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On the averaging method for differential

equations with delay ∗

Mustapha Lakrib

Abstract

In this paper, we present averaging results for delay differential equa-
tions under weak conditions. The main result is formulated in both clas-
sical mathematics and nonstandard analysis. It is proved with internal
set theory which is an axiomatic description of nonstandard analysis.

1 Introduction

Differential equations with delay frequently appear in the mathematical mod-
elling of some evolution phenomena arising in various fields of science and tech-
nology. However, the investigation of these equations is rather difficult, hence
there is a need for approximate methods of solution. Among such methods, we
have the method of averaging which is a powerful tool that have been used for
ordinary differential equations; see for example [1, 2, 7, 10, 15, 17, 25, 26].

This method of averaging has been extended to functional differential equa-
tions which include differential equations with delay and ordinary differential
equations (r = 0), and to more general equations [6, 8, 9, 11, 13, 14, 16, 18,
19, 22, 28]. The most general results are given in [12], where the averaging is
discussed for the functional differential equation

ẋ(t) = εf(t, xt). (1.1)

The associated averaged equation is the ordinary differential equation

ẏ(t) = εfo(ỹ), ỹ(θ) = y, θ ∈ [−r, 0] (1.2)

where

fo(u) = lim
T→∞

1
T

∫ s+T

s

f(τ, u)dτ.

Under suitable conditions, one can compare solutions of (1.1) and the solutions
of (1.2). The techniques used for this comparison follow different approaches.
In [12], equation (1.1) is considered as a perturbation of

ẋ(t) = 0 · xt,
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and the solution of (1.1) is decomposed as xt = Ĩz(t) + wt where Ĩ(θ) = I, the
identity, for θ ∈ [−r, 0]. Then, conditions are derived such that wt approaches
zero faster than any exponential. By use of the invariant manifold theory, it is
shown that the flow for (1.1) in any bounded set is equivalent to the flow defined
by an ordinary differential equation

ż(t) = εg(t, z, ε), g(t, z, 0) = f(t, z̃). (1.3)

Also, classical averaging procedures for ordinary differential equations are ap-
plied to (1.3) obtaining the approximation of solutions of (1.1) by solutions of
(1.2). In the particular case of differential equations with delay of the form

ẋ(t) = εf(t, x(t), x(t− r)), (1.4)

to relate the solutions of (1.4) and the averaged ordinary differential equation

ẏ(t) = εfo(y(t), y(t))

where

fo(x1, x2) = lim
R→∞

1
R

∫ s+R

s

f(τ, x1, x2)dτ,

authors such as Halanay [8], Medvedev [22] and Volosov [28] propose near iden-
tity change of coordinates, similar to the ones proposed in the case of ordinary
differential equations. Then it is shown that as ε→ 0, all “delay” terms become
negligible. Averaging procedures of ordinary differential equations can then be
applied.

Note that, if we let t 7→ t/ε and x(t/ε) = z(t), equation (1.1) becomes

ż(t) = f
( t
ε
, zt,ε

)
with zt,ε(θ) = z(t+ εθ), θ ∈ [−r, 0], which is an equation with a small delay.

There are a few works dedicated to the use of the method of averaging to
functional differential equations in the general case

ẋ(t) = f(
t

ε
, xt). (1.5)

In [12], the authors introduce an extension of the method of averaging to
abstract evolutionary equations in Banach spaces. In particular, they rewrite
equation (1.5) as an ordinary differential equation in an infinite dimensional
Banach space and proceed formally from there.

The approach in [19] differs from [12] since all the analysis is kept in the
associated natural phase space. The first result given there generalizes the cor-
responding one of [16] where the differential equation with delay of the particular
form

ẋ(t) = f(
t

ε
, x(t− r))

is considered.
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The purpose of this paper is to consider differential equations with delay of
the form

ẋ(t) = f
( t
ε
, x(t), x(t− r)

)
(1.6)

and to show that the averaging approach works under much more general con-
ditions (which are, in particular, less restrictive than those ones in the existing
literature).

The organization of this paper is as follows. Notation and hypotheses re-
quired to state and prove our main result as well as the main result itself are
presented in Section 2. The proof of this result is given in Subsection 4.2. To
avoid complicating the proof unnecessarily several subsidiary lemmas have been
placed in Subsection 4.1.

The main result is formulated in both classical mathematics and nonstan-
dard analysis. For its proof we use Internal Set Theory (IST) which is an
axiomatic approach, given by Nelson [23], of the Nonstandard Analysis (NSA)
of Robinson [24]. For that, Appendix A in the end of the paper is devoted to
a short description of IST. In Section 3 we present the nonstandard translate
(Theorem 3.1) in the language of IST of our main result (Theorem 2.2). As
IST is a conservative extension of ordinary mathematics, that is, every classical
statement which is proved in IST is a theorem of ordinary mathematics, we do
not give a classical proof.

2 Notation, Hypotheses, and Main Result

In this section we introduce notation and hypotheses that are used throughout
this paper. We also state our main result.

Let r ≥ 0 be given. By Co = C([−r, 0],Rd) we denote the Banach space of
all continuous functions from [−r, 0] into Rd with the norm

‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0},

where |.| is any convenient norm in Rd. Let t0 ∈ R and L ≥ 0. For any
continuous function x : [t0 − r, t0 + L]→ R

d and any t ∈ [t0, t0 + L], we denote
by xt the element of Co defined by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].

Here xt(.) represents the history of the state from time t− r up to the present
time t.

We list the following hypotheses:

(H1) The function f in (1.6) is continuous on R+ × Rd × Rd.

(H2) The continuity of f = f(τ, x1, x2) in x1, x2 is uniform with respect to τ .

(H3) For all x1, x2 ∈ Rd there exists a limit

fo(x1, x2) := lim
R→∞

1
R

∫ s+R

s

f(τ, x1, x2)dτ
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which is uniform with respect to s ∈ R+.

(H4) The averaged equation

ẏ(t) = fo(y(t), y(t− r)) (2.1)

has the uniqueness of the solutions with the prescribed initial conditions.

Remark 2.1 Using hypotheses (H1)-(H3) we will prove in Lemma 4.1 below
that the function fo : Rd × Rd → R

d is continuous so that the existence of
solutions of (2.1) is guaranteed.

The main result of this paper reads as follows.

Theorem 2.2 Assume that hypotheses (H1)-(H4) hold. Let φ ∈ C0. Let y be
the solution of (2.1) with y0 = φ, and let J be its maximal interval of definition.
For any L > 0, L ∈ J , and any δ > 0 there exists an ε0 = ε0(L, δ) > 0 such
that, for ε ∈ (0, ε0], any solution x of (1.6) with x0 = φ, which is defined on
[0, L], satisfies the inequality |x(t)− y(t)| < δ on t ∈ [0, L].

3 Nonstandard Main Result

Hereafter we give the nonstandard formulation of Theorem 2.2. Then, by use
of the reduction algorithm, we show that the reduction of Theorem 3.1 bellow
is Theorem 2.2.

Theorem 3.1 Let f : R+×Rd×Rd → R
d be standard. Assume that hypotheses

(H1)-(H4) hold. Let φ ∈ Co be standard. Let y be the solution of (2.1) with
y0 = φ, and let J be its maximal interval of definition. Let ε > 0 be infinitesimal.
Then for any standard L > 0, L ∈ J , any solution x of (1.6) with x0 = φ, which
is defined on [0, L], is such that x(t) ' y(t) for all t ∈ [0, L].

The proof of Theorem 3.1 is postponed to Section 4. Theorem 3.1 is an
external statement. We show that the reduction of Theorem 3.1 is Theorem
2.2.
Reduction of Theorem 3.1. The characterization of the conclusion of Theorem
3.1 is

∀ε : ε ' 0 =⇒ any solution x of (1.6) with x0 = φ, which is defined
on [0, L], is such that x(t) ' y(t) for all t ∈ [0, L]. (3.1)

Let B be the formula “If δ > 0 then any solution x of (1.6) with x0 = φ, which
is defined on [0, L], satisfies the inequality |x(t)− y(t)| < δ on t ∈ [0, L]”. Using
(5.2) (see Appendix A), formula (3.1) becomes

∀ε (∀stη ε < η =⇒ ∀stδ B). (3.2)
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In this formula L is standard and ε, η and δ range over the strictly positive real
numbers. By (5.1) (see Appendix A), formula (3.2) is equivalent to

∀δ ∃finη′ ∀ε (∀η ∈ η′ ε < η =⇒ B). (3.3)

For η′ a finite set, ∀η ∈ η′ ε < η is the same as ε < ε0 for ε0 = min η′, and so
formula (3.3) is equivalent to

∀δ ∃ε0 ∀ε (ε < ε0 =⇒ B).

That is the statement of Theorem 2.2 holds for L > 0, L standard. By transfer,
it holds for any L > 0. ♦

4 Proof of Theorem 3.1

4.1 Preliminary Lemmas

In this subsection we give some results we need for the proof of Theorem 3.1.
Let ε > 0 be infinitesimal. Let f : R+ × Rd × Rd → R

d be standard. The
external formulations of conditions (H1)-(H3) are, respectively:

(H1’) ∀stτ ∈ R+ ∀stx1, x2 ∈ Rd ∀τ ′ ∈ R+ ∀x′1, x′2 ∈ Rd:

τ ′ ' τ, x′1 ' x1, x
′
2 ' x2 =⇒ f(τ ′, x′1, x

′
2) ' f(τ, x1, x2).

(H2’) ∀stx1, x2 ∈ Rd ∀x′1, x′2 ∈ Rd ∀τ ∈ R+ :

x′1 ' x1, x
′
2 ' x2 =⇒ f(τ, x′1, x

′
2) ' f(τ, x1, x2).

(H3’) There is a standard function fo : Rd × Rd → R
d such that

∀stx1, x2 ∈ Rd ∀s ∈ R+ ∀R ' +∞ : fo(x1, x2) ' 1
R

∫ s+R

s

f(τ, x1, x2)dτ.

We prove the following lemmas:

Lemma 4.1 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Then the function fo is continuous and satisfies

fo(x1, x2) ' 1
R

∫ s+R

s

f(τ, x1, x2)dτ

for all x1, x2 ∈ Rd, x1, x2 nearstandard, all s ∈ R+ and all R ' +∞.

Proof. Let x1, x2,
ox1,

ox2 ∈ Rd such that ox1,
ox2 are standard and x1 ' ox1,

x2 ' ox2. Let s ∈ R+. Let ν > 0 be infinitesimal. By condition (H3) there
exists R0 > 0 such that, for R > R0∣∣∣fo(x1, x2)− 1

R

∫ s+R

s

f(τ, x1, x2)dτ
∣∣∣ < ν.
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Hence for some R ' +∞ we have

fo(x1, x2) ' 1
R

∫ s+R

s

f(τ, x1, x2)dτ.

By condition (H2’) we have f(τ, x1, x2) ' f(τ, ox1,
ox2) for τ ∈ R+. Therefore

fo(x1, x2) ' 1
R

∫ s+R

s

f(τ, ox1,
ox2)dτ.

From (H3’) we deduce that fo(x1, x2) ' fo(ox1,
ox2). Thus fo is continuous.

Moreover for s ∈ R+ and R ' +∞ we have

fo(x1, x2) ' fo(ox1,
ox2)

' 1
R

∫ s+R

s

f(τ, ox1,
ox2)dτ

' 1
R

∫ s+R

s

f(τ, x1, x2)dτ.

♦

Lemma 4.2 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Let ε > 0 be infinitesimal. Let α > 0 be infinitesimal such
that α/ε ' ∞. Then

ε

α

∫ t/ε+Tα/ε

t/ε

f(τ, x1, x2)dτ ' T.fo(x1, x2)

for all x1, x2 ∈ Rd, x1, x2 nearstandard, all t ∈ R+ and all T ∈ [0, 1].

Proof. Let x1, x2 nearstandard in Rd, t ∈ R+ and T ∈ [0, 1].
Case 1. T is such that Tα/ε is unlimited. By Lemma 4.1 we have

ε

α

∫ t/ε+Tα/ε

t/ε

f(τ, x1, x2)dτ ' T.fo(x1, x2).

Case 2. T is such that Tα/ε is limited. By means of Lemma 4.1 we obtain

ε

α

∫ t/ε+Tα/ε

t/ε

f(τ, x1, x2)dτ

=
ε

α

∫ t/ε+α/ε

t/ε

f(τ, x1, x2)dτ − ε

α

∫ t/ε+Tα/ε+(1−T )α/ε

t/ε+Tα/ε

f(τ, x1, x2)dτ

' fo(x1, x2)− (1− T )fo(x1, x2) = T.fo(x1, x2).

♦

Lemma 4.3 Let X : [−r, 0] × [0, 1] → R
d, F : R+ × Rd × Rd → R

d and
G : R+ → R

d be continuous fonctions. Let α > 0 be infinitesimal. Suppose that
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i) αX(−r, T ) ' 0 ∀T ∈ [0, 1].

ii) X(0, T ) =
∫ T

0

F (s,X(0, s), X(−r, s))ds ∀T ∈ [0, 1].

iii) F (T, x1, x2) ' G(T ) ∀T ∈ [0, 1] ∀x1, x2 ∈ Rd: αx1 ' 0 ' αx2.

iv)
∫ T

0

G(s)ds is limited for all T ∈ [0, 1].

Then X(0, ·) is limited on [0, 1] and satisfies

X(0, T ) '
∫ T

0

G(s)ds ∀T ∈ [0, 1].

Proof. Suppose there exists T ∈ [0, 1] such that X(0, T ) ' ∞. Let T be such
that 0 ≤ T ≤ T , X(0, T ) ' ∞ and αX(0, s) ' 0 for all s ∈ [0, T ]. Then we have

X(0, T ) =
∫ T

0

F (s,X(0, s), X(−r, s))ds '
∫ T

0

G(s)ds.

Hence X(0, T ) is limited. This is a contradiction. ♦

Lemma 4.4 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Let φ ∈ Co be standard. Let ε > 0 be infinitesimal. Let α > 0
be infinitesimal such that α/ε ' ∞. Let x be a solution of (1.6) with x0 = φ.
Suppose that x is defined on [0, r] and x(t) is nearstandard for all t ∈ [0, r].
Then for all t0 ∈ [0, r − α] we have

i)
x(t0 + α)− x(t0)

α
' fo(x(t0), x(t0 − r)).

ii) x(t0 + αT ) ' x(t0) ∀T ∈ [0, 1].

Proof. Let t0 ∈ [0, r − α]. Define a change of variables as follows:

T =
t− t0
α

, X(0, T ) =
x(t0 + αT )− x(t0)

α
,

X(−r, T ) =
x(t0 + αT − r)− x(t0 − r)

α
, T ∈ [0, 1],

(4.1)

where

X(θ, T ) =
x(t0 + αT + θ)− x(t0 + θ)

α
, for θ ∈ [−r, 0] and T ∈ [0, 1].

We have αX(−r, T ) ' 0 ∀T ∈ [0, 1]. Indeed, let T ∈ [0, 1]. Taking into account
that t0 + αT − r ∈ [−r, 0] and x|[−r,0]

≡ φ, using the S-continuity of φ, we have

x(t0 + αT − r) = φ(t0 + αT − r) ' φ(t0 − r) = x(t0 − r)
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which is equivalent to αX(−r, T ) ' 0.
Now, under the change of variables (4.1) equation (1.6) becomes

dX

dT
(0, T ) = f

( t0
ε

+
α

ε
T, x(t0) + αX(0, T ), x(t0 − r) + αX(−r, T )

)
.

As x(t0) and x(t0−r) are nearstandard, so are x(t0)+αX1 and x(t0−r)+αX2,
for all X1, X2 in Rd such that αX1 and αX2 are infinitesimal. Then by (H2’)
we have

f
( t0
ε

+
α

ε
T, x(t0) + αX1, x(t0 − r) + αX2

)
' f

( t0
ε

+
α

ε
T, x(t0), x(t0 − r)

)
for all T ∈ [0, 1] and all X1, X2 ∈ Rd such that αX1 and αX2 are infinitesimal.
On the other hand, for T ∈ [0, 1], by Lemma 4.2 we have∫ T

0

f
( t0
ε

+
α

ε
τ, x(t0), x(t0 − r)

)
dτ =

ε

α

∫ t0/ε+Tα/ε

t0/ε

f(τ, x(t0), x(t0 − r))dτ

' T.fo(x(t0), x(t0 − r))

which is limited for all T ∈ [0, 1]. Therefore by Lemma 4.3 we have

X(0, T ) ' T.fo(x(t0), x(t0 − r)) ∀T ∈ [0, 1].

Hence we deduce that

x(t0 + α)− x(t0)
α

= X(0, 1) ' fo(x(t0), x(t0 − r))

and
x(t0 + αT )− x(t0) = αX(0, T ) ' 0 ∀T ∈ [0, 1],

which completes the proof. ♦

Lemma 4.5 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Let φ ∈ Co be standard. Let ε > 0 be infinitesimal. Let α > 0
be infinitesimal such that α/ε ' ∞. Let x be a solution of (1.6) with x0 = φ.
Suppose that x is defined on [0, 2r] and x(t) is nearstandard for all t ∈ [0, 2r].
Then for all t0 ∈ [0, 2r − α] we have

i)
x(t0 + α)− x(t0)

α
' fo(x(t0), x(t0 − r)).

ii) x(t0 + αT ) ' x(t0) ∀T ∈ [0, 1].

Proof. Let t0 ∈ [0, 2r − α] = [0, r − α] ∪ [r − α, 2r − α].
Case 1. t0 ∈ [0, r − α]. By Lemma 4.4, the conclusion of Lemma 4.5 holds.
Case 2. t0 ∈ [r − α, 2r − α]. Consider the change of variables (4.1). We will
show that αX(−r, T ) ' 0 ∀T ∈ [0, 1]. Let T ∈ [0, 1]. As t0 − r ∈ [−α, r − α] =
[−α, 0] ∪ [0, r − α], consider each of the following cases:

1. t0 − r ∈ [−α, 0]. Then t0 + αT − r ∈ [−α, α] = [−α, 0] ∪ [0, α].
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a. t0 + αT − r ∈ [−α, 0]. Since x|[−r,0]
≡ φ and φ is S-continuous it

follows that

x(t0 + αT − r) = φ(t0 + αT − r) ' φ(t0 − r) = x(t0 − r),

that is, αX(−r, T ) ' 0.
b. t0 + αT − r ∈ [0, α]. By Lemma 4.4, ii) we have

x(t0 + αT − r) ' x(0).

On the other hand, taking into account that x|[−r,0]
≡ φ, by use of the S-

continuity of φ we obtain

x(t0 − r) = φ(t0 − r) ' φ(0).

Hence x(t0 + αT − r) ' x(t0 − r), that is, αX(−r, T ) ' 0.
2. t0 − r ∈ [0, r − α, ]. By Lemma 4.4, ii) we have

x(t0 + αT − r) ' x(t0 − r),

that is, αX(−r, T ) ' 0.
At this stage, the rest of the proof is the same one as in Lemma 4.4. ♦
By induction we have the following lemma.

Lemma 4.6 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Let φ ∈ Co be standard. Let ε > 0 be infinitesimal. Let α > 0
be infinitesimal such that α/ε ' ∞. Let x be a solution of (1.6) with x0 = φ.
Suppose that x is defined on [0,mr] and x(t) is nearstandard for all t ∈ [0,mr],
where m is a standard positive integer. Then for all t0 ∈ [0,mr − α] we have

i)
x(t0 + α)− x(t0)

α
' fo(x(t0), x(t0 − r)).

ii) x(t0 + αT ) ' x(t0) ∀T ∈ [0, 1].

Using this lemma, it is easy to prove the following result.

Lemma 4.7 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Let φ ∈ Co be standard. Let ε > 0 be infinitesimal. Let α > 0
be infinitesimal such that α/ε ' ∞. Let x be a solution of (1.6) with x0 = φ.
Let L1 > 0 be standard such that x is defined on [0, L1] and x(t) is nearstandard
for all t ∈ [0, L1]. Then for all t0 ∈ [0, L1 − α] we have

i)
x(t0 + α)− x(t0)

α
' fo(x(t0), x(t0 − r)).

ii) x(t0 + αT ) ' x(t0) ∀T ∈ [0, 1].

As a consequence of Lemma 4.7 we have:
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Lemma 4.8 Assume that all hypotheses in Lemma 4.7 hold. Let {tn : n =
0, . . . , No + 1} be the infinitesimal partition of [0, L1 − α] given by t0 = 0,
tNo ≤ L1 − α < tNo+1, and for n ∈ {0, . . . , No + 1}, tn = nα. Then for all
n ∈ {0, . . . , No} we have

i)
x(tn+1)− x(tn)

tn+1 − tn
' fo(x(tn), x(tn − r)).

ii) x(t) ' x(tn) ∀t ∈ [tn, tn+1].

Lemma 4.9 Let f : R+ ×Rd ×Rd → R
d be standard. Assume that hypotheses

(H1’)-(H3’) hold. Let φ ∈ Co be standard. Let ε > 0 be infinitesimal. Let x be
a solution of (1.6) with x0 = φ. Let L1 > 0 be standard such that x is defined
on [0, L1] and x(t) is nearstandard for all t ∈ [0, L1]. Then x is S-continuous
on [0, L1].

Proof. Let α > 0, α ' 0 and α/ε ' ∞. Let t, t′ ∈ [0, L1] = [0, L1 − α] ∪ [L1 −
α,L1] such that t ≤ t′ and t ' t′.
Case 1. t, t′ ∈ [0, L1 − α]. Then there exist positive integers p and q, p, q ∈
{0, . . . , No}, such that t ∈ [tp, tp+1] and t′ ∈ [tq, tq+1], where the tn are deter-
mined by Lemma 4.8. By Lemma 4.8, i) we have

x(tq)− x(tp) =
q−1∑
k=p

(x(tk+1)− x(tk))

=
q−1∑
k=p

(tn+1 − tn)[fo(x(tk), x(tk − r)) + ηk], ηk ' 0.

(4.2)

Let η = max{|ηp|, . . . , |ηq−1|} and m = max{|fo(x(tk), x(tk−r))| : k = p, q − 1}.
We have η ' 0 and m = |fo(x(ts), x(ts−r))| for some s ∈ {p, . . . , q−1}. As fo is
standard and continuous and x(ts), x(ts− r) are nearstandard, fo(x(ts), x(ts−
r)) is nearstandard and so is m. By Lemma 4.8, ii), (4.2) implies that

|x(t′)− x(t)| ' |x(tq)− x(tp)| ≤ (m+ η)(tq − tp) ' 0.

Case 2. t, t′ ∈ [L1 − α,L1]. By lemma 4.7, ii) we have

x(t) ' x(L1 − α) ' x(t′).

Case 3. t ∈ [0, L1 − α] and t′ ∈ [L1 − α,L1]. Taking into account that in this
case t ' L1 − α ' t′, we have first

x(t) ' x(L1 − α) (see Case 1 above)

and next
x(L1 − α) ' x(t′) (see Case 2 above).

Hence, x(t) ' x(t′). Thus, in all cases we have x(t) ' x(t′), that is, x is
S-continuous on [0, L1]. ♦
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4.2 Proof of Theorem 2

We are now able to prove our main result (there is not much work left). We
assume that the hypotheses in Theorem 3.1 hold. The proof will be given in
two steps:
Step 1. Let L > 0, L standard and L ∈ J , and let x be a solution of (1.6) with
x0 = φ. We suppose that x is defined on [0, L]. Let K be a standard tubular
neighborhood of radius ρ around the trajectory of y on [0, L]. Let L1 > 0 be
standard such that

L1 ≤ L and x([0, L1]) ⊂ K. (4.3)

Consider the standard function z : [−r, L1]→ R
d defined by

z(t) =
{
φ(t), t ∈ [−r, 0]
ox(t), t ∈ [0, L1].

We will prove that z is a solution of (2.1). Then, by the uniqueness of the
solutions of (2.1) (hypothesis (H4)), we deduce that z ≡ y on [−r, L1] so that
x(t) ' ox(t) = z(t) = y(t) for t ∈ [0, L1], which completes the first part of the
proof.

Indeed, as x(t) ∈ K for all t ∈ [0, L1] and K is standard and compact, x(t)
is nearstandard (in K) for all t ∈ [0, L1]. By Lemma 4.9, x is S-continuous on
[0, L1] and then z is continuous. Let us show that for all t ∈ [0, L1]

z(t) = φ(0) +
∫ t

0

fo(z(τ), z(τ − r))dτ.

Let α > 0, α ' 0 and α/ε ' ∞. Let t ∈ [0, L1] = [0, L1 − α] ∪ [L1 − α,L1]
be standard.
Case 1. t ∈ [0, L1−α]. Then there exists p ∈ {0, . . . , No} such that t ∈ [tp, tp+1]
where the tn are determined by Lemma 4.8. By Lemma 4.8 we have

z(t)− φ(0) ' x(tp)− x(0)

=
p−1∑
k=0

(x(tk+1)− x(tk))

=
p−1∑
k=0

(tk+1 − tk)[fo(x(tk), x(tk − r)) + ηk], ηk ' 0.

(4.4)

As fo is standard and continuous, and x(tk) ' z(tk), x(tk − r) ' z(tk − r) with
x(tk), x(tk−r) nearstandard, we have fo(x(tk), x(tk−r)) ' fo(z(tk), z(tk−r)).
Then (4.4) implies that

z(t)− φ(0) '
p−1∑
k=0

(tk+1 − tk)[fo(z(tk), z(tk − r)) + βk + ηk], βk ' 0

'
p−1∑
k=0

(tk+1 − tk)fo(z(tk), z(tk − r))

'
∫ t

0

fo(z(τ), z(τ − r))dτ.
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Case 2. t ∈ [L1−α,L1]. As t is standard, t = L1. Consider the interval [0, L1−
α]. We have L1−α ∈ [tNo , tNo+1] where the tn, n ∈ {0, . . . , No}, are determined
by Lemma 4.8. As tNo+1 ' tNo , z(tNo) and z(tNo − r) are nearstandard, and
fo is standard and continuous, we have (tNo+1 − tNo)fo(z(tNo), z(tNo − r)) ' 0
so that

z(L1)− φ(0) ' z(L1 − α)− φ(0) ' x(tNo)− x(0)

'
No−1∑
n=0

(tn+1 − tn)fo(z(tn), z(tn − r)) (see Case 1 above)

'
No∑
n=0

(tn+1 − tn)fo(z(tn), z(tn − r))

'
∫ L1

0

fo(z(τ), z(τ − r))dτ.

Thus, in all cases we have

z(t) ' φ(0) +
∫ t

0

fo(z(τ), z(τ − r))dτ. (4.5)

As both sides of (4.5) are standard we have

z(t) = φ(0) +
∫ t

0

fo(z(τ), z(τ − r))dτ (4.6)

and by transfer (4.6) holds for all t ∈ [0, L1], that is, z is a solution of (2.1).
Step 2. It remains to prove that L satisfies (4.3). Suppose that this is false.
Then there exists t1 ∈ (0, L] such that

x(t1) ∈ ∂K, (4.7)

where ∂K is the boundary of K. We may suppose that t1 is the first time
such that (4.7) holds. Since x and y are continuous, x(0) = y(0), and (by
(4.7)) |x(t1) − y(t1)| = ρ, we deduce that there exists t2 ∈ (0, t1) such that
|x(t2)− y(t2)| = ρ/2. It is clear that 0 6' t2 6' t1. Let ot2 be the standard part
of t2. We have |x(ot2)− y(ot2)| ' ρ/2 which implies that x(ot2) ∈ K. However,
this contradicts the conclusion of Step 1 above, that is, x(t) ' y(t) for t ∈ [0, ot2]
since x([0, ot2]) ⊂ K. The proof is complete. ♦

Remark 4.10 It appears clearly throughout the proof of Theorem 3.1 that it
is not necessary to consider the whole space R+ × Rd × Rd. One can restrict
the domain of definition of f to R+×D×D for any standard D ⊂ Rd with the
assumption that y lies on [0, L] in the interior of D.

5 Internal Set Theory

In IST we adjoin to ordinary mathematics (say ZFC) a new undefined unary
predicate standard (st). The axioms of IST are the usual axioms of ZFC plus
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three others which govern the use of the new predicate. Hence, all theorems
of ZFC remain valid in IST. What is new in IST is an addition, not a change.
We call a formula of IST external in the case where it involves the new predi-
cate st; otherwise, we call it internal. Thus internal formulas are the formulas
of ZFC. The theory IST is a conservative extension of ZFC, that is, every in-
ternal theorem of IST is a theorem of ZFC. Some of the theorems which are
proved in IST are external and can be reformulated so that they become inter-
nal. Indeed, there is a reduction algorithm which reduces any external formula
F (x1, . . . , xn) of IST without other free variables than x1, . . . , xn, to an internal
formula F ′(x1, . . . , xn) with the same free variables, such that F ≡ F ′, that is,
F ⇐⇒ F ′ for all standard values of the free variables. In other words, any result
which may be formalized within IST by a formula F (x1, . . . , xn) is equivalent
to the classical property F ′(x1, . . . , xn), provided the parameters x1, . . . , xn are
restricted to standard values. Here is the reduction of the frequently occurring
formula ∀x (∀sty A =⇒ ∀stz B) where A and B are internal formulas

∀x (∀sty A =⇒ ∀stz B) ≡ ∀z ∃finy′ ∀x (∀y ∈ y′ A =⇒ B). (5.1)

A real number x is called infinitesimal when |x| < a for all standard a > 0,
limited when |x| ≤ a for some standard a, appreciable when it is limited and
not infinitesimal, and unlimited, when it is not limited. We use the following
notations: x ' 0 for x infinitesimal, x ' +∞ for x unlimited positive, x >> 0
for x non infinitesimal positive. Thus we have

x ' 0 ⇐⇒ ∀sta > 0 |x| < a
x >> 0 ⇐⇒ ∃sta > 0 x ≥ a
x limited ⇐⇒ ∃sta > 0 |x| ≤ a
x ' +∞ ⇐⇒ ∀sta > 0 x > a.

(5.2)

Let (E, d) be a standard metric space. Two points x and y in E are called
infinitely close, denoted x ' y, when d(x, y) ' 0. If there exists in that space
a standard x0 such that x ' x0, the element x is called nearstandard in E and
the standard point x0 is called the standard part of x (it is unique) and is also
denoted ox. A vector in Rd (d standard) is said to be infinitesimal (resp. limited,
unlimited) if its norm |x| is infinitesimal (resp. limited, unlimited), where |.| is
a norm in Rd.

We may not use external formulas to define subsets. The notations {x ∈ R :
x is limited} or {x ∈ R : x ' 0} are not allowed. Moreover we can prove that

Lemma 5.1 There do not exist subsets L and I of R such that, for all x ∈ R,
x is in L if and only if x is limited, or x is in I if and only if x is infinitesimal.

It happens sometimes in classical mathematics that a property is assumed, or
proved, on a certain domain, and that afterwards it is noticed that the character
of the property and the nature of the domain are incompatible. So actually the
property must be valid on a large domain. In the same manner, in Nonstandard
Analysis, the result of Lemma 5.1 is frequently used to prove that the validity of
a property exceeds the domain where it was established in direct way. Suppose
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that we have shown that A holds for every limited x, then we know that A
holds for some unlimited x, for otherwise we could let L = {x ∈ R : A}. This
statement is called the Cauchy principle. It has the following consequence.

Lemma 5.2 (Robinson’s Lemma) Let g be a real function such that g(t) ' 0
for all limited t ∈ R+, then there exists ω ' +∞ such that g(t) ' 0 for all
t ∈ [0, ω].

Proof. The set of all s such that for all t ∈ [0, s] we have |g(t)| < 1/s contains
all limited s ≥ 1. By the Cauchy principle it must contain some unlimited ω. ♦

We conclude this section with the following remark.

Remark 5.3 The use of Nonstandard Analysis in perturbation theory of dif-
ferential equations goes back to the seventies with the Reebian school (cf.
[20, 21, 27] and the references therein). It gave birth to the nonstandard pertur-
bation theory of differential equations which has became today a well-established
tool in asymptotic theory (see the special five-digits classification 34E18 of the
2000 Mathematics Subject Classification). To have an idea of the rich literature
on the subject, the reader is referred to [3, 4, 5, 23, 24].
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