An embedding theorem for Campanato spaces *

Azzeddine El Baraka

Abstract

The purpose of this paper is to give a Sobolev type embedding theorem for the spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. The homogeneous versions of these spaces contain well known spaces such as the Bounded Mean Oscillation spaces (BMO) and the Campanato spaces $\mathcal{L}^{2,\lambda}$. Our result extends some injections obtained by Campanato [3, 4], Strichartz [11], and Stein and Zygmund [10].

1 Introduction and statement of results

The main goal of this work is to give a Sobolev type embedding theorem for the appropriate scaled functions in $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ whose homogeneous version $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ contains some well known spaces as special cases: John and Nirenberg space BMO (Bounded Mean Oscillation) and more generally Campanato spaces $\mathcal{L}^{2,\lambda}$ modulo polynomials [5].

It is well known that the homogeneous Triebel-Lizorkin $\dot{F}^s_{p,q}(\mathbb{R}^n)$ spaces coincide with BMO modulo polynomials for some values of p,q and s. Namely, $BMO = \dot{F}^0_{\infty,2}$ [12, chap. 5] and thus $I^s(BMO) = \dot{F}^s_{\infty,2}$, where $I^s = \mathcal{F}^{-1}(|\cdot|^{-s}\mathcal{F})$ is the Riesz potential operator. Strichartz [11] discussed the connexion between $I^s(BMO)$ and the homogeneous Besov space $\dot{\Lambda}^s_{\infty,q}$ and proved the following injections (Theorem 3.4.)

$$\dot{\Lambda}^s_{\infty,2} \subseteq I^s(BMO) \subseteq \dot{\Lambda}^s_{\infty,\infty}$$

Let us mention that others classical embeddings have been obtained respectively by Stein and Zygmund [10] and Campanato [3, 4]; they proved that

$$H^{n/p}_p \hookrightarrow BMO \quad \text{and} \quad \mathcal{L}^{p,\lambda} \cong C^{\frac{\lambda-n}{p}} \quad \text{if } n < \lambda < n+p$$

here $H_p^{n/p}$ is the Bessel potential space and $\mathcal{L}^{p,\lambda}$ is the Campanato space (cf. Definition 1.5). In this paper we extend these injections to a more general frame (Theorem 1.8), by giving some embedding results between the spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ (which include $I^s(BMO)$ and $I^s(\mathcal{L}^{2,\lambda})$ as special cases), Triebel-Lizorkin spaces

^{*}Mathematics Subject Classifications: 46E35.

Key words: Sobolev embeddings, BMO, Campanato spaces.

^{©2002} Southwest Texas State University.

Submitted April 15, 2002. Published July 11, 2002.

 $F_{p,q}^s(\mathbb{R}^n)$ (containing $H_p^{n/p}$ as particular case) and Besov-Peetre spaces $B_{p,q}^s(\mathbb{R}^n)$, and on the other side between the same spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and Hölder-Zygmund ones $C^s(\mathbb{R}^n)$. Such embeddings shed some light on duals of the closure of Schwartz space $\mathcal{S}(\mathbb{R}^n)$ in BMO and in Campanato spaces $\mathcal{L}^{2,\lambda}$ (Corollary 3.1).

The present article is organised as follows: first, we give the definition of the $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ spaces and their homogeneous counterparts $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ which invoke a Littlewood-Paley partition of unity and some expressions with balls (or cubes) of \mathbb{R}^n , and we state the main result (Theorem 1.8). Next, we proceed to a discussion of some properties of these spaces: we give the connexion between the nonhomogeneous spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and the homogeneous ones, and we specify the differential dimension of the dotted spaces which depends on p,q,s, and λ . Finally, we prove Theorem 1.8 and Corollary 3.1.

To define these spaces, we will need a Littlewood-Paley partition of unity. Denote $x \in \mathbb{R}^n$ and ξ its dual variable. Consider the cutoff function $\varphi \in C_0^\infty(\mathbb{R}^n), \, \varphi \geq 0$ and φ equal to 1 for $|\xi| \leq 1, \, 0$ for $|\xi| \geq 2$. Let $\theta(\xi) = \varphi(\xi) - \varphi(2\xi)$ which satisfies $\mathrm{supp}\, \theta \subset \{\frac{1}{2} \leq |\xi| \leq 2\}$. For $j \in \mathbb{Z}$ we set

$$\dot{\Delta}_j u = \theta(2^{-j} D_x) u$$

and

$$\Delta_0 u = \varphi(D_x)u, \ \Delta_j u = \dot{\Delta}_j u \ \text{if} \ j \geq 1$$

Remark 1.1 We have $\varphi(\xi) + \sum_{k \geq 1} \theta(2^{-k}\xi) = 1$ for all $\xi \in \mathbb{R}^n$, thus the non-homogeneous partition of $u \in \mathcal{S}'(\mathbb{R}^n)$ is given by the formula

$$u = \sum_{k>0} \Delta_k u$$

Set $f(\xi) = \sum_{k \in \mathbb{Z}} \theta(2^{-k}\xi)$; for each fixed $\xi \neq 0$, $f(\xi)$ contains at most two non-vanishing terms, we deduce $f(\xi) = 1$ for any $|\xi| \geq 2$. Note that $f(2^{-j}\xi) = f(\xi)$ for all $j \in \mathbb{Z}$, and choose j more and more large, to obtain $f(\xi) = 1$ for any $\xi \neq 0$. Then, for $u \in \mathcal{S}'(\mathbb{R}^n)$, with $0 \notin \text{supp } \mathcal{F}u$, the homogeneous partition of u is given by the formula

$$u = \sum_{k \in \mathbb{Z}} \dot{\Delta}_k u$$

Now, let us define the nonhomogeneous space $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Definition 1.2 Let $s \in \mathbb{R}, \lambda \geq 0, 1 \leq p < +\infty$ and $1 \leq q < +\infty$. The space $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ denotes the set of all tempered distributions $u \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||u||_{\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)} = \left\{ \sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j>J^+} 2^{jqs} ||\Delta_j u||_{L^p(B)}^q \right\}^{1/q} < +\infty$$
 (1.1)

where $J^+ = \max(J,0)$, |B| is the measure of B and the supremum is taken over all $J \in \mathbb{Z}$ and all balls B of \mathbb{R}^n with radius 2^{-J} . When p = q, the space $\mathcal{L}_{p,p}^{\lambda,s}(\mathbb{R}^n)$ will be denoted $\mathcal{L}^{p,\lambda,s}(\mathbb{R}^n)$.

Note that the space $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ equipped with the norm (1.1) is a Banach space.

To give the homogeneous counterpart of the space $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$, we recall the notations of [12, chap. 5]. Let

$$Z(\mathbb{R}^n) = \{ \varphi \in \mathcal{S}(\mathbb{R}^n); (D^{\alpha} \mathcal{F} \varphi)(0) = 0 \text{ for every multi-index } \alpha \}.$$

The space $Z(\mathbb{R}^n)$ is considered as a subspace of $\mathcal{S}(\mathbb{R}^n)$ with the induced topology, and $Z'(\mathbb{R}^n)$ its topological dual. We may identify $Z'(\mathbb{R}^n)$ with $\mathcal{S}'(\mathbb{R}^n)/\mathcal{P}(\mathbb{R}^n)$, where $\mathcal{P}(\mathbb{R}^n)$ is the set of all polynomials of \mathbb{R}^n with complex coefficients i.e. $Z'(\mathbb{R}^n)$ is interpreted as $\mathcal{S}'(\mathbb{R}^n)$ modulo polynomials.

Definition 1.3 Let $s \in \mathbb{R}, \lambda \geq 0, 1 \leq p < +\infty$ and $1 \leq q < +\infty$. The dotted space $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ denotes the set of all $u \in Z'(\mathbb{R}^n)$ such that

$$||u||_{\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)} = \left\{ \sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j>J} 2^{jqs} ||\dot{\Delta}_j u||_{L^p(B)}^q \right\}^{1/q} < +\infty \tag{1.2}$$

where the supremum is taken over all $J \in \mathbb{Z}$ and all balls B of \mathbb{R}^n with radius 2^{-J} .

If p=q, the space $\dot{\mathcal{L}}_{p,p}^{\lambda,s}(\mathbb{R}^n)$ will be denoted $\dot{\mathcal{L}}^{p,\lambda,s}(\mathbb{R}^n)$. If P is a polynomial of $\mathcal{P}(\mathbb{R}^n)$ and $u\in\mathcal{S}'(\mathbb{R}^n)$, it follows immediatly that

$$||u+P||_{\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)} = ||u||_{\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)}$$

This shows that the norm (1.2) is well defined. Further, the space $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ equipped with this norm is a Banach space.

Remark 1.4 The supremum given in expressions (1.1) and (1.2) may be taken over all $J \in \mathbb{Z}$ and all cubes B of \mathbb{R}^n of length side 2^{-J} .

Now we define Campanato spaces modulo polynomials $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$.

Definition 1.5 Let $\lambda \geq 0$ and $1 \leq p < +\infty$.

(i) The space $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$ denotes the set of (classes of) functions $u \in L^p_{loc}(\mathbb{R}^n)$ such that

$$||u||_{\mathcal{L}^{p,\lambda}(\mathbb{R}^n)} = \left\{ \sup_{B} \frac{1}{|B|^{\lambda/n}} \int_{B} |u - m_B u|^p dx \right\}^{1/p} < +\infty$$

where $m_B u = \frac{1}{|B|} \int_B u(y) dy$ is the mean value of u and the supremum is taken over all balls B of \mathbb{R}^n .

Note that $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$ is a Banach space modulo constants equal to $\{0\}$ if $\lambda > n+p$.

(ii) The space $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ denotes the set of functions $u \in Z'(\mathbb{R}^n)$ such that $\|u\|_{\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)} < +\infty$, where

$$\|u\|_{\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)} = \left\{ \begin{array}{ll} \inf_{P \in \mathcal{P}} \|u + P\|_{\mathcal{L}^{p,\lambda}(\mathbb{R}^n)} & \text{if } u \in L^1_{loc}(\mathbb{R}^n) \\ +\infty & \text{if } u \in Z'(\mathbb{R}^n) \text{ but} \\ & \text{not locally integrable} \end{array} \right.$$

the infimum is taken over the set $\mathcal P$ of all polynomials of $\mathbb R^n$ with complex coefficients.

Remark 1.6 (i) Modulo polynomials, the space $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ is the Campanato space $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$. For $0 \leq \lambda < n+p$, $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ can be defined as the set of all equivalence classes modulo \mathcal{P} of elements of $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$, equipped with the following norm $\|U\|_{\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)} = \|u\|_{\mathcal{L}^{p,\lambda}(\mathbb{R}^n)}$ where u is the unique (modulo a constant) element of $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$ belonging to the class U.

(ii) Using a result of John and Nirenberg [9] it is classical that if $\lambda = n$, then for every $1 \leq p < +\infty$, $\mathcal{L}^{p,n}(\mathbb{R}^n)$ coincides with the space $BMO(\mathbb{R}^n)$ of all functions $u \in L^1_{loc}(\mathbb{R}^n)$ such that there exists a constant C > 0 satisfying the following inequality

$$\frac{1}{|B|} \int_{B} |u - m_B u| dx \le C$$

for all balls B of \mathbb{R}^n . We show in [5] that in general $\dot{\mathcal{L}}^{2,\lambda,0}(\mathbb{R}^n) \equiv \dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)$ provided $0 \leq \lambda < n+2$; therefore the characterization of Littlewood-Paley type of Campanato spaces $\dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)$ is given. This result is not true in general for $p \neq 2$, nevertheless if $p \geq 2$ and $0 \leq \lambda < n+p$ we show that $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ is continuously embedded in $\dot{\mathcal{L}}^{p,\lambda,0}(\mathbb{R}^n)$.

Now, recall the definition of some function spaces.

Definition 1.7 Let $s \in \mathbb{R}$, $1 \le p < +\infty$ and $1 \le q < +\infty$.

(i) We denote $F_{p,q}^s(\mathbb{R}^n)$ the set of all tempered distributions $u \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||u||_{F_{p,q}^s(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} \left(\sum_{j>0} 2^{jqs} |\Delta_j u|^q\right)^{p/q} dx\right)^{1/p} < +\infty$$

(ii) The space $B^s_{\infty,q}(\mathbb{R}^n)$ denotes the set of all tempered distributions $u \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||u||_{B^s_{\infty,q}(\mathbb{R}^n)} = \left\{ \sum_{k>0} 2^{kqs} ||\Delta_k u||_{L^{\infty}(\mathbb{R}^n)}^q \right\}^{1/q} < +\infty$$

(iii) We denote $C^s(\mathbb{R}^n)$ the set of all tempered distributions $u \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||u||_{C^s(\mathbb{R}^n)} = \sup_{j \ge 0} 2^{js} ||\Delta_j u||_{L^{\infty}(\mathbb{R}^n)} < +\infty$$

(iv) If we replace in (i), (ii) and (iii) $S'(\mathbb{R}^n)$ by $Z'(\mathbb{R}^n)$, Δ_j by $\dot{\Delta}_j$ and $j \geq 0$ by $j \in \mathbb{Z}$, we obtain respectively the definition of the homogeneous spaces $\dot{F}^s_{p,q}(\mathbb{R}^n)$, $\dot{B}^s_{\infty,q}(\mathbb{R}^n)$ and $\dot{C}^s(\mathbb{R}^n)$.

Here is the main result of this paper.

Theorem 1.8 Let $s \in \mathbb{R}$, $1 \le p < +\infty$, $1 \le q < +\infty$ and $\lambda \ge 0$. We have the following continuous embeddings

$$\mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}\left(\mathbb{R}^{n}\right)\hookrightarrow C^{s}(\mathbb{R}^{n})$$

$$F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^{n})\hookrightarrow \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}\left(\mathbb{R}^{n}\right)\ provided\ q\geq p$$

$$F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^{n})\hookrightarrow \mathcal{L}^{p,\lambda,s-\frac{\lambda-n}{p}}(\mathbb{R}^{n})\ provided\ p\geq q.$$

$$B_{\infty,q}^{s-\frac{n}{p}+\frac{\lambda}{q}}(\mathbb{R}^{n})\hookrightarrow \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})\ provided\ \lambda\geq n\frac{q}{p}$$

and finally if $\lambda \geq n$ then

$$\sum_{j\geq 0} 2^{jq(s+\frac{\lambda-n}{q})} |\Delta_j u|^q \in L^{\infty}(\mathbb{R}^n) \text{ implies } u \in \mathcal{L}^{q,\lambda,s}(\mathbb{R}^n)$$

We have also the same continuous embeddings if we replace B, C, F and \mathcal{L} respectively by the dotted spaces $\dot{B}, \dot{C}, \dot{F}$ and $\dot{\mathcal{L}}$.

Remark 1.9 (i) In the case s = 0, S. Campanato [3, 4] showed that if $n < \lambda < n + p$ we have $\mathcal{L}^{p,\lambda} \cong C^{\frac{\lambda - n}{p}}$ and $\mathcal{L}^{p,n+p} = Lip$ (cf. [8] too).

- (ii) If $\lambda = n$ and p = q = 2, we obtain the theorem 3.4. of R. S. Strichartz [11], namely $B_{\infty,2}(\mathbb{R}^n) \hookrightarrow I^s(BMO) \hookrightarrow C(\mathbb{R}^n)$, where I^s is the Riesz potential operator and $I^s(BMO) = \dot{\mathcal{L}}^{2,n,s}(\mathbb{R}^n)$, cf. [5], BMO is defined modulo polynomials. We note that Theorem 1.8 generalise Theorem 2.1 of [6].
- (iii) Choosing $s=0,\ p=q=2$ and $\lambda=n$ in the third embedding, we find a result due to E. M. Stein and A. Zygmund [10]

$$\dot{H}^{\frac{n}{2}} = \dot{F}^{\frac{n}{2}}_{2,2} \hookrightarrow \dot{\mathcal{L}}^{2,n,0}(\mathbb{R}^n) = BMO$$
 modulo polynomials

2 Properties of the spaces

We start with some helpful lemmas needed in the further considerations.

Lemma 2.1 Let $1 \le p < +\infty$, and A a real < 0. If $(a_{j\nu})_{j,\nu}$ is a sequence of positive real numbers satisfying $(a_{j\nu})_j \in l^p$ for all $\nu \ge 1$, then there exists a constant C > 0 such that

$$\sum_{j\geq 1}\Bigl(\sum_{\nu\geq 1}2^{\nu A}a_{j\nu}\Bigr)^p\leq C\sup_{\nu\geq 1}\sum_{j\geq 1}a^p_{j\nu}.$$

Proof Let $\frac{1}{p} + \frac{1}{q} = 1$. Using Hölder's inequality we get

$$\begin{split} \sum_{j\geq 1} \Bigl(\sum_{\nu\geq 1} 2^{\nu A} a_{j\nu}\Bigr)^p & \leq & \sum_{j\geq 1} \Bigl(\sum_{\nu\geq 1} 2^{\frac{\nu}{2}A} (2^{\frac{\nu}{2}A} a_{j\nu})\Bigr)^p \\ & \leq & \sum_{j\geq 1} \Bigl(\Bigl(\sum_{\nu\geq 1} 2^{\frac{\nu}{2}Aq}\Bigr)^{p/q} \sum_{\nu\geq 1} 2^{\frac{\nu}{2}Ap} a_{j\nu}^p\Bigr) \\ & \leq & C \sum_{j\geq 1} \sum_{\nu\geq 1} 2^{\frac{\nu}{2}Ap} a_{j\nu}^p \\ & \leq & C \sum_{\nu> 1} 2^{\frac{\nu}{2}Ap} \sum_{j> 1} a_{j\nu}^p \leq C \sup_{\nu\geq 1} \sum_{j> 1} a_{j\nu}^p \end{split}$$

It is known that $\dot{\Delta}_l$ is uniformly bounded on $L^p(\mathbb{R}^n)$. On the other hand, on $L^p(B), B \subset \mathbb{R}^n$, we have the following result. We denote αB , $\alpha > 0$, the ball with the same center x_0 as B and of radius αr , r is the radius of B.

Lemma 2.2 For each integer M > 0, there exists a constant $C_M > 0$, such that for any $J \in \mathbb{Z}$, $x_0 \in \mathbb{R}^n$, for any ball B centered at x_0 and of radius 2^{-J} , for any $l \in \mathbb{Z}$ and $u \in L^p(\mathbb{R}^n)$, $1 \le p \le +\infty$,

$$||A_l u||_{L^p(B)} \le C_M \Big\{ ||u||_{L^p(2B)} + \sum_{\nu > -J+1} 2^{-(l+\nu)M} ||u||_{L^p(F_\nu)} \Big\}$$

holds with $F_{\nu} = \{x \in \mathbb{R}^n; 2^{\nu} \leq |x - x_0| \leq 2^{\nu+1}\}$ and A_l denotes any product of Δ_l , S_l and the dotted operators.

Proof We give the proof for $A_l = \dot{\Delta}_l$. Remark that

$$u = \chi_{2B}u + \sum_{\nu \ge -J+1} \chi_{F_{\nu}} u$$

where χ_{Ω} is the characteristic function of the set Ω . Thus

$$\begin{split} \|\dot{\Delta}_{l}u\|_{L^{p}(B)} & \leq \|\dot{\Delta}_{l}\chi_{2B}u\|_{L^{p}(B)} + \sum_{\nu \geq -J+1} \|\dot{\Delta}_{l}\chi_{F_{\nu}}u\|_{L^{p}(B)} \\ & \leq C\|u\|_{L^{p}(2B)} + \sum_{\nu \geq -J+1} \|\dot{\Delta}_{l}\chi_{F_{\nu}}u\|_{L^{p}(B)}, \end{split}$$

where C is a constant independent of l and B. Now

$$\dot{\Delta}_{l}\chi_{F_{\nu}}u(x) = 2^{nl} \int_{F_{\nu}} u(y)\mathcal{F}^{-1}\theta(2^{l}(x-y))dy$$

For $x \in B$ and $y \in F_{\nu}$, we have $|x - y| \sim |x_0 - y| \sim 2^{\nu}$. Since $\theta \in \mathcal{S}(\mathbb{R}^n)$, for every integer N, there exists $C_N > 0$ such that

$$|\mathcal{F}^{-1}\theta\left(2^{l}(x-y)\right)| \leq C_N 2^{-(l+\nu)N}$$

 \Diamond

We deduce

$$\begin{aligned} |\dot{\Delta}_{l}\chi_{F_{\nu}}u(x)| & \leq & C_{N}2^{nl}2^{-(l+\nu)N}\int_{F_{\nu}}|u(y)|dy \\ & \leq & C_{N}2^{nl}2^{-(l+\nu)N}\|u\|_{L^{p}(F_{\nu})}|F_{\nu}|^{1-\frac{1}{p}} \\ & \leq & C_{N}2^{-(l+\nu)(N-n)}2^{-\nu\frac{n}{p}}\|u\|_{L^{p}(F_{\nu})} \end{aligned}$$

It follows

$$\|\dot{\Delta}_{l}\chi_{F_{\nu}}u(x)\|_{L^{p}(B)} \leq C_{N}2^{-(l+\nu)(N-n)}2^{-\frac{n}{p}(\nu+J)}\|u\|_{L^{p}(F_{\nu})}$$

Therefore

$$\|\dot{\Delta}_l u\|_{L^p(B)} \le C \|u\|_{L^p(2B)} + C_N \sum_{\nu \ge -J+1} 2^{-(l+\nu)(N-n)} \|u\|_{L^p(F_\nu)}$$

Put M = N - n > 0, and the proof is complete.

Remark 2.3 Note that

$$|\mathcal{F}^{-1}\theta\left(2^{l}\left(x-y\right)\right)| \leq \|\mathcal{F}^{-1}\theta\|_{L^{\infty}(\mathbb{R}^{n})}$$

Thus we may improve the statement of the last lemma by replacing the term $2^{-(l+\nu)M}$ by $inf(1, 2^{-(l+\nu)M})$.

Here is a classical lemma [1].

Lemma 2.4 Let $\lambda > 0$, $1 \le p \le q \le +\infty$. For any $u \in L^p(\mathbb{R}^n)$ with supp $\mathcal{F}u \subset \{|\xi| \le \lambda\}$ and for any multi-index α , there exists $C_{\alpha} > 0$ such that

$$\|D_x^\alpha u\|_{L^q(\mathbb{R}^n)} \leq C_\alpha \lambda^{|\alpha|+n(\frac{1}{p}-\frac{1}{q})} \|u\|_{L^p(\mathbb{R}^n)}$$

Lemma 2.5 Let R be a real > 1; there exists C > 0 such that for any $\lambda > 0$ and $1 \le p \le +\infty$, for any $u \in L^p(\mathbb{R}^n)$ with supp $\mathcal{F}u \subset \{\lambda \le |\xi| \le R\lambda\}$ and for any $k \in \mathbb{N}$ we have

$$||u||_{L^p(\mathbb{R}^n)} \le C^k \lambda^{-k} \sup_{|\alpha|=k} ||D_x^{\alpha} u||_{L^p(\mathbb{R}^n)}$$

Proof The above lemma gives that $D_x^{\alpha}u \in L^p(\mathbb{R}^n)$ for all multi-index α . Let $\psi \in C_0^{\infty}(\mathbb{R}^n)$, $\psi(\xi) = 1$ on a neighbourhood of the annulus $\{1 \leq |\xi| \leq R\}$ and $\psi(\xi) = 0$ on a neighbourhood of 0. Setting $\psi_{\lambda}(\xi) = \psi(\frac{\xi}{\lambda})$ and $\psi_{\lambda,j} = \frac{\xi_j}{|\xi|^2}\psi_{\lambda}$ we obtain $\sum_{j=1}^n \xi_j \psi_{\lambda,j}(\xi) = 1$ on a neighbourhood of supp $\mathcal{F}u$. We deduce

$$u = \sum_{j=1}^{n} F_{\lambda,j} * D_{x_j} u \quad \text{where } F_{\lambda,j} = \mathcal{F}^{-1} \psi_{\lambda,j} \in \mathcal{S}(\mathbb{R}^n)$$
 (2.2)

 \Diamond

We have $F_{\lambda,j}(x) = \lambda^{n-1} F_{1,j}(\lambda x)$, $||F_{\lambda,j}||_{L^1} = \lambda^{-1} ||F_{1,j}||_{L^1}$ and using (2.2) we deduce lemma 2.5 for k = 1. For the general case we do an induction on k > 1. \diamondsuit

The following lemma yields the homogeneous decomposition modulo polynomials of a distribution $u \in \mathcal{S}'(\mathbb{R}^n)$ without taking in account the condition $0 \notin \text{supp } \mathcal{F} u$ that we have met in remark 1.1.

Lemma 2.6 For any $u \in \mathcal{S}'(\mathbb{R}^n)$ we have the decomposition

$$u = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j u$$
 in $Z'(\mathbb{R}^n)$.

Proof The series $\sum_{j=k}^{+\infty} \dot{\Delta}_j u$ converges in $\mathcal{S}'(\mathbb{R}^n)$ for all $k \in \mathbb{Z}$. It suffices to show that for any $\psi \in Z(\mathbb{R}^n)$,

$$\lim_{k \to -\infty} \left\langle \sum_{j=k}^{+\infty} \dot{\Delta}_j u, \check{\psi} \right\rangle_{\mathcal{S}' \times \mathcal{S}} = \left\langle u, \check{\psi} \right\rangle_{\mathcal{S}' \times \mathcal{S}}$$

where $\check{\psi}(x) = \psi(-x)$ for $x \in \mathbb{R}^n$. Now

$$\sum_{j=k}^{+\infty} \dot{\Delta}_j u - u = \sum_{j=k}^{0} \dot{\Delta}_j u - \Delta_0 u = \varphi(2^{-k} D_x) u$$

which is a smooth function. Thus

$$(2\pi)^n \left\langle \sum_{i=k}^{+\infty} \dot{\Delta}_j u - u, \check{\psi} \right\rangle_{\mathcal{S}' \times \mathcal{S}} = \left\langle \mathcal{F}u, \varphi(2^{-k}.) \mathcal{F}\psi \right\rangle_{\mathcal{S}' \times \mathcal{S}}$$

Since $\mathcal{F}u \in \mathcal{S}'(\mathbb{R}^n)$, there exists a constant C > 0 and an integer N such that

$$(2\pi)^{n} \left| \left\langle \sum_{j=k}^{+\infty} \dot{\Delta}_{j} u - u, \dot{\psi} \right\rangle_{\mathcal{S}' \times \mathcal{S}} \right|$$

$$\leq C \sup_{|\alpha|+|\beta| \leq N} \sup_{\xi \in \mathbb{R}^{n}} |\xi^{\alpha} D_{\xi}^{\beta} (\varphi(2^{-k}\xi) \mathcal{F} \psi(\xi))|$$

$$\leq C' \sup_{|\alpha|+|\beta| \leq N} \sup_{|\xi| \leq 2^{k+1}} \sum_{\gamma \leq \beta} 2^{k(|\alpha|-|\beta-\gamma|)} |(D_{\xi}^{\beta-\gamma} \varphi)(2^{-k}\xi)||D_{\xi}^{\gamma} \mathcal{F} \psi(\xi)|$$

By the assumption $\psi \in \mathcal{Z}(\mathbb{R}^n)$ and Taylor's formula, for all nonnegative large integer M

$$(2\pi)^n \left| \left\langle \sum_{j=k}^{+\infty} \dot{\Delta}_j u - u, \check{\psi} \right\rangle_{\mathcal{S}' \times \mathcal{S}} \right| \le C 2^{k(M-N)} \underset{k \to -\infty}{\longrightarrow} 0$$

The proof is complete.

Now we state the connexion between $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Lemma 2.7 Let $1 \le p, q < +\infty$, $\lambda \ge 0$ and $s \in \mathbb{R}$.

- (i) If the class of u modulo \mathcal{P} belongs to $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and if $\Delta_0 u \in L^p(\mathbb{R}^n)$, then $u \in \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$
- (ii) $L^p(\mathbb{R}^n) \cap \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n) \subset \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ with the same meaning as (i).
- (iii) $\mathcal{L}_{p,a}^{\lambda,s}(\mathbb{R}^n) \subset \dot{\mathcal{L}}_{p,a}^{\lambda,s}(\mathbb{R}^n)$ provided s > 0.

Remark 2.8 It follows that if s > 0 then

$$L^p(\mathbb{R}^n) \cap \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n) = L^p(\mathbb{R}^n) \cap \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n).$$

Proof of Lemma 2.7 (i) If $u \in \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$, then $u \in \mathcal{S}'(\mathbb{R}^n)$ and there exists a constant M > 0 such that for any ball B of \mathbb{R}^n with radius 2^{-J} with $J \in \mathbb{Z}$,

$$\frac{1}{|B|^{\lambda/n}} \sum_{l>J} 2^{lsq} \| \overset{\cdot}{\Delta}_l u \|_{L^p(B)}^q \le M < +\infty. \tag{2.3}$$

Let $J \in \mathbb{Z}$ and B be a ball of \mathbb{R}^n with radius 2^{-J} . If $J \geq 1$, then inequality (2.3) gives

$$\frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{l>J^{+}} 2^{lsq} \|\Delta_{l} u\|_{L^{p}(B)}^{q} \le M$$

If J < 0, we have

$$\frac{1}{|B|^{\lambda/n}} \sum_{l \ge J^{+}} 2^{lsq} \|\Delta_{l}u\|_{L^{p}(B)}^{q} = \frac{1}{|B|^{\lambda/n}} \|\Delta_{0}u\|_{L^{p}(B)}^{q} + \frac{1}{|B|^{\lambda/n}} \sum_{l \ge 1} 2^{lsq} \|\Delta_{l}u\|_{L^{p}(B)}^{q} \le C2^{J\lambda} \|\Delta_{0}u\|_{L^{p}(B)}^{q} + M \\
\le C \|\Delta_{0}u\|_{L^{p}(\mathbb{R}^{n})}^{q} + M$$

Since $\Delta_0 u \in L^p(\mathbb{R}^n)$, we obtain

$$\frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{l>J^{+}} 2^{lsq} \|\Delta_{l} u\|_{L^{p}(B)}^{q} \le C' M$$

Hence $u \in \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. (ii) follows from (i).

(iii) Let $u \in \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. There exists a constant M > 0 such that for any ball B of \mathbb{R}^n with radius 2^{-J} and $J \in \mathbb{Z}$,

$$\frac{1}{|B|^{\lambda/n}} \sum_{l>|I|^+} 2^{lsq} \|\Delta_l u\|_{L^p(B)}^q \le M < +\infty.$$

We have to show (2.3). Let $J \in \mathbb{Z}$ and B a ball of \mathbb{R}^n of radius 2^{-J} . If $J \geq 1$, then $J^+ = J$ and (2.3) is valid. If $J \leq 0$ (i.e. $J^+ = 0$). We have

$$\frac{1}{|B|^{\lambda/n}} \sum_{l \ge J} 2^{lsq} \|\dot{\Delta}_l u\|_{L^p(B)}^q = \frac{1}{|B|^{\lambda/n}} \sum_{l=J}^0 2^{lsq} \|\dot{\Delta}_l u\|_{L^p(B)}^q + \frac{1}{|B|^{\lambda/n}} \sum_{l \ge 1} 2^{lsq} \|\dot{\Delta}_l u\|_{L^p(B)}^q \le \frac{1}{|B|^{\lambda/n}} \sum_{l=J}^0 2^{lsq} \|\dot{\Delta}_l u\|_{L^p(B)}^q + M \tag{2.4}$$

Using the nonhomogeneous decomposition of u we have for $l \leq 0$

$$\dot{\Delta}_l u = \sum_{k>0} \Delta_k \dot{\Delta}_l u = \Delta_0 \dot{\Delta}_l u + \Delta_1 \dot{\Delta}_l u$$

and then

$$\|\dot{\Delta}_{l}u\|_{L^{p}(B)} \le \|\Delta_{0}\dot{\Delta}_{l}u\|_{L^{p}(B)} + \|\Delta_{1}\dot{\Delta}_{l}u\|_{L^{p}(B)}. \tag{2.5}$$

Lemma 2.2 gives for M large.

$$\|\dot{\Delta}_l \Delta_0 u\|_{L^p(B)}^q \le C_M \{\|\Delta_0 u\|_{L^p(2B)}^q + 2^{-(l-J)Mq} [\sum_{\nu > 1} 2^{-\nu M} \|\Delta_0 u\|_{L^p(B_{\nu-J})}]^q \}$$

where $B_{\nu-J}=2^{\nu+1}B$. Thus

$$\frac{1}{|B|^{\lambda/n}} \sum_{l=J}^{0} 2^{lsq} \|\dot{\Delta}_{l} \Delta_{0} u\|_{L^{p}(B)}^{q} \\
\leq \frac{C}{|B|^{\lambda/n}} \|\Delta_{0} u\|_{L^{p}(2B)}^{q} \sum_{l=J}^{0} 2^{lsq} + \frac{1}{|B|^{\lambda/n}} \sum_{l=J}^{0} 2^{lsq} \left(\sum_{\nu>1} 2^{-\nu M} \|\Delta_{0} u\|_{L^{p}(B_{\nu-J})} \right)^{q}$$

Since s > 0, $\sum_{l=J}^{0} 2^{lsq} \le C$

$$\frac{1}{|B|^{\lambda/n}} \sum_{l=J}^{0} 2^{lsq} \|\dot{\Delta}_{l} \Delta_{0} u\|_{L^{p}(B)}^{q} \leq \frac{C}{|B|^{\lambda/n}} \|\Delta_{0} u\|_{L^{p}(2B)}^{q}
+ C \left(\sum_{\nu \geq 1} 2^{\nu(-M + \frac{\lambda}{q})} \frac{1}{|B_{\nu-J}|^{\frac{\lambda}{nq}}} \|\Delta_{0} u\|_{L^{p}(B_{\nu-J})}\right)^{q}
\leq CM + C \sup_{\nu} \frac{1}{|B_{\nu-J}|^{\lambda/n}} \|\Delta_{0} u\|_{L^{p}(B_{\nu-J})}^{q} \leq CM$$
(2.6)

In the same way we have

$$\frac{1}{|B|^{\lambda/n}} \sum_{l=J}^{0} 2^{lsq} \|\dot{\Delta}_{l} \Delta_{1} u\|_{L^{p}(B)}^{q} \le CM \tag{2.7}$$

From (2.4), (2.5), (2.6) and (2.7) it follows

$$\frac{1}{|B|^{\lambda/n}} \sum_{l \ge J} 2^{lsq} \|\dot{\Delta}_l u\|_{L^p(B)}^q \le CM$$

 \Diamond

and then $u \in \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Now we give the differential dimension of $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Proposition 2.9 For any $u \in \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and any t > 0, we have

$$||u(t^{-1}\cdot)||_{\dot{\mathcal{L}}^{\lambda,s}_{p,q}(\mathbb{R}^n)} \approx t^d ||u||_{\dot{\mathcal{L}}^{\lambda,s}_{p,q}(\mathbb{R}^n)}$$

where $d = \frac{n}{p} - \frac{\lambda}{q} - s$.

Proof Let $t = 2^N$, $N \in \mathbb{Z}$ and set $v(x) = u(\frac{x}{2^N})$. From

$$\dot{\Delta}_l v(x) = (\dot{\Delta}_{l+N} u)(\frac{x}{2^N})$$

we get

$$\|\dot{\Delta}_{l}v\|_{L^{p}(B)} = 2^{N\frac{n}{p}} \|\dot{\Delta}_{l+N}u\|_{L^{p}(2^{-N}B)}$$

where B is a ball of \mathbb{R}^n with radius 2^{-J} , $J \in \mathbb{Z}$. Then we have

$$\begin{split} \|v\|_{\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^{n})}^{q} &\approx \sup_{B} 2^{J\lambda} \sum_{l \geq J} 2^{lsq} 2^{N\frac{n}{p}q} \|\dot{\Delta}_{l+N} u\|_{L^{p}(2^{-N}B)}^{q} \\ &\approx 2^{N\frac{n}{p}q} 2^{-N\lambda} 2^{-Nsq} \sup_{B} 2^{(J+N)\lambda} \sum_{l+N \geq J+N} 2^{(l+N)sq} \|\dot{\Delta}_{l+N} u\|_{L^{p}(2^{-N}B)}^{q} \\ &\approx 2^{(\frac{n}{p} - \frac{\lambda}{q} - s)qN} \sup_{B} 2^{J\lambda} \sum_{l \geq J} 2^{lsq} \|\dot{\Delta}_{l} u\|_{L^{p}(B)}^{q} \end{split}$$

Lemma 2.10 Let $1 \le p \le p' < +\infty$, $1 \le q' \le q < +\infty$ and $s \in \mathbb{R}$. Further, let λ and $\mu \ge 0$ such that $\frac{n}{p'} - \frac{\mu}{q'} \ge \frac{n}{p} - \frac{\lambda}{q}$. Then we have the continuous embedding

$$\mathcal{L}_{n',a'}^{\mu,s+\frac{n}{p'}-\frac{\mu}{q'}}(\mathbb{R}^n) \hookrightarrow \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}(\mathbb{R}^n).$$

We also have the same result for the dotted spaces $\dot{\mathcal{L}}$.

In particular, if p=p' and q=q' then $\mathcal{L}_{p,q}^{\mu,s-\frac{\mu}{q}}(\mathbb{R}^n)\hookrightarrow \mathcal{L}_{p,q}^{\lambda,s-\frac{\lambda}{q}}(\mathbb{R}^n)$ holds for all $\mu\leq\lambda$. Furthermore if p=p'=q=q' we get $\mathcal{L}^{p,\lambda,s+\frac{\alpha}{p}}(\mathbb{R}^n)\hookrightarrow \mathcal{L}^{p,\lambda+\alpha,s}(\mathbb{R}^n)$ for all $\alpha\geq0$ and $\lambda\geq0$.

Proof Let $u \in \mathcal{L}_{p',q'}^{\mu,s+\frac{n}{p'}-\frac{\mu}{q'}}(\mathbb{R}^n)$. Let B be a ball of \mathbb{R}^n with radius 2^{-J} , $J \in \mathbb{Z}$. Since $p \leq p'$ and $\frac{q}{q'} \geq 1$ we obtain

$$\frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{l \geq J^{+}} 2^{l(s+\frac{n}{p}-\frac{\lambda}{q})q} \|\Delta_{l}u\|_{L^{p}(B)}^{q} \\
\leq \frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{l \geq J^{+}} 2^{l(s+\frac{n}{p}-\frac{\lambda}{q})q} \left(\|\Delta_{l}u\|_{L^{p'}(B)} |B|^{\frac{1}{p}-\frac{1}{p'}} \right)^{q}$$

$$\leq \frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{l \geq J^{+}} \left(2^{l(s + \frac{n}{p} - \frac{\lambda}{q})q'} \|\Delta_{l}u\|_{L^{p'}(B)}^{q'} \right)^{q/q'} |B|^{q\left(\frac{1}{p} - \frac{1}{p'}\right)} \\
\leq \frac{1}{|B|^{\frac{\lambda}{n}}} \left(\sum_{l > J^{+}} 2^{l(s + \frac{n}{p} - \frac{\lambda}{q})q'} \|\Delta_{l}u\|_{L^{p'}(B)}^{q'} \right)^{q/q'} |B|^{q\left(\frac{1}{p} - \frac{1}{p'}\right)} \\$$

Now $|B| \sim 2^{-nJ}, \ l \geq J^+ \geq J$ and the assumption $\frac{n}{p'} - \frac{\mu}{q'} \geq \frac{n}{p} - \frac{\lambda}{q}$ yield

$$\left\{ \frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{l \geq J^{+}} 2^{l(s+\frac{n}{p}-\frac{\lambda}{q})q} \|\Delta_{l}u\|_{L^{p}(B)}^{q} \right\}^{1/q} \\
\leq \left(\frac{1}{|B|^{\frac{\mu}{n}}} \sum_{l \geq J^{+}} 2^{l(s+\frac{n}{p}-\frac{\lambda}{q})q'} \|\Delta_{l}u\|_{L^{p'}(B)}^{q'} \right)^{1/q'} |B|^{\frac{1}{p}-\frac{1}{p'}} |B|^{\frac{\mu}{nq'}-\frac{\lambda}{nq}} \\
\leq C \left(\frac{1}{|B|^{\frac{\mu}{n}}} \sum_{l \geq J^{+}} 2^{J \left((\frac{n}{p'} - \frac{\mu}{q'}) - (\frac{n}{p} - \frac{\lambda}{q}) \right) q'} 2^{l(s+\frac{n}{p}-\frac{\lambda}{q})q'} \|\Delta_{l}u\|_{L^{p'}(B)}^{q'} \right)^{1/q'} \\
\leq C \left(\frac{1}{|B|^{\frac{\mu}{n}}} \sum_{l \geq J^{+}} 2^{l(s+\frac{n}{p'} - \frac{\mu}{q'})q'} \|\Delta_{l}u\|_{L^{p'}(B)}^{q'} \right)^{1/q'}$$

The proof of lemma 2.10 is complete.

Lemma 2.11 The derivation D_x^{α} is a bounded operator from $\mathcal{L}_{p,q}^{\lambda,s+|\alpha|}(\mathbb{R}^n)$ to $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and from $\dot{\mathcal{L}}_{p,q}^{\lambda,s+|\alpha|}(\mathbb{R}^n)$ to $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Proof Let $|\alpha| = 1$. We have

$$\begin{aligned} \|D_{x}u\|_{\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})}^{q} &= \|D_{x} \sum_{l \geq 0} \Delta_{l}u\|_{\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})}^{q} \\ &= \sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j \geq J^{+}} 2^{jsq} \|\sum_{l=j-1}^{j+1} D_{x} \Delta_{j} \Delta_{l}u\|_{L^{p}(B)}^{q} \\ &\leq C \sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j \geq J^{+}} 2^{jsq} \sum_{l \sim j} \|D_{x} \Delta_{j} \Delta_{l}u\|_{L^{p}(B)}^{q} \end{aligned}$$

(in the case of the dotted spaces we use lemma 2.6). Let B a ball of \mathbb{R}^n of radius $2^{-J}, J \in \mathbf{Z}$. Set $f_l = \Delta_l u$. Note that

$$f_l = \chi_{2B} f_l + \sum_{\nu \ge -J+1} \chi_{F_\nu} f_l$$

and use lemma 2.4 to get

$$||D_{x}\Delta_{j}f_{l}||_{L^{p}(B)} \leq ||D_{x}\Delta_{j}\chi_{2B}f_{l}||_{L^{p}(B)} + \sum_{\nu \geq -J+1} ||D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}||_{L^{p}(B)}$$

$$\leq C2^{j}||\Delta_{j}\chi_{2B}f_{l}||_{L^{p}(\mathbb{R}^{n})} + \sum_{\nu \geq -J+1} ||D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}||_{L^{p}(B)} \qquad (2.8)$$

$$\leq C2^{j}||f_{l}||_{L^{p}(2B)} + \sum_{\nu \geq -J+1} ||D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}||_{L^{p}(B)}$$

On the other hand,

$$D_{x}\Delta_{j}\chi_{F_{\nu}}f_{l}(x) = 2^{(n+1)j} \int_{F_{\nu}} f_{l}(y) \,\psi\left(2^{j}(x-y)\right) dy$$

where $\psi = D_x \mathcal{F}^{-1}\theta$. Therefore, if $x \in B$ and $y \in F_{\nu}, \nu \geq -J+1$, then $|x-y| \sim |x_0-y| \sim 2^{\nu}$. Since $\psi \in \mathcal{S}(\mathbb{R}^n)$, for each integer N there exists a constant C_N such that

$$|D_x \Delta_j \chi_{F_{\nu}} f_l(x)| \le C_N 2^{j(n+1-N)} 2^{-\nu N} \int_{F_{\nu}} |f_l(y)| \, dy$$

$$\le C_N 2^{j(n+1-N)} 2^{-\nu N} ||f_l||_{L^p(F_{\nu})} |F_{\nu}|^{1-\frac{1}{p}}$$

We deduce

$$\|D_x \Delta_j \chi_{F_{\nu}} f_l\|_{L^p(B)} \le C_N 2^{j(n+1-N)} |B|^{1/p} 2^{\nu \left(-N + \frac{\lambda}{q} - \frac{n}{p} + n\right)} \frac{1}{|F_{\nu}|^{\frac{\lambda}{nq}}} \|f_l\|_{L^p(F_{\nu})}$$

Thus

$$\sum_{\nu \geq -J+1} \|D_x \Delta_j \chi_{F_{\nu}} f_l\|_{L^p(B)} \\
\leq C_N 2^{j(n+1-N)} 2^{-J\frac{n}{p}} \sum_{\nu \geq -J+1} 2^{\nu \left(-N + \frac{\lambda}{q} - \frac{n}{p} + n\right)} \frac{\|f_l\|_{L^p(F_{\nu})}}{|F_{\nu}|^{\frac{\lambda}{nq}}} \\
\leq C 2^{j} 2^{(j-J)(n-N)} 2^{-J\frac{\lambda}{q}} \sum_{\nu \geq 1} 2^{\nu \left(-N + \frac{\lambda}{q} - \frac{n}{p} + n\right)} \frac{\|f_l\|_{L^p(F_{\nu-J})}}{|F_{\nu-J}|^{\frac{\lambda}{nq}}} \tag{2.9}$$

Choose N large and use inequalities (2.8), (2.9) and lemma 2.1 to deduce

$$\frac{1}{|B|^{\lambda/n}} \sum_{j \geq J^{+}} 2^{jsq} \sum_{l \sim j} \|D_{x} \Delta_{j} \Delta_{l} u\|_{L^{p}(B)}^{q} \\
\leq C \frac{1}{|B|^{\lambda/n}} \sum_{j \geq J^{+}} 2^{j(s+1)q} \|f_{j}\|_{L^{p}(2B)}^{q} \\
+ C_{N} \sum_{j \geq J^{+}} \left\{ \sum_{\nu \geq 1} 2^{\nu(-N + \frac{\lambda}{q} - \frac{n}{p} + n)} \frac{2^{j(s+1)}}{|F_{\nu - J}|^{\frac{\lambda}{nq}}} \|f_{j}\|_{L^{p}(F_{\nu - J})} \right\}^{q} \\
\leq C \frac{1}{|3B|^{\lambda/n}} \sum_{j \geq (J-2)^{+}} 2^{j(s+1)q} \|\Delta_{j} u\|_{L^{p}(2B)}^{q} \\
+ C'_{N} \sup_{\nu \geq 1} \frac{1}{|F_{\nu - J}|^{\lambda/n}} \sum_{j \geq (J-\nu - 1)^{+}} 2^{j(s+1)q} \|\Delta_{j} u\|_{L^{p}(F_{\nu - J})}^{q}$$

Finally,

$$||D_x u||_{\mathcal{L}^{\lambda,s}_{p,q}(\mathbb{R}^n)}^q \le C||u||_{\mathcal{L}^{\lambda,s+1}_{p,q}(\mathbb{R}^n)}^q$$

which completes the proof of lemma 2.11.

3 Proof of theorem 1.8

For the first embedding, let $u \in \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}(\mathbb{R}^n)$. Let $j \geq 1$ and $x \in \mathbb{R}^n$ be fixed. Let $\phi \in \mathcal{S}(\mathbb{R}^n)$ with $\mathcal{F}\phi = 1$ on $\frac{1}{2} \leq |\xi| \leq 2$. From $\mathcal{F}\Delta_j u(\xi) = \mathcal{F}(\Delta_j u)(\xi)\mathcal{F}\phi(2^{-j}\xi)$ we deduce

$$\Delta_j u(x) = 2^{nj} \int_{\mathbb{R}^n} \Delta_j u(y) \phi(2^j (x - y)) dy$$
(3.1)

(in the case j=0, we assume $\mathcal{F}\phi=1$ on $|\xi|\leq 2$). We decompose \mathbb{R}^n into disjunctive cubes with the side-length 2^{-j} ,

$$Q_{\nu} = \left\{ y \in \mathbb{R}^n : \|y - x - 2^{-j}\nu\|_{\infty} \le 2^{-j-1} \right\},\,$$

 $\nu \in \mathbb{Z}^n$, and we set $a_{\nu} = \sup_{\|y-\nu\|_{\infty} < \frac{1}{2}} |\phi(y)|$ which is a rapidly decreasing sequence. Then, we have

$$\begin{split} |\Delta_{j}u(x)| &\leq 2^{nj} \sum_{\nu} \int_{Q_{\nu}} |\Delta_{j}u(y)\phi(2^{j}(x-y))| dy \\ &\leq 2^{nj} \sum_{\nu} a_{\nu} \int_{Q_{\nu}} |\Delta_{j}u(y)| dy \\ &\leq 2^{nj} \sum_{\nu} a_{\nu} \|\Delta_{j}u\|_{L^{p}(Q_{\nu})} |Q_{\nu}|^{1-\frac{1}{p}} \\ &\leq C2^{nj} \sum_{\nu} a_{\nu} \Big(2^{-j(s+\frac{n}{p}-\frac{\lambda}{q})} \|u\|_{\mathcal{L}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}_{p,q}(\mathbb{R}^{n})} |Q_{\nu}|^{\frac{\lambda}{nq}} \Big) |Q_{\nu}|^{1-\frac{1}{p}} \\ &\leq C2^{nj} \sum_{\nu} a_{\nu} 2^{-j(s+\frac{n}{p}-\frac{\lambda}{q})} \|u\|_{\mathcal{L}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}_{p,q}(\mathbb{R}^{n})} 2^{-jn(\frac{\lambda}{nq}+1-\frac{1}{p})} \\ &\leq C2^{-js} \|u\|_{\mathcal{L}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}_{p,q}(\mathbb{R}^{n})}. \end{split}$$

The first embedding is proved. Now let $u \in F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^n)$ and B a ball of \mathbb{R}^n centered at x_0 with radius 2^{-J} , $J \in \mathbf{Z}$. The assumption $\frac{q}{p} \geq 1$ gives

$$\begin{split} &\frac{1}{|B|^{\frac{\lambda}{nq}}} \Big\{ \sum_{j \geq J^{+}} 2^{jq(s+\frac{n}{p}-\frac{\lambda}{q})} \left(\int_{B} |\Delta_{j}u|^{p} dx \right)^{q/p} \Big\}^{1/q} \\ &= \frac{1}{|B|^{\frac{\lambda}{nq}}} \Big\| \Big(\int_{B} 2^{jp(s+\frac{n}{p}-\frac{\lambda}{q})} |\Delta_{j}u|^{p} dx \Big)_{j \geq J^{+}} \Big\|_{l^{\frac{q}{p}}}^{1/p} \\ &\leq \frac{1}{|B|^{\frac{\lambda}{nq}}} C \Big\{ \int_{\mathbb{R}^{n}} \Big\| \left(2^{jp(s+\frac{n}{p}-\frac{\lambda}{q})} |\Delta_{j}u|^{p} \right)_{j \geq J^{+}} \Big\|_{l^{\frac{q}{p}}} dx \Big\}^{1/p} \\ &\leq C 2^{J\frac{\lambda}{q}} \Big\{ \int_{\mathbb{R}^{n}} \Big(\sum_{j \geq J^{+}} 2^{jq(s+\frac{n}{p}-\frac{\lambda}{q})} |\Delta_{j}u|^{q} \Big)^{p/q} \Big\}^{1/p} \\ &\leq C \Big\{ \int_{\mathbb{R}^{n}} \Big(\sum_{j \geq J^{+}} 2^{J\lambda} 2^{jq(s+\frac{n}{p}-\frac{\lambda}{q})} |\Delta_{j}u|^{q} \Big)^{p/q} \Big\}^{1/p} \leq C \|u\|_{F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^{n})}. \end{split}$$

Therefore the second embedding yields true.

For the third embedding, use $\frac{p}{q} \geq 1$ to obtain

$$\begin{split} \frac{1}{|B|^{\frac{\lambda}{n}}} \int_{B} \sum_{j \geq J^{+}} 2^{jp(s-\frac{\lambda-n}{p})} |\Delta_{j}u|^{p} dx &= \frac{1}{|B|^{\frac{\lambda}{n}}} \int_{B} \sum_{j \geq J^{+}} \left(2^{jq(s-\frac{\lambda-n}{p})} |\Delta_{j}u|^{q}\right)^{p/q} dx \\ &\leq C 2^{J\lambda} \int_{B} \left(\sum_{j \geq J^{+}} 2^{jq(s-\frac{\lambda-n}{p})} |\Delta_{j}u|^{q}\right)^{p/q} dx \\ &\leq \int_{B} \left(\sum_{j \geq J^{+}} 2^{J\lambda \frac{q}{p}} 2^{jq(s-\frac{\lambda-n}{p})} |\Delta_{j}u|^{q}\right)^{p/q} dx \\ &\leq C \int_{\mathbb{R}^{n}} \left(\sum_{j \geq J^{+}} 2^{jq(s+\frac{n}{p})} |\Delta_{j}u|^{q}\right)^{p/q} dx \\ &\leq C \|u\|_{F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^{n})}^{p} \end{split}$$

Let B be a ball of \mathbb{R}^n centered at x_0 with radius 2^{-J} for $J \in \mathbb{Z}$. Let $u \in B_{\infty,q}^{s-\frac{n}{p}+\frac{\lambda}{q}}(\mathbb{R}^n)$. Then

$$\frac{1}{|B|^{\frac{\lambda}{n}}} \sum_{j \geq J^{+}} 2^{jqs} \|\Delta_{j}u\|_{L^{p}(B)}^{q} \leq C2^{J\lambda} \sum_{j \geq J^{+}} 2^{jqs} |B|^{\frac{q}{p}} \|\Delta_{j}u\|_{L^{\infty}(B)}^{q} \\
\leq C \sum_{j \geq J^{+}} 2^{jqs} 2^{J(\lambda - n\frac{q}{p})} \|\Delta_{j}u\|_{L^{\infty}(B)}^{q} \\
\leq C \sum_{j \geq 0} 2^{jq(s - \frac{n}{p} + \frac{\lambda}{q})} \|\Delta_{j}u\|_{L^{\infty}(B)}^{q}$$

Therefore the fourth injection is proved. For the last assertion,

$$\begin{split} \frac{1}{|B|^{\lambda/n}} \sum_{j \geq J^{+}} 2^{jqs} \|\Delta_{j} u\|_{L^{q}(B)}^{q} & \leq & C \frac{1}{|B|^{\lambda/n}} \int_{B} \sum_{j \geq J^{+}} 2^{jqs} |\Delta_{j} u|^{q} dx \\ & \leq & C \sup_{x \in \mathbb{R}^{n}} \sum_{j \geq J^{+}} 2^{jqs} |\Delta_{j} u(x)|^{q} |B|^{-\frac{\lambda}{n}+1} \\ & \leq & C \sup_{x \in \mathbb{R}^{n}} \sum_{j \geq 0} 2^{jq(s+\frac{\lambda-n}{q})} |\Delta_{j} u|^{q} \end{split}$$

and the proof of theorem 1.8 is complete.

Now we can state a partial result on the topological dual of $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$, the closure of Schwartz space $\mathcal{S}(\mathbb{R}^n)$ in $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Corollary 3.1 Let $s \in \mathbb{R}$, $\lambda \ge 0$, $1 \le p < +\infty$, $1 \le q < +\infty$, $1 < p' \le +\infty$ and $1 < q' \le +\infty$ with $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$. We have

$$F_{1,1}^{-s-\frac{\lambda}{q}+\frac{n}{p}}(\mathbb{R}^n)\hookrightarrow (\overset{\circ}{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n))'\hookrightarrow F_{p',q'}^{-s-\frac{\lambda}{q}}(\mathbb{R}^n)\ provided\ p\leq q. \eqno(3.2)$$

$$F_{1,1}^{-s-\frac{\lambda}{p}+\frac{n}{p}}(\mathbb{R}^n) \hookrightarrow (\mathring{\mathcal{L}}^{p,\lambda,s}(\mathbb{R}^n))' \hookrightarrow F_{p',q'}^{-s-\frac{\lambda}{p}}(\mathbb{R}^n) \ provided \ q \le p$$
 (3.3)

in particular

$$F_{1,1}^{\frac{n}{2}-\frac{\lambda}{2}}(\mathbb{R}^n) \hookrightarrow \left(\overset{\circ}{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)\right)' \hookrightarrow F_{2,q'}^{-\frac{\lambda}{2}}(\mathbb{R}^n) \ for \ all \ q' \geq 2.$$

We have also the same injections for the dotted spaces.

Proof We prove only (3.3). Applying the first and the third embedding of theorem 1.8 with $s+\frac{\lambda-n}{p}$ instead of s we obtain

$$F_{p,q}^{s+\frac{\lambda}{p}}(\mathbb{R}^n) \hookrightarrow \mathcal{L}^{p,\lambda,s}(\mathbb{R}^n) \hookrightarrow C^{s+\frac{\lambda-n}{p}}(\mathbb{R}^n) \equiv B_{\infty,\infty}^{s+\frac{\lambda-n}{p}}(\mathbb{R}^n)$$

hence

$$F_{p,q}^{s+\frac{\lambda}{p}}(\mathbb{R}^n) \hookrightarrow \overset{\circ}{\mathcal{L}}^{p,\lambda,s}(\mathbb{R}^n) \hookrightarrow \overset{\circ}{B}_{\infty,\infty}^{s+\frac{\lambda-n}{p}}(\mathbb{R}^n)$$

where $\overset{\circ}{B}_{\infty,\infty}^{s+\frac{\lambda-n}{p}}(\mathbb{R}^n)$ denotes the closure of $\mathcal{S}(\mathbb{R}^n)$ in $B_{\infty,\infty}^{s+\frac{\lambda-n}{p}}(\mathbb{R}^n)$. Now

$$\left(\overset{\circ}{B}_{\infty,\infty}^{s+\frac{\lambda-n}{p}}(\mathbb{R}^n)\right)' = F_{1,1}^{-s-\frac{\lambda}{p}+\frac{n}{p}}(\mathbb{R}^n)$$

yields the result.

Acknowledgement The author wants to express his gratitude to Professors Pascal Auscher, Gerard Bourdaud and Jacques Camus who read this manuscript and made many valuable corrections and comments.

References

- [1] G. Bourdaud, Analyse fonctionnelle dans l'espace euclidien, Publ. Math. Univ. Paris VII, 23 (1987), réédité 1995.
- [2] J. Bergh and J. Löfström, *Interpolation spaces*, Springer Verlag (1976).
- [3] S. Campanato, Proprietà di Holderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
- [4] S. Campanato, *Proprietà di una famiglia di spazi funzionali*, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160.
- [5] A. El Baraka, *Dyadic characterization of Campanato spaces*, Preprint of M. Ben Abdellah University, Fes (2001).
- [6] A. El Baraka, Optimal BMO and $\mathcal{L}^{p,\lambda}$ estimates near the boundary for solutions of a class of degenerate elliptic problems, Proc. Conf. Fes (Morocco 1999). Lecture Notes Pure Appl. Math. 229. New York, Marcel Dekker (2002), 183-193.

- [7] C. Feffermann and E. M. Stein, H^p spaces of several variables, Acta math.129 (1972), 167-193.
- [8] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems Birkhauser (1993).
- [9] F. John and L. Nirenberg, On functions of bounded mean oscillations, Comm. Pure Appl. Math. 14 (1961), 415-426.
- [10] E. S. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder and L^p spaces Ann. of Math. 85 (1967), 337-349.
- [11] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558.
- [12] H. Triebel, Theory of function spaces, Birkhäuser (1983).
- [13] H. Triebel, Theory of function spaces, Birkhäuser (1992).
- [14] H. Wallin, New and old function spaces, Proc. Conf. Lund 1986, Lect. Notes Math. 1302, Berlin, Springer (1988), 97-114.

AZZEDDINE EL BARAKA Université Mohamed Ben Abdellah, FST Fes-Saiss Département de Mathématiques BP2202, Route Immouzer Fes 30000 Morocco

e-mail: aelbaraka@yahoo.com