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An embedding theorem for Campanato spaces *

Azzeddine El Baraka

Abstract

The purpose of this paper is to give a Sobolev type embedding theo-
rem for the spaces E;‘;g (R™). The homogeneous versions of these spaces
contain well known spaces such as the Bounded Mean Oscillation spaces
(BMO) and the Campanato spaces £>*. Our result extends some in-
jections obtained by Campanato [3, 4], Strichartz [11], and Stein and
Zygmund [10].

1 Introduction and statement of results

The main goal of this work is to give a Sobolev type embedding theorem for the
appropriate scaled functions in [,Z’}:;(R”) whose homogeneous version ﬁ;:g(R”)
contains some well known spaces as special cases: John and Nirenberg space
BMO (Bounded Mean Oscillation) and more generally Campanato spaces £
modulo polynomials [5].

It is well known that the homogeneous Triebel-Lizorkin Fl‘f’q (R™) spaces co-
incide with BMO modulo polynomials for some values of p,q and s. Namely,
BMO = FY, , [12, chap. 5] and thus I*(BMO) = F3, ,, where I® = F~1(|-|7*F)
is the Riesz potential operator. Strichartz [11] discussed the connexion between
I°*(BMO) and the homogeneous Besov space A‘;O’q and proved the following
injections (Theorem 3.4.)

A3, C IS(BMO) C A,

Let us mention that others classical embeddings have been obtained respectively
by Stein and Zygmund [10] and Campanato [3, 4]; they proved that

H/P < BMO and LP*=C°F ifn<A<n+p

here H, /P is the Bessel potential space and £P} is the Campanato space (cf.
Definition 1.5). In this paper we extend these injections to a more general frame
(Theorem 1.8), by giving some embedding results between the spaces C;:S(R”)
(which include I¥(BMO) and I°(L£?*) as special cases), Triebel-Lizorkin spaces
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Fs (R™) (containing Hy /P as particular case) and Besov-Peetre spaces B;, ,(R"),
and on the other side between the same spaces E;‘;; (R™) and Holder-Zygmund
ones C*(R™). Such embeddings shed some light on duals of the closure of
Schwartz space S(R™) in BMO and in Campanato spaces £2* (Corollary 3.1).

The present article is organised as follows: first, we give the definition of the
Lys(R™) spaces and their homogeneous counterparts L s (R™) which invoke a
thtlewood Paley partition of unity and some expressions with balls (or cubes)
of R", and we state the main result (Theorem 1.8). Next, we proceed to a
discussion of some properties of these spaces: we give the connexion between
the nonhomogeneous spaces L;‘;; (R™) and the homogeneous ones, and we specify
the differential dimension of the dotted spaces which depends on p, g, s, and A.
Finally, we prove Theorem 1.8 and Corollary 3.1.

To define these spaces, we will need a Littlewood-Paley partition of unity.
Denote x € R™ and £ its dual variable. Consider the cutoff function ¢ €
CP(R™), ¢ > 0and g equal to 1 for |{] < 1, 0 for [£] > 2. Let 8(&) = ¢(§)—p(2¢)
which satisfies supp 6 C {2 < |¢| < 2}. For j € Z we set

Aju=0(27"D,)u

and _
Aou = p(Dy)u, Aju=Auif j>1

Remark 1.1 We have p(&) + " ,-, 0(27%¢) = 1 for all £ € R™, thus the non-
homogeneous partition of u € S'(R™) is given by the formula

ufZAku

Set f(£) = Y ez 0(277€); for each fixed £ # 0, f(£) contains at most two non-
vanishing terms, we deduce f(§) =1 for any |§| > 2. Note that f(277¢) = f(£)
for all j € Z, and choose j more and more large, to obtain f(£) = 1 for any
& # 0. Then, for u € §'(R™), with 0 ¢ supp Fu, the homogeneous partition of
u is given by the formula

u = Z Aku

ke
Now, let us define the nonhomogeneous space E;,‘;;; (R™).

Definition 1.2 Let s e RA> 0,1 < p < 40 and 1 < ¢ < +00. The space
Lys(R™) denotes the set of all tempered distributions u € &’ (R™) such that

. 1/q
lull 230s gy = {bup B > Al p <o (L)
j=>J+t

where JT = max (J,0), |B| is the measure of B and the supremum is taken
over all J € Z and all balls B of R® with radius 2=7. When p = ¢, the space
Ly5(R™) will be denoted L7 (R™).
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Note that the space £3¢(R™) equipped with the norm (1.1) is a Banach
space.

To give the homogeneous counterpart of the space L;,‘;g (R™), we recall the
notations of [12, chap. 5. Let

Z(R") = {p € S(R™); (D*F)(0) = 0 for every multi-index a}.
The space Z(R") is considered as a subspace of S(R™) with the induced topology,
and Z’(R™) its topological dual. We may identify Z'(R™) with S'(R™)/P(R"),
where P(R™) is the set of all polynomials of R™ with complex coefficients i.e.
Z'(R™) is interpreted as S’(R™) modulo polynomials.
Deﬁni!:ion 1.3 Let se R A>0,1<p<+ocand 1< g < +oo. The dotted
space Ly:3(R") denotes the set of all u € Z' (R") such that
1 e 1/q
lull g3y = {sgpw S 2 Auld, b <t (12)
izJ

where the supremum is taken over all J € Z and all balls B of R" with radius

27,

If p = q, the space E;‘; (R™) will be denoted L",p’A’S(]R”). If P is a polynomial
of P(R") and u € §'(R"), it follows immediatly that

e+ Pll gy s ey = lull 235 )

This shows that the norm (1.2) is well defined. Further, the space ﬁ;:;(R”)
equipped with this norm is a Banach space.

Remark 1.4 The supremum given in expressions (1.1) and (1.2) may be taken
over all J € Z and all cubes B of R™ of length side 277,

Now we define Campanato spaces modulo polynomials Lip”\(R").

Definition 1.5 Let A >0and 1 < p < +o0.

(1) The space LP*(R™) denotes the set of (classes of) functions u € L}

loc (Rn)
such that

1 1/p
||UH£P='\(R") = {S‘;I’W /B lu — mBu”dx} < +o00

where mpu = ﬁ Jp u(y)dy is the mean value of u and the supremum is
taken over all balls B of R".

Note that £P-*(R") is a Banach space modulo constants equal to {0} if A > n+p.
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(ii) The space £PA(R") denotes the set of functions u € Z'(R") such that
[ull oo (gny < +00, where
infpep [|u+ Plleragn) if u € L, (R)
lull gorgny = § +o00 if u e Z/(R™) but
not locally integrable

the infimum is taken over the set P of all polynomials of R with complex
coefficients.

Remark 1.6 (i) Modulo polynomials, the space £P*(R™) is the Campanato
space LPA(R™). For 0 < X\ < n 4 p, LPA(R™) can be defined as the set of
all equivalence classes modulo P of elements of £P*(R™), equipped with the
following norm [[Ul| gy gny = l|ullgrrn) where u is the unique (modulo a
constant) element of £P**(R™) belonging to the class U.

(ii) Using a result of John and Nirenberg [9] it is classical that if A = n,
then for every 1 < p < +o0, LP"(R") coincides with the space BMO (R™) of
all functions u € L} (R™) such that there exists a constant C' > 0 satisfying

loc

the following inequality

1
E/ lu —mpul|de < C
B

for all balls B of R”. We show in [5] that in general £2M0(R") = ﬁQ’A(R")
provided 0 < A < n + 2; therefore the characterization of Littlewood-Paley type
of Campanato spaces [22’)‘(R") is given. This result is not true in general for
p # 2, nevertheless if p > 2 and 0 < A < n + p we show that L.p’A(R") is
continuously embedded in £P*0(R™).

Now, recall the definition of some function spaces.

Definition 1.7 Let s e R, 1 < p < +oo and 1 < ¢ < +o0.
(i) We denote F;  (R") the set of all tempered distributions u € S'(R™) such

that / Y
. p/q p
F;q(R") = (/ (Z2qu|AJU‘q) dl‘) < 400
’ R Nj>0

(ii) The space B3, ,(R™) denotes the set of all tempered distributions u €
S'(R™) such that

[[ul

1/q
e B A R S
k>0

(iii) We denote C*(R™) the set of all tempered distributions u € S’'(R™) such
that 4
||u||CS(Rn) = sup 2‘78||A]‘UHL00(]R71) < 400
j=0
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(iv) If we replace in (i), (ii) and (iii) S’(R™) by Z'(R"), A; by Aj and j >0
by j € Z, we obtain respectively the definition of the homogeneous spaces
Fy,(R™), BS, , (R") and C*(R™).

Here is the main result of this paper.

Theorem 1.8 Let se R, 1 <p < +00,1 < g < +oo and A > 0. We have the
following continuous embeddings

)"S+%7% n S (TN
Lp.g (R™) = C*(R")

n A, n_ A .
F;:;p (R") — Ep7;+p 7 (R™) provided ¢ > p

F;;%(Rn) — ﬁpAﬁ_%(R") provided p > q.

(R") — £)2(R") provided \ > n}%

_n A
s—pty

Boo g
and finally if A > n then
Zqu(HA%”Aju\q € L°(R™) implies u € LT (R™)

Jj=0
We have also the same continuous embeddings if we replace B,C, F and L re-

spectively by the dotted spaces B,C,F and L.

Remark 1.9 (i) In the case s = 0, S. Campanato [3, 4] showed that if n < A <
n + p we have LPA = C77" and LPHP = Lip (cf. [8] too).

(ii) If A = n and p = ¢ = 2, we obtain the theorem 3.4. of R. S. Strichartz
[11], namely BOO’Q (R™) — I*(BMO) — C (R™), where I° is the Riesz po-
tential operator and I*(BMQO) = £>™5(R™), cf. [5], BMO is defined modulo
polynomials. We note that Theorem 1.8 generalise Theorem 2.1 of [6].

(iii) Choosing s =0, p = ¢ = 2 and A = n in the third embedding, we find
a result due to E. M. Stein and A. Zygmund [10]

s = FQ%Q < L20(R™) = BMO modulo polynomials

2 Properties of the spaces
We start with some helpful lemmas needed in the further considerations.

Lemma 2.1 Let 1 < p < 400, and A a real < 0. If (a;,);. is a sequence of
positive real numbers satisfying (aj,); € P for all v > 1, then there exists a
constant C' > 0 such that

Z(ZT’A%V)F < C'sup Za?w
157

i>1 v>1 vEti>
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Proof Let % + % = 1. Using Holder’s inequality we get

Y (X2tan)” < Y (YEteia)
j>1 >l i>1 v>1
< () )
j>1 v>1 v>1
< CZZQEApafu
j>1v>1
< 0222‘4”2(1” <C’sup2aw
v>1 §>1 vzl

It is known that A; is uniformly bounded on LP(R™). On the other hand, on
L?(B), B C R"™, we have the following result. We denote aB, o > 0, the ball
with the same center zg as B and of radius ar, r is the radius of B.

Lemma 2.2 For each integer M > 0, there exists a constant Cp; > 0, such
that for any J € Z, xo € R™, for any ball B centered at xo and of radius 277,
foranyl € Z and u € LP (R™),1 < p < 400,

lAwllnz) < Oxr{llullremy + Y. 27 Ml iogm,) }
v>—J+1

holds with F,, = {:E eR™ 2V < |z — x| < 2"+1} and A; denotes any product of
Ay, S; and the dotted operators.

Proof We give the proof for A; = A,. Remark that

U= X2BU + Z XF, U
v>—J+1

where xq is the characteristic function of the set 2. Thus

IAwllzesy < NAxesullei + Y. AxsullLes)

v>—J+1
< Cllullresy+ D 1Aixesulws
v>—J+1

where C is a constant independent of [ and B. Now
Aicru@) =2 [ ) 702w~ )iy
F,

For x € B and y € F,, we have | — y| ~ |xg — y| ~ 2¥. Since § € S (R"), for
every integer N, there exists Cy > 0 such that

|]:710 (2l (33 _ y)) | < CN27(I+V)N
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We deduce
B < Cn2"2 Y [ jugy)lay
< CN2"l2*(l+”)NHu|TLP<FV)|Fu|1_%
< On27 I | o (g
It follows

||Alxp,,u(x) llr(B) < Cn2~ W =n)g=3(+J) lull v ()
Therefore

1Al Loy < Cllullr2m) + Cn Z 2= N =)y Lo ()
v>—J+1

Put M = N —n > 0, and the proof is complete. &
Remark 2.3 Note that
IF10 (2" (x =) | < [1F 710l oo )

Thus we may improve the statement of the last lemma by replacing the term
2= (M Yy i (1, 27 (M),

Here is a classical lemma [1].

Lemma 2.4 Let A > 0,1 <p < g < +oo. For any u € LP(R™) with supp Fu C
{I€] < A} and for any multi-index o, there exists Cy, > 0 such that

al+n(i-1
||D;UHLQ(Rn) < Ca)\‘ I+n(z ‘1)||u||Lp(]Rn)

Lemma 2.5 Let R be a real > 1; there exists C > 0 such that for any A > 0
and 1 < p < 400, for any u € LP (R™) with supp Fu C {\ < || < RA} and for
any k € N we have

llull L @ny < C*\7* sup | Dgull Lo (rn)

|a|=k

Proof The above lemma gives that D{u € LP(R™) for all multi-index o. Let
¥ € C§°(R™), ¥(&§) = 1 on a neighbourhood of the annulus {1 < || < R} and

¥(€) = 0 on a neighbourhood of 0. Setting ¥, (£) = w(é) and ¥y ; = é—(?w we
obtain E?Zl &1x,;(€) =1 on a neighbourhood of supp Fu. We deduce

n
w=" Fx;xDyu where Fy; =F "¢, ; € S(R") (2.2)

j=1
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We have F) j(x) = A" Fy j(Ax), |Fyjllzr = A7 Fy ]z and using (2.2) we
deduce lemma 2.5 for k = 1. For the general case we do an induction on k& > 1.

O

The following lemma yields the homogeneous decomposition modulo poly-
nomials of a distribution v € S'(R™) without taking in account the condition
0 ¢ supp Fu that we have met in remark 1.1.

Lemma 2.6 For any u € 8'(R™) we have the decomposition

u= ZAju in Z'(R™).
€z

Proof The series Z;LOZA]u converges in §’'(R™) for all k € Z. Tt suffices to
show that for any ¢ € Z(R"),

+oo
fim (3Am9),, o= (9)
e ZAJU ¥ S'x8 YY) sixs
i=k
where (z) = ¢(—x) for z € R". Now
+m . 0 .
ZAju —u= ZAju —Aju=9(27%D,)u
j=k j=k
which is a smooth function. Thus
+w . ~
Cm (YA —u i) = (Fup ),
j=k
Since Fu € §'(R™), there exists a constant C' > 0 and an integer N such that

I N -
<jZkAju *U,1/)>S,X$‘

< C sup sup [€°DI(p(27F) Fu(©))]
la|+|BISN £eR™

< ¢ swp  sup 2NN (DITIG) 27k || D F U ()]
lal+IBISN Jgl<2r+t TG

(2m)"

By the assumption ¢ € Z(R") and Taylor’s formula, for all nonnegative large
integer M

(21)"

k——o0

+oo
<]§—;CAJU - u,w>5’><8’ = C2k(M_N) Y

The proof is complete. _ &
Now we state the connexion between £;5(R™) and L5 (R™).
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Lemma 2.7 Let1 < p,q <400, A >0 and s € R.

(1) If the class of u modulo P belongs to £2‘”3(R”) and if Agu € LP(R™), then
u € Lys(R™).

(i) LP(R™) N E;‘;(R”) C EZ),“ (R™) with the same meaning as (i).
(4ii) E;};; (R™) C E;\; (R™) provided s > 0.
Remark 2.8 It follows that if s > 0 then
LP(R™) N LS (R™) = LP(R™) N L5 (R™).

Proof of Lemma 2.7 (i) Ifu € ﬁ;‘:; (R™), then v € §'(R™) and there exists
a constant M > 0 such that for any ball B of R" with radius 277 with J € Z,

1
WZQZS‘ZHAZUH ) <M < +oo. (2.3)
1>J

Let J € Z and B be a ball of R® with radius 277. If J > 1, then inequality
(2.3) gives

|B| l>J+

If J <0, we have
1 2lsq A q _ 1 A q
|B|)\/n Z+ ” lu”LP(B) - |B|)‘/”H OUHLp(B)+
>J

1 ls JA
—|B|A/nl§>;2 WAL, g < 2 DoulL, p + M

< CHAO@L”%p(Rn) +M

Since Agu € LP(R™), we obtain

Hence u € L):5(R™).

(ii) follows from (i).

iii) Let u € £3(R™). There exists a constant M > 0 such that for any ball B
P.q

of R™ with radius 2=/ and J € Z,

Z 2 quAluHLp(B) <M < +00.

1>J+

|B‘)\/n
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We have to show (2.3). Let J € Z and B a ball of R" of radius 277. If J > 1,
then J* = J and (2.3) is valid. If J <0 (i.e. J* =0). We have

1 ls ls
WZ WAl ) = |B|A/n22 NArul G+

1>J
. . 0 (2.4)
ls A ls A
|B|A/‘nz:2 Al p) < IBIA/EX:2 NAwlgs ) +M
1>1 1=J
Using the nonhomogeneous decomposition of u we have for [ <0
Alu = Z AkAlu = AoAlu + AlAl’LL
k>0
and then ] ) )
A zr By < |1D0AullLr(B) + |A1A U] Lr(B)- (2.5)

Lemma 2.2 gives for M large,

||A1A0u||Lp(B) < CM{”AOUHLp(gB) +27( J)Mq[z 2_VMHAOUHLP(B,,,J)](I}

v>1
where B,,_; = 2t!B. Thus
1 < »
ls
|BW";2 A B0l )

0
C . . ,
= |B|A/n”A0u”qLP(2B)Z2Z “+ |B‘/\/nz2l q(E :2 M”AOUHLP(BU J))
1=J

v>1

Since s > 0, Z?:J2lsq <C

0
1 . C
IBIA/nz:2 AUl ) < | B 180Ul 2m)
u(— 2 1 q
(2 | Aoullino. ) (26)
v>1 | By, —g|m
1
<CM + CSUP WllAOuH%p(Bv—J) <CM
In the same way we have
1 O :
|B[Mn > 2 Al ) < CM (2.7)
1=J

From (2.4), (2.5), (2.6) and (2.7) it follows

‘Bwng Al <
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and then u € [:;}:; (R™). &
Now we give the differential dimension of E;‘; (R™).
Proposition 2.9 For any u € L';;:g (R™) and any t > 0, we have
—1 o 4d
) gy ~ 0l 2 e

where d =2 — 2 — 5.

>

p
Proof Lett=2Y N €Z and set v(z) = u(5%). From

xT

Alv(x) = (A1+NU)( o )

we get

= 2V¥ || Ayt o 2-~ By

||AZU||LP(B)

where B is a ball of R” with radius 277/, J € Z. Then we have

A lsgoN ™
[0l oy ~ 50D 2 2125 Ayl v
P 1>J
%QN%q27NA27qusup2(J+N)A Z 2(1+N)sqHAHNu”qu(TNB)
B I+N>J+N
~ 95— —8)aN sup 2J>\Z2lsq||Alu”qu(B)
1>J

Lemma 2.10 Let 1 <p<p' < +oo,1<q¢ <q< +oo and s € R. Further, let

A and p > 0 such that o — % > % — %. Then we have the continuous embedding
st =t o As+2—2 n
Ep ,q’ (R ) Epvq (R )

We also have the same result for the dotted spaces L.

In particular, if p = p’ and q = ¢ then /:5’57 (R™) — ,C . ( ™) holds for
all ;1 < \. Furthermore if p = p/ = g = ¢/ we get LPN*T5 (R7) < LPATS(RD)
for all @« > 0 and A > 0.

P
Proof Letu € EH/ o (R™). Let B be a ball of R with radius 277, J € Z.

Since p < p’ and q 2 1 we obtain

DA
|B| 1Al s,
L Hs+2-2)q )’
< |B|%Z2 301 (Al ) |BIP )

1>J+
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S (2 g )" 1)

|B|" I>J+
1 n a/d 1_1
< 5 (22“ D Awl|?, (B)) |B|q(é )
|B|" 1>J+
Now |B| ~ 27"/ [ > J* > J and the assumption z% — 5 > % - % yield

ls+n7& 1/q
|B|n Zz q)q||Alu||qu(B)}

1>J+
1/
Us+2—2)d 5T | B|e e
< (|B|n 32 1wl ) B By
>J+
1 o pmy_(n_Xy) 1/q
< O S (GmD G A, )
|B|"1>J+
s __u Ud
< ( - Z gl(s+3 )fl |AIUH )
| |"z>J+
The proof of lemma 2.10 is complete. &

Lemma 2.11 The derivation DY is a bounded operator from E)‘ stlal (R™) to
Lys(R™) and from /.3’\ rstlel (R™) to E)‘ a(R™).

Proof Let |a| =1. We have

Dol ) = 100D Arul
>0

Jj+1
| i q
‘Bl)\/n ;;2] qu ZlDwA]AluHLP(B)
=)—

|B|)\/n Y20 IIDaA Al )

G>J+ I~

sup

<C sup

(in the case of the dotted spaces we use lemma 2.6). Let B a ball of R™ of radius
2=7.J €Z. Set f; = Aju. Note that

fi=xasfi+ Y, xeh
v>—J+1
and use lemma 2.4 to get

D24 fill e By SID2Ajx2s fill ey + Z | D22 xF, fillLe(B)
v>—J+1

<C?||Ajx2 fill o @ny + Z DA XE, fill L (B) (2.8)
v>—J+1

<C?|fill ey + Z 1Dz xF, fill Le(B)
v>—J+1
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On the other hand,
D, AR fi @) =27 [ )0 (=) dy
where ¢ = D,F~'6. Therefore, if x € B and y € F,,v > —J + 1, then

|z —y| ~ |zo —y| ~ 2¥. Since ¢ € S(R™), for each integer N there exists a
constant C such that

|DaAjxp, fi (x)| < Cn2i1i=Ng=vN /F fu(y)| dy

. _1
< CNQJ(nJrlfN)quNHfl”Lp(Fu)|Fy|1 m

We deduce
j — v(— A_ny, 1
1D Xk, fill oo (m) < Cn2 =N B /por (=N +5 =5+ )F ‘AllfzIIme,)
Thus
> IDeBixE, fill e
v>—J+1
< CNQj(n-'rl—N)Q—J% Z 2u(—N+§—§+n) ”fl”LPfu) (2.9)
v>—J+1 |F |7
< 02j2(j7J)(n7N)2—J% Z QV(_N+§—%+n) ||fz||LP(Fu-J)
= A
v>1 |FU7J|"‘1

Choose N large and use inequalities (2.8), (2.9) and lemma 2.1 to deduce
1

- j q
|B|)\/n Z 2jsqz||D$AjAluHLp(B)
gzIt I~
1 (st
< Orgpm 2 ¥l
it
U~ N4A_n 2i(s+1) q
+0x 3o {2 o }
jat w2l |Fy— g
1 _—
< Opppm 2 20NAIL o)
j>(J—-2)*

1 .

s+1

TON S T T > 2UTNAulgg,
=T §2(J—v=1)%F

Finally,

q q
”DCEUHL:;\:(?(RTL) S CHUHL;\J;JH(]RTL)

which completes the proof of lemma 2.11.
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3 Proof of theorem 1.8

A
>\,5+p 7

For the first embedding, let u € £, 4 (R™). Let j > 1 and = € R™ be fixed.
Let ¢ € S(R™) with F¢ =1on § < [¢[ < 2.
From FAju(€) = F(Aju)(§)Fp(277€) we deduce

Ajue) =20 [ Aju)o(2 (= - )iy (3.1)

n

(in the case j = 0, we assume F¢ = 1 on |£] < 2). We decompose R™ into
disjunctive cubes with the side-length 277,

Qu={yeR":ly—z -2 <2777},

v € Z", and we set a, = supj,_,|_ <1 |¢(y)| which is a rapidly decreasing
sequence. Then, we have

D) < 2% /Q 1A u(y)d(2 (z — y))\dy

< 2 a [ 1Aju)ldy
v Qu
< 29 a||Ajul e @l TP
< 02930y (27T ul sy 1QUT)IQITE
- Lpq P 9 (RM)

; —j n_ A (2 41-1
< CQ"JZQV2 S q)HuH Asp 22 27t —y)
- cpq P Q(Rn)

< 2 ull s s

Lp.q P q(Rn)

The first embedding is proved.

Now let u € F;:;% (R™) and B a ball of R™ centered at zo with radius 277,

J € Z. The assumption % > 1 gives

/
! { S gialetia) (/BIA]’UIdeY ’ }Uq

BN
‘B‘"q j>J+

1 1 n 1/
= . (/ 9ip(s ;7%)|A]’U|pda:) gp
| B|7a B j>J+ e
1 o "
< o [ (R ap) | lgde)
|B nd R™ j>Jg+ e
< C2J§{/ ( Z 2jq(s+§—§)|Aju|q)p/q}l/p
A
. N 1
S C{ / ( Z 2J>\2jq(s+;7%)|A]u|q)p/q} /p S OHU| s+ .
: Fpq? (R™)

j=Jt
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Therefore the second embedding yields true.
For the third embedding, use % > 1 to obtain

A-n p/q
/Zzw 5 Aulrde = /Z 215 ufr) " a
LB‘ ]>J+ LB| ]>J+
< 2 / (3 2e=au) " da
j>J+
< /<Z2J>\%2jq(( ) A ul? )
B izt
p/q
< ( 9ials+3) Auq)
. Z |Ajul
< Cllu n
< Oy

Let B be a ball of R™ centered at xo with radius 277/ for J € Z. Let u €
s—ng A
B2 "% (R™). Then

1 S
B < 2 Z 274 |B|p||Aju||%oo(3)
‘ ‘nj2J+ j>J+
< C Z 2qu2J(>\fn%)HAju”qoo(B)
jzJ+
<

ig(s— 242
CZQJq(s 5+3) | Ajull4 ~(B)

720

Therefore the fourth injection is proved. For the last assertion,

s 1 iqs
|B|A/n YUl < CW/B D 29| Ajultda

j>Jt j>J+
< Csup 7 2|Au()|’| B+
TER™ ST+
< C sup ZZ” \A K
TER™ >0
and the proof of theorem 1.8 is complete. &

oA,S
Now we can state a partial result on the topological dual of £, , (R™), the

closure of Schwartz space S(R™) in E;};; (R™).

Corollary 3.1 Let s e R, A > 0,1 <p <400, 1 <qg<+00,1<p <40
and1<q’§—|—oowith%+l%:1,%—&—%:1. We have

—g—2Ayn o A8

e
Fiy @ "(RY) = (L, (R") — F, ., *(R") provided p < q. (3.2)
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,S,%Jrﬂ oPA;S _s

_a
F "R") = (L (R") = F, " (R") provided ¢ < p (3.3)
in particular

02 / .
R") — <£ (Rn)) — F, 7 (R") for all ¢ > 2.

n_ A
272

By
We have also the same injections for the dotted spaces.

Proof We prove only (3.3). Applying the first and the third embedding of

theorem 1.8 with s + A;% instead of s we obtain

Aen st A=m

P (R") = Biod (RY)

s
Fpy? (R") < LPAS(R™) — C°F

hence \
S+2 opx>\75 o S+ ;n

Fp,q_(Rn) =L (R") — B

(R™)

00,00

A—n

o sto5 sy A=n
where B, ., (R") denotes the closure of S(R") in BOZ o (R™). Now

An
P+P

(ésg""(R"))' —

00,00 (R™)

yields the result. &
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