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Boundedness and almost periodicity for some

state-dependent delay differential equations ∗

El Hadi Ait Dads & Khalil Ezzinbi

Abstract

This work is devoted to the study the existence and uniqueness of
bounded solutions for state-dependent delay differential equations. We
also study the existence of periodic and almost periodic solutions.

1 Introduction

Differential delay equations, or functional differential equations, have been used
in modelling scientific phenomena for many years. Often, it has been assumed
that the delay is either a fixed constant or is given as an integral in which case
is called distributed delay. However, complicated situations in which the delay
depends on the unknown functions have been proposed in modelling in recent
years. These equations are frequently called equations with state-dependent
delay. Many works related to this topics have been published; see the references
in this article.

In this work we study the existence of bounded, periodic, and almost periodic
solutions of the state-dependent delay differential of the form

d

dt
x(t) = F (t, x(t), x(t− ρ(xt))), for t ≥ 0

x0 = ϕ
(1.1)

where ϕ is a given function in the space of continuous functions from [−τ, 0] to
R
n. This space is denoted by C = C([−τ, 0];Rn) and endowed with the uniform

norm topology. For every t ≥ 0, the history function xt ∈ C is defined by

xt(θ) = x(t+ θ), for θ ∈ [−τ, 0].

The function F is a continuous from R × Rn × Rn to Rn and ρ is a positive
bounded continuous function on C, τ is the maximal delay defined by

τ = sup
ϕ∈C

ρ(ϕ).
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According to the book by Hale [9], if F is continuous, then (1.1) has at least
one maximal solution x(., ϕ) which is defined on some interval [0, tϕ) and if tϕ
is finite then

lim
t→tϕ
|x(t, ϕ)| =∞.

The uniqueness may not hold here, because the right-hand side of (1.1) is not
locally Lipschitz. Even if F is lipschitzian with respect to the second or the
third arguments, uniqueness may not hold. Consider the equation

d

dt
x(t) = x(t− σ(x(t))), (1.2)

where σ : R→ [0, 1] is smooth, σ′(0) 6= 0, and σ(0) = 1.
Note that the right-hand side of (1.2) can be written as G(ϕ) = ϕ(−σ(ϕ(0))),

for ϕ ∈ C ([−1, 0],R), and G is not locally Lipschitz in a neighborhood of zero.
In fact assume that there exist positive constants k and ρ such that

|G(ϕ1)−G(ϕ2)| ≤ k|ϕ1 − ϕ2|, for|ϕ1|, |ϕ2| < ρ.

Let ϕ(θ) = ε(−1 +
√

1 + θ), for θ ∈ [−1, 0], where ε is a positive constant such
that |ϕ| < ρ. Let κ ∈ [−1, 0] such that |ϕ|+ |κ| < ρ, then

|G(ϕ+ κ)−G(ϕ)| ≤ k|κ|,

which implies

|ε
√

1− σ(κ) + κ| ≤ k|κ| and | ε(σ(κ)− 1)
κ

√
1− σ(κ)

| ≤ (1 + k) .

Letting κ approach zero, we obtain a contradiction. Therefore, the right-hand
side of equation (1.2) is not locally Lipschitz near zero. The uniqueness has been
proved for lipschitzian initial data in [18]. However, the standard argument for
uniqueness can not be applied in this example. The following counter example
explains more the situation

d

dt
x(t) = x(t− x(t)), t ∈ [0, 1]

x(θ) =
√
|θ|+ 1, θ ∈ [−1, 0] .

(1.3)

Then equation (1.3) has two solutions namely

x1(t) = t+
t2

4
and x2(t) = t, t ∈ [0, 1] .

In fact one has t− x1(t) = − t
2

4 and t− x2(t) = 0, it follows that

x′1(t) = 1 +
t

2
= ϕ(t− x1(t)) and x′2(t) = 1 = ϕ(t− x2(t)), t ∈ [0, 1] .
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Differential equations with state-dependent delay have been the subject for sev-
eral works. In [1] the author proved the existence and periodicity for some
state-dependent delay differential equation. In [3] it has been proved also the
existence of oscillatory and periodic solutions for some state dependent delay dif-
ferential equations arising from population dynamics. In [4], it has been proved
the stability of some state-dependent model arising form epidemic problems.

The organization of this work is as follows: in section 2 we recall some
preliminaries results about ordinary differential equations that will be used in
the work. In section 3, we study the problem of the existence of bounded and
almost periodic solutions of equation (1.1). The remaining section is devoted to
some example.

2 Preliminaries

We define

[x, y] = lim
h→0+

|x+ hy| − |x|
h

, for x, y ∈ Rn.

Lemma 2.1 [13] Let x, y and z be in Rn. Then the following properties hold

(i) [x, y] = infh>0
|x+hy|−|x|

h

(ii) |[x, y]| ≤ |y|

(iii) [x, y + z] ≤ [x, y] + [x, z],

(iv) Let u be a function from a real interval J to Rn such that u′(t0) for an
interior point t0 of J . Then D+|u(t0)| exists and

D+|u(t0)| = [u(t0), u′(t0)],

where D+|u(t0)| denotes the right derivative of |u(t)| at t0.

Let B(0, ρ) = {x ∈ Rn : |x| ≤ ρ}. The following result will be used in the
sequel.

Theorem 2.2 [12] Let H be an Rn-valued function defined on R×Rn. Suppose
that there exist positive constants p, r,M such that M

p < r, H is continuous on
R×B(0, r), |H(t, 0)| ≤M , for t ∈ R, and

[x− y,H(t, x)−H(t, y)] ≤ −p|x− y|, for t ∈ R and x, y ∈ B(0, r). (2.1)

Then the equation
d

dt
x(t) = H(t, x(t)), (2.2)

has a unique solution u defined on R such that |u(t)| ≤ M
p , for all t ∈ R.

Moreover, if v is another solution of (2.2) on R such that |v(t0)| ≤ M
p , for some

t0, then

|v(t)| ≤ M

p
and |u(t)− v(t)| ≤ e−p(t−t0)|u(t0)− v(t0)|, for t ≥ t0.
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Definition A continuous function H from R × B(0, r) to Rn is said to be
almost periodic in t uniformly with respect to x in B(0, r) if for each ε > 0,
there exists a positive number l such that any interval of length l contains a τ
for which

|H(t+ τ, x)−H(t, x)| < ε for t ∈ R, x ∈ B(0, r).

For a sequence α in R, we write α′ ⊂ α to indicate that α′ is a subsequence
of α. For a function H : R×B(0, r)→ R

n, we write

TαH = G,

to indicate that limnH(t + αn, x) = G(t, x), the mode of convergence will be
made clear at each use of the symbol.

Theorem 2.3 ([7]) A continuous function H from R×B(0, r) to Rn is said to
be almost periodic in t uniformly with respect to x in B(0, r) if and only if for
every real sequence α there exists a subsequence α′ such that Tα′H = G uniformly
in any R× B(0, r). Furthermore, G is also almost periodic in t uniformly with
respect to x in B(0, r).

Definition [7] The hull of H, denoted by H(H) is the set of continuous func-
tions G in R×B(0, r) with values in Rn such that there exists a sequence of real
numbers α such that TαH = G uniformly in any R×B(0, r).

Theorem 2.4 ([7]) A continuous function H from R × B(0, r) to Rn is said
to be almost periodic function in t uniformly with respect to x in B(0, r), if and
only if for any real sequences α, β, there exist two subsequences α′, β′ such that

Tα′+β′H = Tα′Tβ′H, pointwise on R×B(0, r).

The following Proposition is a consequence of the uniqueness of the bounded
solution.

Proposition 2.5 Assume that assumptions of Theorem 2.2 hold. If H is almost
periodic in t uniformly with respect to x in B(0, r). Then the only bounded
solution of equation (2.2) in B(0, Mp ) is almost periodic.

Proof It is sufficient to show that for all G ∈ H(H), the limit equation

d

dt
x(t)) = G(t, x(t)), (2.3)

satisfies condition (2.1). Let G ∈ H(H) be such that for some sequence α we
have TαH = G uniformly in any R×B(0, r). Then we have

[x− y,G(t, x)− G(t, y)]

=
[
x− y,G(t, x)−H(t+ αn, x) +H(t+ αn, x)− G(t, y)

+H(t+ αn, y)−H(t+ αn, y)
]

≤ −p|x− y|+ |G(t, x)−H(t+ αn, x)|+ |G(t, y)−H(t+ αn, y)|.
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Letting n tend to infinity, we obtain

[x− y,G(t, x)− G(t, y)] ≤ −p|x− y|,

for all t ∈ R and x, y ∈ B(0, r). It follows that for all G in H(H), condition
(2.1) is satisfied and for all G ∈ H(H) the limit equation

d

dt
x(t) = G(t, x(t)), (2.4)

has only one solution xG on B(0,M/p). We will show that the only bounded
solution xH of (2.2) is almost periodic. Let α be a sequence of real numbers
such that TαH = G uniformly in any R×B(0, r). If we put xn(t) = xH(t+αn),
for t ∈ R, then for n ≥ 0, xn satisfies the equation

dxn(t)
dt

= H(t+ αn, xn(t)),

and (xn)n is equicontinuous and bounded, by Ascoli-Arzela’s theorem, there
exists a subsequence (x′n)n of (xn)n such that (x′n)n converges uniformly in any
bounded set of R. Let y be the limit function of (x′n)n, then

dxn(t)
dt

→ G(t, y(t)), uniformly in bounded sets of R as n→∞.

It follows that
dy(t)
dt

= G(t, y(t)), t ∈ R.

By the uniqueness of the bounded solution in B(0,M/p) of the limit equation
(1.1), we deduce that y = xG . We conclude that for any sequence of real numbers
α there exists a subsequence α′ ⊂ α such that

Tα′xG = xTα′G , pointwise.

By Theorem 2.4, for two sequences α, β, there exists two subsequence α′ ⊂ α
and β′ ⊂ β such that

Tα′+β′H = Tα′Tβ′ H, pointwise in R×B(0, r).

From this, we deduce that

Tα′+β′xH = xTα′+β′H = xTα′Tβ′H = Tα′Tβ′xH, pointwise.

In view of the Theorem 2.4, we deduce that xH is almost periodic. ♦

Corollary 2.6 Assume that assumptions of Theorem 2.2 hold. If H is p-
periodic in t, then the only bounded solution of equation (2.2) in B(0,M/p)
is p-periodic.
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Proof Let u be the only bounded solution of equation (2.2) in B(0,M/p), then
by periodicity u(.+ p) is also bounded solution of (2.2) in B(0,M/p) and from
the uniqueness of the bounded solution in B(0,M/p) we get that u = u(.+ p).

3 Boundedness and almost periodicity

We suppose that

(H1) F : R × B(0, r) × B(0, r) → R
n is continuous and ρ : Cr → R

+ is lips-
chitzian, where Cr = {ϕ ∈ C : |ϕ| ≤ r}.

(H2) There exist positive constants M and N such that

(i) |F (t, 0, u)| ≤M , |F (t, x, 0)| ≤ N , for t ∈ R and x, y ∈ B(0, r),

(ii) There exist positive constants p, L with p > M/r, such that

[x− y, F (t, x, u)− F (t, y, v)] ≤ −p|x− y|+ L|u− v|,

for t ∈ R and x, y, u, v ∈ B(0, r).

For a lipschitzian function h from (a, b) to Rn , we define

Lip(h) = sup
{∣∣h(s)− h(t)

s− t
∣∣ : s, t ∈ (a, b) and s 6= t

}
.

Theorem 3.1 Assume that (H1) and (H2) hold. Then for a lipschitzian func-
tion ϕ ∈ C such that |ϕ| ≤ M/p and Lip(ϕ) ≤ N + Lr, equation (1.1) has at
least one solution defined on R+ which is bounded by M/p.

Proof By condition (H2-i) we have

|F (t, x, u)| ≤ N + Lr for t ∈ R and x, y ∈ B(0, r). (3.1)

Let ϕ ∈ C be such that |ϕ| ≤ M/p, for T > 0 and C([−τ, T ];Rn) be the space
of continuous function from [−τ, T ] to Rn provided with the uniform norm
topology. Let

Sϕ =
{
y ∈ C([−τ, T ];Rn) : y0 = ϕ, |y| ≤ M

p
and Lip(y) ≤ N + Lr

}
.

Then Sϕ is a convex compact set in C([−τ, T ];Rn). For f ∈ Sϕ, we consider
the equation

d

dt
x(t) = F (t, x(t), f(t− ρ(ft))), for t ≥ 0

x(0) = ϕ(0)
(3.2)
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By Theorem 2.2, equation (3.2) has only one solution x defined on R+ which is
bounded by M/p, moreover Lip(x) ≤ N + Lr and x ∈ Sϕ. Define the operator
K on Sϕ by

(Kf) (t) =
{
ϕ(t) if t ∈ [−τ, 0]
x(t) if t ∈ [0, T ]

where x is the only solution of equation (4.1) in Sϕ. Then K takes Sϕ to itself.
We still need to prove the continuity of K. Let f, g ∈ Sϕ and x = Kf et y = Kg,
then by Lemma 2.1 we have

D+|x(t)− y(t)| = [x(t)− y(t), x′(t)− y′(t)]
= [x(t)− y(t), F (t, x, f(t− ρ(ft)))− F (t, y, g(t− ρ(gt)))]

By (H2) we obtain that

D+|x(t)− y(t)| ≤ −p|x(t)− y(t)|+ L|f(t− ρ(ft))− g(t− ρ(gt))|,

it follows that

D+|x(t)− y(t)| ≤ −p|x(t)− y(t)|+ L ((N + Lr) Lip(ρ) + 1) |f − g|. (3.3)

To solve this differential inequality, we need the following Lemma.

Lemma 3.2 [14] Let D be an open set of R2 and θ is a continuous function
from D to R. Consider the scalar differential equation

d

dt
w(t) = θ(t, w(t)

w(t0) = w0

(3.4)

and % is a solution of equation (3.4) which is defined on [t0, t1[. Let z be a
continuous function from [t0, t1[ to R such that (t, z(t)) ∈ D, for t ∈ [t0, t1[,
z(t0) ≤ w0 and

D+z(t) ≤ θ(t, z(t)), for t ∈ [t0, t1[.

Then z(t) ≤ %(t), for t ∈ [t0, t1[.

Let v be the solution of the following differential equation

v′(t) = α(t)v(t) + β(t), t ≥ a
w(a) = v0 ≥ 0

(3.5)

Using the variation of constants formula, we can see that the solution of (3.5) is

v(t) = v0 exp
(∫ t

a

α(s)ds
)

+
∫ t

a

exp
(∫ t

u

p(s)ds
)
β(u)du, for t ∈ [a, b]

Applying Lemma 3.2 to inequality (3.3) we obtain that

|x(t)− y(t)| ≤ e−pt|x(0)− y(0)|+ L ((N + Lr) Lip(ρ) + 1)
p

|f − g|, for t ≥ 0.
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On the other hand x(0) = y(0), which gives

|Kf −Kg| ≤ L ((N + Lr) Lip(ρ) + 1)
p

|f − g|, (3.6)

this implies that K is continuous in Sϕ. By Schauder’s fixed point theorem, we
deduce that K has at least one fixed point which is solution of equation (1.1) in
Sϕ. This implies that equation (1.1) has at least a solution which is defined on
R

+ and the solution is bounded by M/p. ♦
For the uniqueness we have the following proposition.

Proposition 3.3 Assume that (H1) and (H2) hold with

L ((N + Lr) Lip(ρ) + 1)
p

< 1. (3.7)

Then for any lipschitzian function ϕ ∈ C such that |ϕ| ≤ M/p and Lip(ϕ) ≤
N + Lr, equation (1.1) has a unique solution bounded by M/p on R+ .

Proof The proof is just a consequence from inequality (3.6), it follows that K
is a strict contraction in Sϕ and K has only one fixed point in Sϕ which is the
unique solution of equation (1.1). ♦

For the existence of almost periodic solution, we assume that

(H3) F is almost periodic in t uniformly with respect to x, y ∈ B(0, r).

Proposition 3.4 Assuming that (H1), (H2) and (H3) hold. If

L ((N + Lr) Lip(ρ) + 1)
p

< 1,

then equation (1.1) has an almost periodic solution that is bounded by M/p.

Proof Let AP (Rn) be the space of almost periodic functions endowed with
the uniform norm topology. Let

Λ =
{
x ∈ AP (R,Rn) : |x| ≤ M

p
and Lip(x) ≤ N + Lr

}
.

For f ∈ Λ, consider the equation

d

dt
x(t) = F (t, x(t), f(t− ρ(ft))). (3.8)

By Proposition 2.5, equation (3.8) has only one almost periodic solution x that
is bounded by M/p and Lip(x) ≤ N +Lr, it follows that x ∈ Λ. Define L on Λ
by

Lf = x.
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Then L takes Λ into itself. It is sufficient to prove that L is a strict contraction
on Λ. So we have

D+|x(t)− y(t)| = [x(t)− y(t), x′(t)− y′(t)]
= [x(t)− y(t), F (t, x, f(t− ρ(ft)))− F (t, y, g(t− ρ(gt)))]

By (H2) we have

D+|x(t)− y(t)| ≤ −p|x(t)− y(t)|+ L|f(t− ρ(ft))− g(t− ρ(gt))|.

Therefore,

D+|x(t)− y(t)| ≤ −p|x(t)− y(t)|+ L ((N + Lr) Lip(ρ) + 1) |f − g|

By Lemma 3.2 we obtain that for t ≥ a,

|x(t)− y(t)| ≤ e−(t−a)|x(a)− y(a)|+ L ((N + Lr) Lip(ρ) + 1)
p

|f − g|.

Letting a tend to −∞, one has

|Lf − Lg| ≤ L ((N + Lr) Lip(ρ) + 1)
p

|f − g|.

By the contraction mapping theorem, L has a unique fixed point in Λ which
must be the unique almost periodic solution of equation (1.1) in Λ. ♦

For the periodicity by using the same argument as above, we obtain the
following statement.

Corollary 3.5 Assuming that (H1), (H2) hold and F is p-periodic in t. If

L ((N + Lr) Lip(ρ) + 1)
p

< 1.

Then equation (1.1) has a p-periodic solution which is bounded by M/p .

When the uniqueness of solutions with initial data holds, the periodic so-
lutions can be obtained by the use of Poincaré map. So we have the following
statement.

Proposition 3.6 Assume that (H1), (H2) hold with F being p-periodic in t and
Lipschitz continuous with respect to x and u in B(0, r). If τ0 = infϕ∈C ρ(ϕ) > 0,
then (1.1) has a p-periodic solution bounded by M/p.

Proof Let ϕ ∈ C such that |ϕ| ≤ M/p and Lip(ϕ) ≤ N + Lr, then equation
(1.1) has a unique solution on R+. In fact, we proceed by steps, if we take
t ∈ [0, τ0], then (1.1) becomes

d

dt
x(t) = F (t, x(t), ϕ(t− ρ(xt))), for t ≥ 0

x0 = ϕ ∈ C
(3.9)
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From the Lipschitz condition of F , ϕ and ρ, we deduce that the right hand of
equation (3.9) is Lipschitz continuous with respect to the second argument. It
is well known that (3.9) has a unique solution on [0, τ0]. We proceed in the
same way in [τ0, 2τ0], . . . , [nτ0, (n+ 1)τ0]. Now we deduce the uniqueness of the
solution x(., ϕ) . Consider the convex set

K =
{
ϕ ∈ C : |ϕ| ≤ M

p
and Lip(ϕ) ≤ N + Lr

}
.

Then K is compact in C. Let P be the Poincaré map defined on K by

Pϕ = xp(., ϕ)

From Theorem 3.1 it follows that the solution is bounded by M/p and from
inequality (3.1) we get Lip(xt(., ϕ)) ≤ N + Lr, for every t ≥ 0. We conclude
that PK ⊂ K, from the local Lipschitz conditions, we get that P is continuous
and by Schauder’s fixed point Theorem, we deduce that P has at least one fixed
point which gives a p-periodic solution of equation (1.1).

4 Examples

As an application, we study the existence of bounded and almost periodic solu-
tions of the scalar state-dependent delay differential equation

d

dt
x(t) = −x(t)g(x(t)) + γ sinx(t− |cosx(t)|) + sin(t) + sin(

√
2t), for t ≥ 0

x0 = ϕ
(4.1)

where γ > 0. In this example, we assume that

(H4) g : R→ R is a continuous function. Also we assume that for χ(x) = xg(x),

p0 = inf
ξ∈[−1,1]

infχ′(ξ) > 0.

This assumption is satisfied for example for g(x) = a+ bx, with a, b > 0 and
a− 2b > 0. In this case p0 = a− 2b.

Equation (4.1) can be written as (1.1) with

F (t, x, u) = −x(a+ bx) + γ sin(u) + sin(t) + sin(
√

2t), for t, x, u ∈ R.

and
ρ(ϕ) = | cosϕ(0)|, for ϕ ∈ C ([−1, 0];R) .

Moreover we assume that

(H5) γ < a− 2b− 2.



EJDE–2002/67 E. H. Ait Dads & K. Ezzinbi 11

Proposition 4.1 Assume that (H4) and (H5) hold. Then for a lipschitzian
function ϕ ∈ C ([−1, 0];R) such that |ϕ| ≤ γ+2

a−2b and Lip(ϕ) ≤ (a+ b+ γ + 2),
equation (4.1) has at least one solution defined on R+ and bounded by γ+2

a−2b .
Moreover if

γ <
a− 2b

a+ b+ γ + 3
. (4.2)

Then (4.1) has only one almost periodic solution in B(0, γ+2
a−2b ).

Proof It is sufficient to prove that (H1), (H2) and (H3) hold. By a simple
computation we can see that

[x− y, F (t, x, u)− F (t, y, v)] ≤ − sgn(x− y) (xg(x)− yg(y)) + γ|u− v|,

for t ∈ R and x, y, u, v ∈ B(0, 1), where

sgn(x) =

{
1 if x > 0
−1 if x < 0.

From the monotonicity of χ we have

sgn(x− y) = sgn(xg(x)− yg(y)).

It follows that

[x− y, F (t, x, u)− F (t, y, v)] ≤ − sgn(xg(x)− yg(y)) (xg(x)− yg(y)) + γ|u− v|,

for t ∈ R and x, y, u, v ∈ B(0, 1). Which implies that

[x− y, F (t, x, u)− F (t, y, v)] ≤ −|xg(x)− yg(y)|+ γ|u− v|,

for t ∈ R and x, y, u, v ∈ B(0, 1). Using the fact that a−2b > 0, we deduce that

[x− y, F (t, x, u)− F (t, y, v)] ≤ −(a− 2b)|x− y|+ γ|u− v|,

for t ∈ R and x, y, u, v ∈ B(0, 1). Consequently, assumptions (H1) and (H2)
hold with

M = γ + 2, N = a+ b+ 2, L = γ, r = 1, τ = 1, p = a− 2b.

Then by Theorem 3.1 we deduce that (4.1) has at least one solution defined on
R

+ which is bounded by (γ + 2)/(a − 2b). Moreover assumption (H3) is also
satisfied and (3.7) is equivalent to (4.2). It follows by Proposition 3.4 that (4.1)
has only one almost periodic solution in B(0, γ+2

a−2b ).
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Département de Mathématiques
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