖u1(0)− u2(0)‖2H2

)
, t > 0, (2.37)

where the constants C and L depend on ‖φi(0)‖H2 and on ‖ui(0)‖H2 , but are in-
dependent of ε.
Proof. We split the solution (v(t), w(t)) of problem (1.39) into a sum of two func-
tions

v(t) := v1(t) + v2(t), w(t) := w1(t) + w2(t), (2.38)

where the function (v1(t), w1(t)) solves

δ∂tv1 −∆xv1 = H1(t) := w(t)− l1(t)v(t), v1

∣∣
t=0

= 0,

ε∂tw1 + ∂tv1 −∆xw1 = H2(t) := −l2(t)w(t), w1

∣∣
t=0

= 0,
(2.39)

with

l1(t) :=
∫ 1

0

f ′1(sφ1(t) + (1− s)φ2(t)) ds, l2(t) :=
∫ 1

0

f ′2(su1(t) + (1− s)u2(t)) ds,

and the function (v2(t), w2(t)) solves

δ∂tv2 −∆xv2 = 0, v2

∣∣
t=0

= v(0),

ε∂tw2 + ∂tv2 −∆xw2 = 0, w2

∣∣
t=0

= w(0).
(2.40)

It follows from estimates (2.32) and from the assumption fi ∈ C3, i = 1, 2, that

‖H1(t)‖H2 + ‖H2(t)‖H2 ≤ CeLt (‖v(0)‖H2 + ‖w(0)‖H2) , (2.41)

and, consequently, due to standard parabolic regularity arguments (see the proof
of Lemma 1.3), we have

‖v1(t)‖H3 + ‖w1(t)‖H3 ≤ CeLt (‖v(0)‖H2 + ‖w(0)‖H2) , (2.42)

where the constants C and L depend on ‖(φi(0), ui(0))‖Φ, but are independent of ε.
The solution (v2(t), w2(t)) of problem (2.40) can be easily found by using the

analytic semigroups theory (see [16] and [23]). More precisely, we have

v2(t) = e−A
t
δ v(0), w2(t) = e−A

t
εw(0) +

δ

δ − ε

(
e−A

t
δ − e−A t

ε v(0)
)
, (2.43)
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where A := −∆x, associated with Dirichlet boundary conditions. A standard
smoothing estimate for analytic semigroups (see e.g. [16]), applied to (2.43), implies
that

‖v2(t)‖2H3 + ‖w2(t)‖2H3 ≤ Ct−1e−γt
(
‖v(0)‖2H2 + ‖w(0)‖2H2

)
, t > 0, (2.44)

where C and γ > 0 are independent of ε. Combining estimates (2.42) and (2.44),
we derive (2.37) and Lemma 2.7 is proved. �

Remark 2.8. We recall that estimates (2.32) and (2.37) hold uniformly with re-
spect to ε > 0. Consequently, passing to the limit ε → 0 in these estimates, we
see that the same estimates remain valid for the difference of solutions of the limit
problem (1.39).

3. Robust exponential attractors

In this section, we construct a uniform family of exponential attractors Mε in
Φ for problem (0.1) which converges as ε → 0 to the limit exponential attractor
M0 of problem (1.44). To be more precise, the main result of this section is the
following theorem.
Theorem 3.1. Let assumptions (0.2) hold. Then, there exists a family of compact
sets Mε ⊂ Φ, ε ∈ [0, 1], such that

1. These sets are semi-invariant with respect to the flows Sεt associated with
problem (0.1), i.e.

SεtMε ⊂Mε. (3.1)
2. The fractal dimension of the sets Mε is finite and uniformly bounded with

respect to ε:
dimF (Mε,Φ) ≤ C <∞, (3.2)

where C is independent of ε.
3. These sets attract exponentially the bounded subsets of Φ, i.e. there exists a

positive constant α > 0 and a monotonic function Q which are independent of ε
such that, for every bounded subset B in the phase space Φ, we have

distΦ(SεtB,Mε) ≤ Q(‖B‖Φ)e−αt, ε ∈ [0, 1], (3.3)

where distΦ denotes the nonsymmetric Hausdorff distance between sets in Φ (for
ε = 0, we should take B ⊂ L).

4. The symmetric Hausdorff distance between the limit attractor M0 and the
attractors Mε enjoys the following estimate:

distsym,Φ(Mε,M0) ≤ Cεκ, (3.4)

where the constants C > 0 and 0 < κ < 1 are independent of ε and can be computed
explicitly.

The proof of this result is based on the following abstract result for exponential
attractors of singularly perturbed discrete maps.
Proposition 3.2. Let Bε ⊂ Φ, ε ∈ [0, 1], be a family of closed and bounded subsets
of a Banach space Φ and let Sε : Bε → Bε be a family of maps which satisfies the
following properties:

1. There exists another Banach space Φ1, which is compactly embedded into Φ,
such that, for every b1ε, b

2
ε ∈ Bε, the following estimate holds:

‖Sεb1ε − Sεb2ε‖Φ1 ≤ K‖b1ε − b2ε‖Φ, (3.5)
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where the constant K is independent of ε.
2. There exist nonlinear ’projectors’ Πε : Bε → B0 such that, for every bε ∈ Bε

‖Sε(k)bε − S
0
(k)Πεbε‖Φ ≤ εLk, k ∈ N, (3.6)

where S(k) denotes the kth iteration of S and the constant L is independent of ε.
Then, the maps Sε possess a family of exponential attractors Md

ε which satisfies
(3.1), (3.2), (3.4) uniformly with respect to ε and such that

distΦ(Sε(k)Bε,M
d
ε) ≤ Ce−γk, (3.7)

where C and γ > 0 are also independent of ε and can be computed explicitly.
The proof of this proposition is given in [15] in a more general setting.

Proof of Theorem 3.1. We apply the abstract result of Proposition 3.2 to our situ-
ation. To this end, we define the sets Bε ⊂ Φ for ε 6= 0 by

Bε = B := {(φ0, u0) ∈ Φ, ‖(φ0, u0)‖2Φ ≤ 2Q(‖g1‖2L2 + ‖g2‖2L2)}, (3.8)

where the function Q is defined in (1.17), and, for ε = 0, we set

B0 = {(φ0, u0) ∈ Φ, ‖φ0‖2H2 ≤ 2Q(‖g1‖2L2 + ‖g2‖2L2), u0 = L(φ0)}. (3.9)

Then, it follows from the uniform estimate (1.17) that there exists a time T > 0
which is independent of ε such that

SεTBε ⊂ Bε, ε ∈ [0, 1]. (3.10)

We now set
Sε := SεT , ε ∈ [0, 1], (3.11)

and verify that the operators (3.11) satisfy all the assumptions of Proposition 3.2.
Indeed, according to (3.10), the maps Sε are well defined on Bε. Estimate (3.5),
with Φ1 := H3(Ω) × H3(Ω), is an immediate corollary of Lemma 2.7. So, there
remains to verify (3.5). To this end, we define the nonlinear projector Πε by

Πε : Bε → B0, Πε(φ0, u0) := (φ0,L(φ0)). (3.12)

Then, estimate (3.6) is an immediate corollary of (2.26) (in which the boundary
layer term disappears since t = T > 0 and T is independent of ε). Thus, all
the assumptions of Proposition 3.2 are satisfied for the family of maps (3.11) and,
consequently, these maps possess a family of discrete exponential attractors Md

ε

which satisfies (3.1), (3.2), (3.4) and (3.7).
We now define the desired family Mε of exponential attractors by the standard

expression:
Mε := ∪t∈[1,T+1]S

ε
tMd

ε . (3.13)
The semi-invariance (3.1) is then an immediate corollary of the semi-invariance of
Md

ε and of definition (3.13). The exponential attraction (3.3) follows from the fact
that the Bε are uniform (with respect to ε) absorbing sets for Sεt (due to (1.17))
and from the uniform Lipschitz continuity (2.32). Estimate (3.4) for the symmetric
distance is also a corollary of an analogous result for the discrete exponential at-
tractors and of estimates (2.26) and (2.32). We note that the boundary layer term
in (2.26) also disappears, due to estimate (2.28), since

Mε ⊂ Sε1Bε. (3.14)

Thus, there only remains to verify estimate (3.3) for the fractal dimension. To this
end, we need the following lemma.
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Lemma 3.3. Let assumptions (0.2) hold. Then, the solution (φ(t), u(t)) of equation
(0.1) is Hölder continuous with respect to t, with Hölder exponent 1/3 if t ≥ 1, i.e.,
for every t ≥ 1 and 0 ≤ s ≤ 1, we have

‖φ(t+ s)− φ(t)‖H2 + ‖u(t+ s)− u(t)‖H2 ≤ Q(‖(φ0, u0)‖Φ)s1/3, (3.15)

for an appropriate monotonic function Q which is independent of ε.

Proof. According to estimates (2.27) and (1.17) and since t ≥ 1, we have

‖φ(t+ s)− φ(t)‖L2 + ‖u(t+ s)− u(t)‖L2 ≤ Q(‖(φ0, u0)‖Φ)s1, (3.16)

for an appropriate monotonic function Q which is independent of ε. In order to
derive (3.15) from (3.16), we note that, due to estimate (2.37) and due to a standard
interpolation inequality

‖φ(t+s)−φ(t)‖H2 +‖u(t+s)−u(t)‖H2 ≤ ‖φ(t+s)−φ(t)‖1/3L2 ‖φ(t+s)−φ(t)‖2/3H3 +

+ ‖u(t+ s)− u(t)‖1/3L2 ‖u(t+ s)− u(t)‖2/3H3 ≤ Q1(‖(φ0, u0)‖Φ)s1/3,

which completes the proof of Lemma 3.3. �
The Lipschitz continuity (2.32) of Sεt with respect to the initial data (φ0, u0),

together with the Hölder continuity (3.15), imply that

dimF (Mε,Φ) ≤ dimF (Md
ε ,Φ) + 3, (3.17)

and Theorem 3.1 is proved. �

4. The case of Neumann boundary conditions

In this concluding section, we briefly consider system (0.1) of phase-field equa-
tions associated with the Neumann boundary conditions

∂nφ
∣∣
∂Ω

= ∂nu
∣∣
∂Ω

= 0. (4.1)

We first note that, if the nonlinear function f2 is strictly monotone, i.e.

f ′2(v) ≥ α, ∀v ∈ R, (4.2)

for some strictly positive constant α (which improves the nonstrict monotonicity
assumption (0.2) 3.), then, repeating word by word the proofs given above for the
case of Dirichlet boundary conditions, we easily extend all the results of Sections 1-3
to the case of Neumann boundary conditions. That is the reason why we consider
only the case where assumption (4.2) is violated below. More precisely, we assume
that f2 ≡ 0 and g2 ≡ 0. Then, system (0.1) reads

δ∂tφ = ∆xφ− f(φ) + u+ g, ∂nφ
∣∣
∂Ω

= 0,

ε∂tu+ ∂tφ = ∆xu, ∂nu
∣∣
∂Ω

= 0,

φ
∣∣
t=0

= φ0, u
∣∣
t=0

= u0,

(4.3)

which corresponds to the standard phase-field system. We assume that g ∈ L2(Ω)
and that the nonlinear function f ∈ C3(R,R) satisfies the assumptions

1. f(v).v ≥ µ|v|2 − µ′, 2. f ′(v) ≥ −K, for every v ∈ R, (4.4)

with µ > 0 and µ′, K ≥ 0.
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The main difference between system (4.3) and system (0.1) with Dirichlet bound-
ary conditions is the existence of a conservation law. Indeed, integrating the second
equation of (4.3) over Ω, we have

ε∂t〈u(t)〉+ ∂t〈φ(t)〉 = 0, where 〈v〉 :=
1
|Ω|

∫
Ω

v(x) dx. (4.5)

Integrating then (4.5) with respect to t, we obtain the conservation law mentioned
above:

ε〈u(t)〉+ 〈φ(t)〉 = ε〈u(0)〉+ 〈φ(0)〉 := I0(u0, φ0), t ∈ R+. (4.6)

Therefore, we cannot expect the existence of the global dissipative estimate (1.17)
for the solutions of (4.3) in the phase space Φ. Nevertheless, we will show in this
section that all the results obtained above for Dirichlet boundary conditions remain
valid (after minor changes) for Neumann boundary conditions. To this end, we need
to modify the phase space Φ for problem (4.3) by fixing explicitly the bounds for
the possible values of the conserved integral I0, namely, for every M > 0, we define
the phase space ΦM for problem (4.3) as follows:

ΦM := {(φ0, u0) ∈ H2(Ω)×H2(Ω),

∂nφ0

∣∣
∂Ω

= ∂nu0

∣∣
∂Ω

= 0, |I0(u0, φ0)| ≤M}. (4.7)

The following theorem gives a dissipative estimate for the solutions of (4.3) in the
phase space ΦM , similar to that given in Lemma 1.3.

Theorem 4.1. Let assumption (4.4) hold. Then, for every M > 0 and every
(φ0, u0) ∈ ΦM , problem (4.3) possesses a unique solution (φ(t), u(t)) which satisfies
the following estimate:

‖φ(t)‖2H2 + ‖u(t)‖2L2 + ε2‖∂tu(t)‖2L2 ≤
≤ QM (‖φ(0)‖2H2 + ‖u(0)‖2H2)e−αt +QM (‖g‖L2), (4.8)

where α > 0 and the monotonic function QM depend on M , but are independent of
ε.

Proof. Let us first derive the analogue of estimate (1.1) for equation (4.3). Taking
the scalar product of the first equation of (4.3) by ∂tφ(t) + βφ(t), of the second
equation by u(t) and summing the relations that we obtain, we have (analogously
to (1.3))

∂tE(t) + γE(t) = h(t), (4.9)

where β and γ are small positive numbers such that β > γ,

E(t) := δ‖∇xφ(t)‖2L2 + 2(F (φ(t)), 1) + ε‖u(t)‖2L2−
− 2(g, φ(t)) + βδ‖φ(t)‖2L2 , (4.10)

F (v) =
∫ v

0
f(s) ds and the function h(t) is defined by

h(t) := (γδ − 2β)‖∇xφ(t)‖2L2 + 2γ(F (φ(t))− f(φ(t))φ(t), 1)−
− 2(β − γ)(f(φ(t)), φ(t))− 2δ‖∂tφ(t)‖2L2 − 2‖∇xu(t)‖2L2 + γε‖u(t)‖2L2+

+ 2(β − γ)(g, φ(t)) + βγδ‖φ(t)‖2L2 + 2β(u(t), φ(t)). (4.11)
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We now transform the last term in the right-hand side of (4.11) as follows, using
the conservation law (4.6):

2β(u, φ) = 2β(u− |Ω|〈u〉, φ) + 2β|Ω|2〈φ〉〈u〉 =

= 2β(u− |Ω|〈u〉, φ)− 2β|Ω|2ε〈u〉2 + 2βI0(u0, φ0)|Ω|2〈u〉. (4.12)

Inserting this relation into the right-side of (4.11) and using inequalities (1.6), (4.4)
and the following analogue of Friedrichs’ inequality:

‖u− |Ω|〈u〉‖2L2 ≤ CΩ‖∇xu‖2L2 , (4.13)

for sufficiently small (but independent of ε) constants γ and β, we obtain the
estimate

h(t) ≤ −1
2

(2β − γδ)‖φ(t)‖2H1 − (β − γ)(f(φ(t)), φ(t))− δ‖∂tφ(t)‖2L2−

− ‖∇xu(t)‖2L2 − 2(β − γ)ε|Ω|2〈u(t)〉2 + C
(
1 + ‖g‖2L2

)
+ 2β|Ω|2〈u(t)〉, (4.14)

for some constant C that is independent of ε (in contrast to the case of Dirichlet
boundary conditions, we now need assumption (4.4) 1. with strictly positive con-
stant µ because, in the case of Neumann boundary conditions, the term ‖∇xφ(t)‖2L2

does not bound the L2-norm of φ and we obtain the estimate for this norm from
the third term in the right-hand side of (4.11)).

So, there remains to estimate the last term in the right-hand side of (4.14). To
this end, we integrate the first equation of (4.3) over Ω and express 〈φ(t)〉 through
〈u(t)〉 by using the conservation law to obtain

ε∂t〈u(t)〉+ 〈u(t)〉 = 〈f(φ(t))〉 − 〈g〉. (4.15)

We also note that, due to (4.4) 1. and the continuity of the function f , we have

|〈f(φ(t))〉| ≤ 〈|f(φ(t))|〉 ≤ ν(f(φ(t)), φ(t)) + Cν , (4.16)

where the positive constant ν can be arbitrarily small. We now multiply (4.15) by
κ := 2β|Ω|2I0(u0,φ0)

1−γε and sum the relation that we obtain with (4.9). Then, according
to (4.11)-(4.12) and (4.14)-(4.16), we have

∂t[κε〈u(t)〉+ E(t)] + γ[κε〈u(t)〉+ E(t)]+

+ γ′
(
‖φ(t)‖2H1 + ‖∇xu(t)‖2L2 + ‖∂tφ(t)‖2L2

)
≤ C(1 + ‖g‖2L2), (4.17)

where all the constants are positive and are independent of ε. We also recall that,
due to (4.10)

C−1
M

(
ε‖u(t)‖2L2 + (F (φ(t)), 1) + δ‖φ(t)‖2H1 − 1− ‖g‖2L2

)
≤

≤ κε〈u(t)〉+ E(t) ≤
≤ CM

(
ε‖u(t)‖2L2 + (F (φ(t)), 1) + δ‖φ(t)‖2H1 + 1 + ‖g‖2L2

)
, (4.18)

for every (φ(t), u(t)) ∈ ΦM . Here, the constant CM depends on M , but is indepen-
dent of ε. Applying Gronwall’s inequality to (4.17) and using (4.18), we have the
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following estimate (which is similar to that obtained in Lemma 1.1):

ε‖u(t)‖2L2 + (F (φ(t)), 1) + δ‖φ(t)‖2H1+

+
∫ t+1

t

(‖∂tφ(s)‖2L2 + ‖∇xu(s)‖2L2) ds ≤

≤ CM
(
ε‖u(t)‖2L2 + (F (φ(t)), 1) + δ‖φ(t)‖2H1

)
e−αt + CM

(
1 + ‖g‖2L2

)
, (4.19)

where the constant CM depends on M , but is independent of ε. Our aim is now
to derive the analogue of estimate (1.7). Arguing as in the proof of Lemma 1.2, we
have

∂t[δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 ] + [δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 ]+

+ 2‖∂t∇xφ(t)‖2L2 + 2ε‖∂tu(t)‖2L2 ≤ [δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 ]+

+ 2(g, ∂tφ(t))− 2(f ′(φ(t))∂tφ(t), ∂tφ(t)).

Applying Gronwall’s inequality to this relation and using (4.19), we obtain the
estimate

δ‖∂tφ(t)‖2L2 + ‖∇xu(t)‖2L2 +
∫ t+1

t

(‖∂tφ(s)‖2H1 + ε‖∂tu(s)‖2L2) ds ≤

≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H2)e−αt +Q(‖g‖L2), (4.20)

where the function Q depends on M , but is independent of ε. Multiplying then the
first equation of (4.3) by ∆xφ(t), integrating by parts in (u(t),∆xφ(t)) and using
estimate (4.20), we have, analogously to (1.14)-(1.16)

‖φ(t)‖2H2 ≤ Q1(‖φ(0)‖2H2 + ‖u(0)‖2H2)e−αt +Q1(‖g‖L2), (4.21)

for some function Q1 which is independent of ε. Since H2 ⊂ C, (4.21) implies the
estimate

‖f(φ(t))‖2L2 ≤ Q2(‖φ(0)‖2H2 + ‖u(0)‖2H2)e−αt +Q2(‖g‖L2), (4.22)

for an appropriate function Q2 which depends on M , but is independent of ε.
Returning now to equation (4.15) and using (4.22), we find

〈u(t)〉 ≤ Q3(‖φ(0)‖2H2 + ‖u(0)‖2H2)e−αt +Q3(‖g‖L2) (4.23)

(see (1.19)-(1.22)). Finally, estimates (4.20), (4.21) and (4.23) imply the analogue
of estimate (1.7) for the case of Neumann boundary conditions:

δ‖∂tφ(t)‖2L2 + ‖u(t)‖2H1 + ‖φ(t)‖2H2+

+
∫ t+1

t

(‖∂tφ(s)‖2H1 + ε‖∂tu(s)‖2L2) ds ≤

≤ Q(‖φ(0)‖2H2 + ‖u(0)‖2H2)e−αt +Q(‖g‖L2), (4.24)

where the monotonic function Q depends on M , but is independent of ε. Estimate
(4.8) follows from (4.24), exactly as in Lemma 1.3, and Theorem 4.1 is proved. �

We now formulate the analogues of Lemma 2.6 and Lemma 2.7 for the difference
of two solutions of (4.3) (since f2 ≡ 0, we do not need estimate (2.27) in order to
prove this result).



EJDE–2002/63 ROBUST EXPONENTIAL ATTRACTORS 23

Theorem 4.2. Let the above assumptions hold and let (φ1, u1) and (φ2, u2) be two
solutions of (4.3) belonging to ΦM . Then, the following estimate is valid:

‖φ1(t)− φ2(t)‖2H2 + ‖u1(t)− u2(t)‖2H2+

+ ε2‖∂tu1(t)− ∂tu2(t)‖2L2 ≤
≤ CeLt

(
‖φ1(0)− φ2(0)‖2H2 + ‖u1(0)− u2(0)‖2H2

)
, (4.25)

where the constants C and L depend on M , ‖φi(0)‖H2 and ‖ui(0)‖H2 , but are
independent of ε. Moreover, the following smoothing estimate holds:

‖φ1(t)− φ2(t)‖2H3 + ‖u1(t)− u2(t)‖2H3 ≤

≤ CeLt t+ 1
t

(
‖φ1(0)− φ2(0)‖2H2 + ‖u1(0)− u2(0)‖2H2

)
, t > 0. (4.26)

Proof. We set v(t) := φ1(t) − φ2(t) and w(t) := u1(t) − u2(t). These functions
satisfy

∂tv = ∆xv + w +G(t), ε∂tw + ∂tv = ∆xu, ∂nv
∣∣
∂Ω

= ∂nw
∣∣
∂Ω

= 0, (4.27)

where G(t) :=
∫ 1

0
f ′(sφ1(t) + (1− s)φ2(t)) ds · v(t). We note that system (4.27) also

possesses a conservation law:

I0(v(t), w(t)) := I0(φ1(t), u1(t))− I0(φ2(t), u2(t)) ≡ const. (4.28)

Moreover, obviously

|I0(v(t), w(t))|2 ≤ C
(
‖v(0)‖2H2 + ‖w(0)‖2H2

)
(4.29)

and, due to estimate (4.8) and the embedding H2 ⊂ C
‖G(t)‖2L2 + ‖∂tG(t)‖2L2 ≤ C

(
‖∂tv(t)‖2L2 + ‖v(t)‖2L2

)
, (4.30)

where C depends on M and on the H2-norm of the initial data, but is independent
of ε. Interpreting now the function G(t) in (4.27) as a nonautonomous external
force, repeating word by word the proof of Theorem 4.1 and using estimates (4.29)
and (4.30), we find estimate (4.25). Having estimate (4.25), we can prove the
smoothing property (4.26) exactly as in Lemma 2.7 and Theorem 4.2 is proved. �

As in Section 1, we now study the limit problem (4.3) with ε = 0:

δ∂tφ̄0 = ∆xφ̄0 − f(φ̄0) + ū0 + g, ∂tφ̄0 = ∆xū0,

φ̄0

∣∣
t=0

= φ0, ∂nφ̄0

∣∣
∂Ω

= ∂nū0

∣∣
∂Ω

= 0.
(4.31)

Again, the variables (φ̄0, ū0) are not independent, but satisfy the relation

δ∆xū0(t)− ū0(t) = ∆xφ̄0(t)− f(φ̄0) + g, t ∈ R+ (4.32)

(compare with (1.45)) and, consequently, there exists a nonlinear operator

L ∈ C1(H2(Ω), {v ∈ H2(Ω), ∂nv
∣∣
∂Ω

= 0}), (4.33)

such that
ū0(t) = L(φ̄0(t)), t ∈ R+, (4.34)

for every solution (φ̄0(t), ū0(t)) of problem (4.31). Thus, problem (4.31) defines a
semigroup in the infinite dimensional submanifold of Φ defined by

LM := {(φ0, u0) ∈ H2(Ω), u0 = L(φ0), ∂nφ0

∣∣
∂Ω

= 0, |〈φ0〉| ≤M}. (4.35)

The next theorem gives the analogue of Lemmas 1.5 and 1.6 for equation (4.31).
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Theorem 4.3. Let the above assumptions hold. Then, for every (φ0, u0) ∈ LM ,
problem (1.44) has a unique solution (φ̄0(t), ū0(t)) ∈ LM , t ≥ 0, which satisfies the
estimate

‖φ̄0(t)‖2H2 + ‖∂tφ̄0(t)‖2L2 + ‖ū0(t)‖2H2 +
∫ t+1

t

‖∂tφ̄0(s)‖2H1 ds ≤

≤ Q(‖φ̄0(0)‖2H2)e−γt +Q(‖g‖L2), (4.36)

for a positive constant γ and a monotonic function Q which depend on M . More-
over, estimates (4.25) and (4.26) remain valid for the difference of solutions of the
limit problem (4.31) and the following analogue of estimate (1.51) holds:

‖∂tū0(t)‖2L2 +
∫ t+1

t

(
‖∂tū0(s)‖2H1 + ‖∂2

t ū0(s)‖2H−1

)
ds ≤

≤ Q(‖φ̄0(0)‖2H2)e−γt +Q(‖g‖L2), (4.37)

where H−1(Ω) denotes here the dual of H1(Ω).

Proof. Since the constant α and the monotonic function QM in (4.8) are indepen-
dent of ε, then, passing to the limit ε→ 0, we have estimate (4.36). The estimates
for the difference of solutions can be obtained similarly. Finally, estimate (4.37)
can be verified exactly as in Lemma 1.8 and Theorem 4.3 is proved. �

We now extend the asymptotic expansions for (φ(t), u(t)) as ε→ 0 (obtained in
Section 2 for the case of Dirichlet boundary conditions) to the case of Neumann
boundary conditions. We note that the formulae for the first boundary layer term
are simpler now, since f2 ≡ 0. Indeed, analogously to (2.8) and (2.9), we obtain
the following system for φ̃(τ) and ũ(τ), τ := t

ε :

δ∂τ φ̃(τ) = u(τ), ∂τ ũ(τ) = (∆x − δ−1)ũ(τ), ∂nũ
∣∣
∂Ω

= 0,

ũ(0) = u(0)− L(φ(0)), limτ→∞ φ̃(τ) = 0.
(4.38)

The solution (φ̃(τ), ũ(τ)) can be expressed explicitly, using the analytic semigroups
theory:

φ̃(τ) = (I − δ∆x)−1e(∆x−δ−1I)τ (u(0)− L(φ(0)),

ũ(τ) := e(∆x−δ−1I)τ (u(0)− L(φ(0)),
(4.39)

where ∆x is associated with Neumann boundary conditions. As in Section 2, we
seek for asymptotic expansions for (φ(t), u(t)) near t = 0 of the form

φ(t) := φ̄0(t) + εφ̃(
t

ε
) + εφ̂(t), u(t) := ū0(t) + ũ(

t

ε
) + εû(t), (4.40)

where (φ̄0(t), ū0(t)) is solution of (4.31) with φ̄0(0) := φ(0) and (φ̃, ũ) is defined by
(4.39). The following theorem is an analogue of Lemma 2.2.

Theorem 4.4. Let the above assumptions hold. Then, the rest (φ̂(t), û(t)) in the
asymptotic expansions (4.40) enjoys the following estimate:

‖φ̂(t)‖H2 + ‖û(t)‖H2 + ‖∂tφ̂(t)‖L2 + ε‖û(t)‖L2 ≤ CeLt, (4.41)

where the constants C and L depend on ‖φ(0)‖H2 and ‖u(0)‖H2 , but are indepen-
dent of ε.
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Proof. The functions ũ(t) and φ̃(t) satisfy the equations

δ∂tφ̂ = ∆xφ̂−
1
ε

[
f(φ̄0 + εφ̃+ εφ̂)− f(φ̄0)

]
+ û+ ∆xφ̃,

ε∂tû = ∆xû− ∂tφ̂− ∂tū0, φ
∣∣
t=0

= −φ̃(0), û
∣∣
t=0

= 0,

∂nφ̂
∣∣
∂Ω

= ∂nû
∣∣
∂Ω

= 0.

(4.42)

Arguing as in (2.15)-(2.23) (with f2 ≡ 0), we obtain the estimate

∂t

[
δ‖φ̂(t)‖2L2 + δ‖∂tφ̂(t)‖2L2 + ‖∇xû(t)‖2L2 − 2(∂tū0(t), û(t)) + C1

]
≤

≤ C2

(
1 + ‖∂tφ̃(t/ε)‖H2 + ‖∂tũ(t/ε)‖L2 + ‖∂2

t ū0(t)‖2H−1

)
×

×
[
δ‖φ̂(t)‖2L2 + δ‖∂tφ̂(t)‖2L2 + ‖∇xû(t)‖2L2 − 2(∂tū0(t), û(t)) + C1 + 〈u(t)〉2

]
,

(4.43)

where we have the additional term 〈u(t)〉2 in the right-hand side (which appears
because of Friedrichs’ inequality (4.13) for Neumann boundary conditions) and the
constants C1 and C2 are independent of ε. In order to estimate this term, we
integrate the first equation of (4.42) over Ω:

〈û(t)〉 = δ〈∂tφ̂(t)〉+ 〈1
ε

[
f(φ̄0 + εφ̃+ εφ̂)− f(φ̄0)

]
〉. (4.44)

Since, due to Theorems 4.1 and 4.3, the L∞-norms of φ(t) := φ̄0(t)+εφ̃(t/ε)+εφ̂(t)
and φ̄0(t) are uniformly (with respect to ε) bounded, it follows from (4.44) that

〈u(t)〉2 ≤ C
(

1 + ‖∂tφ̂(t)‖2L2 + ‖φ̂(t)‖2L2

)
, (4.45)

where the constant C is independent of ε. Applying now Gronwall’s inequality to
(4.43) and using (2.24) and (4.45), we have

‖φ̂(t)‖2L2 + ‖∂tφ̂(t)‖2L2 + ‖û(t)‖2H1 ≤ CeLt, (4.46)

where the constants C and L are independent of ε. Estimate (4.41) can be deduced
from (4.46) exactly as in Lemma 1.3. This finishes the proof of Theorem 4.4. �

Corollary 4.5. Under the assumptions of Theorem 4.4, estimates (2.26), (2.27)
and (2.28) remain valid (for the case of Neumann boundary conditions).

Indeed, these estimates can be deduced from (4.46) exactly as in Corollaries 2.3
and 2.4.

We are now ready to construct a robust family of exponential attractors for
problem (4.3) with Neumann boundary conditions. Since we have the dissipativity
of system (4.3) in the phase spaces ΦM only (for every fixed M ; for Dirichlet
boundary conditions, this property was valid in the whole space Φ), it is natural to
construct the exponential attractors MM

ε for the semigroups

Sε,Mt : ΦM → ΦM , Sε,Mt (φ0, u0) := (φ(t), u(t)) (4.47)

(where (φ(t), u(t)) is the corresponding solution of (4.3)) acting in the spaces ΦM .
In that case, the exponential attractorsMM

ε depend obviously on M . We consider
the following limit semigroup S0,M

t for (4.47):

S0,M
t : LM → LM , S0,M

t (φ0, u0) := (φ̄0(t), ū0(t)), (4.48)
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associated with the limit problem (4.31) on the manifold LM defined by (4.35).
The main result of this section is the following analogue of Theorem 3.1 for the

case of Neumann boundary conditions.
Theorem 4.6. Let the assumptions of Theorem 4.1 hold. Then, for every M > 0,
there exists a family of compact sets MM

ε ⊂ ΦM , ε ∈ [0, 1], such that
1. These sets are semi-invariant with respect to the flows Sε,Mt associated with

problem (4.3), i.e.
Sε,Mt MM

ε ⊂MM
ε . (4.49)

2. The fractal dimension of the sets MM
ε is finite and uniformly bounded with

respect to ε:
dimF (MM

ε ,ΦM ) ≤ C <∞, (4.50)

where C = C(M) is independent of ε.
3. These sets attract exponentially the bounded subsets of ΦM , i.e. there exist

a positive constant α = α(M) > 0 and a monotonic function Q = QM which are
independent of ε such that, for every bounded subset B in the phase space ΦM , we
have

distΦM (Sε,Mt B,MM
ε ) ≤ Q(‖B‖ΦM )e−αt, ε ∈ [0, 1] (4.51)

(for ε = 0, we should take B ⊂ LM ).
4. The symmetric Hausdorff distance between the limit attractor MM

0 and the
attractors MM

ε enjoys the following estimate:

distsym,ΦM (MM
ε ,MM

0 ) ≤ Cεκ, (4.52)

where the constants C = C(M) > 0 and 0 < κ = κ(M) < 1 are independent of ε
and can be computed explicitly.
Proof. As in the case of Dirichlet boundary conditions, the proof of this theorem
is based on the abstract result given in Proposition 3.2 and coincides, up to minor
changes, with that of Theorem 3.1. That is the reason why we only indicate these
changes below and leave the details to the reader.

Instead of the absorbing sets Bε and B0 defined by (3.8) and (3.9) respectively,
we now consider, for every M > 0, the sets

BMε := {(φ0, u0) ∈ ΦM , ‖(φ0, u0)‖2Φ ≤ 2QM (‖g‖L2)}, (4.53)

BM0 := {(φ0, u0) ∈ LM , ‖φ0‖2H2 ≤ 2QM (‖g‖L2)}, (4.54)

where the function QM is the same as in (4.8). We note that, in contrast to the case
of Dirichlet boundary conditions, the sets Bε now depend on ε, since the conserved
integral (4.5) depends explicitly on ε.

Then, these sets are indeed uniform (with respect to ε) absorbing sets for semi-
groups (4.47) and (4.48) (due to estimates (4.8) and (4.36) (thus, the analogue of
(3.10) is also satisfied)). Moreover, condition (3.5) of Proposition 3.2 is satisfied for
these semigroups, due to Theorem 4.2.

Let us now verify condition (3.6) of this proposition. To this end, we modify
slightly the construction of the nonlinear projectors Πε as follows:

Πε : BMε → BM0 , Πε(φ0, u0) := (φ0 + ε〈u0〉,L(φ0 + ε〈u0〉). (4.55)

Since
|〈φ0 + ε〈u0〉〉| = |I0(φ0, u0)| ≤M,
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projectors (4.55) are indeed well defined. Moreover, the analogue of condition (3.6)
for our case now follows from estimate (2.26) (see Corollary 4.5), estimate (4.25)
for the limit problem (4.31) and from the obvious estimate

‖Πε(φ0, u0)− (φ0,L(φ0))‖Φ ≤ εCM , (4.56)

for every (φ0, u0) ∈ Bε.
Thus, we can apply Proposition 3.2 to our situation and we obtain the desired

family of exponential attractors MM,d
ε for the discrete semigroups Sε,MnT acting on

the absorbing sets (4.53) and (4.54). The existence of the exponential attractors
for the continuous semigroups then follows exactly as in the proof of Theorem 3.1
and Theorem 4.6 is proved. �

Remark 4.7. We recall that the exponential attractors MM
ε constructed in Theo-

rem 4.6 depend on M . Moreover, all the constants in estimates (4.50)-(4.52) also
depend a priori on M . It is possible to prove, however, that, under natural assump-
tions on f , there exists a positive constant M0 � 1 that is independent of ε such
that every solution of equation (4.3) with initial data satisfying

|I0(φ0, u0)| = M0, (4.57)

uniformly with respect to ε, stabilizes exponentially to the corresponding equilibrium
(φ̄, ū) ∈ R2, which is the unique solution of

ū = f(φ̄), εū+ φ̄ = I0(φ0, u0). (4.58)

This suggests that it is possible to construct the family of exponential attractorsMM
ε

for (4.3) such that all the constants in estimates (4.50)-(4.52) are independent of
M . We will come back to this problem in a forthcoming article.
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