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Emden-Fowler superlinear difference equations ∗

Samir H. Saker

Abstract

Using Riccati transformation techniques, we establish oscillation crite-
ria for forced second-order Emden-Fowler superlinear difference equations.
Our criteria are discrete analogues of the criteria used for differential equa-
tions by Kamanev [5].

1 Introduction

Consider the forced second-order nonlinear difference equation

∆2xn−1 + qnxγ
n = gn, (1.1)

where γ is quotient of positive odd integers, n is an integer in the set N =
{1, 2 . . . }, {qn}∞n=1 and {gn}∞n=1 are sequences of positive real numbers, ∆ de-
notes the forward difference operator ∆xn = xn+1 − xn and ∆2xn = ∆(∆xn).
In the case γ > 1, Equation (1.1) is the prototype of a wide class of nonlinear
difference equations called Emden-Fowler superlinear difference equations.

In recent years there has been an increasing interest in the asymptotic be-
havior of second-order difference equations, see, e.g., the monographs [1, 2].
Following this trend, we study the oscillations of (1.1). It is interesting to
study (1.1) because, it is the discrete version of the second order Emden-Fowler
differential equation that has several physical applications [11].

We consider only nontrivial solutions of (1.1); i.e., solutions such that for
every i ∈ N, sup{|xn| : n ≥ i} > 0. A solution {xn} of (1.1) is said to be
oscillatory if for every n1 ≥ 1 there exists an n ≥ n1 such that xnxn+1 ≤ 0,
otherwise it is non-oscillatory.

The oscillation of forced second order difference equations has been the sub-
ject of many publications; see for example [3, 4, 7, 8, 10, 13, 14] and references
therein. In [3], the authors considered the linear forced difference equation and
given some sufficient conditions for oscillation. In [8, 13], the authors considered
the nonlinear forced difference equations and established some conditions for os-
cillation. Unfortunately, the oscillation criteria in [3, 8, 13] impose assumptions
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on the unknown solutions, which diminishes the applicability of the criteria. In
[14], the authors considered the forced nonlinear delay difference equation when
{qn}∞n=0 is a nonnegative sequence with a positive subsequence, and there exists
a sequence {Gn}∞n=0 such that ∆2Gn = gn to obtain sufficient conditions for
oscillations.

In the continuous case, the differential equation

x′′(t) + q(t)f(x(t)) = 0, t ≥ t0 (1.2)

has been studied by many authors; see the survey papers [6, 12] which give over
300 references. In Kamenev [5], the average function

Aλ(t) =
1
tλ

∫ t

t0

(t− s)λq(s)ds, λ ≥ 1 (1.3)

plays a crucial role in the oscillation criteria for (1.2). Philos [9] improved
Kamenev’s result by proving the following result: Suppose there exist continuous
functions H and h defined from D = {(t, s) : t ≥ s ≥ t0} to R such that:
(i) H(t, t) = 0, for t ≥ t0
(ii) H(t, s) > 0 for t > s ≥ t0, and H has a continuous and non-positive partial
derivative on D with respect to the second variable and satisfies

−∂H(t, s)
∂s

= h(t, s)
√

H(t, s) ≥ 0. (1.4)

Further, suppose that

lim
t→∞

1
H(t, t0)

∫ t

t0

[H(t, s)q(s)− 1
4
h2(t, s)] ds = ∞. (1.5)

Then every solution of (1.2) oscillates.
Using Riccati transformation techniques, we establish some new oscillation

criteria, for (1.1), that are discrete analogues of (1.3) and (1.5). Our results
generalized and extended the conditions (1.3) and (1.5) to the discrete case and
improve the results presented in [3, 8, 13, 14].

2 Main Result

Theorem 2.1 Assume that there exists a positive sequence {ρn}∞n=1 such that
for every positive number λ ≥ 1,

lim
m→∞

sup
1

mλ

m−1∑
n=1

(m−n)λ
[
ρnQn−

(ρn+1)
2

4ρn

( ∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2]
= ∞

(2.1)
where

Qn = γ
( 1
γ − 1

)1− 1
γ (qn)

1
γ (gn)1−

1
γ .

Then every unbounded solution of (1.1) oscillates.
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Proof Suppose to the contrary that {xn}∞n=1 is an unbounded non-oscillatory
solution of (1.1). First, we may assume that {xn} is a positive solution of (1.1)
for n ≥ n1 ≥ 1. Define the sequence {wn} by

wn = ρn
∆xn−1

xn
. (2.2)

Then in view of (1.1), we have

∆wn = −[qnxγ−1
n − gn

xn
] +

∆ρn

ρn+1
wn+1 −

ρn

xnxn+1
.

Since xn is positive and unbounded, there exists n2 ≥ n1 such that ∆xn ≥ 0,
for n ≥ n2, and xn+1 ≥ xn, so that

∆wn ≤ −[qnxγ−1
n − gn

xn
] +

∆ρn

ρn+1
wn+1 −

ρn

(ρn+1)2
w2

n+1. (2.3)

Set
f(x) = qnxγ−1 − gn

x
.

Using differential calculus, we see that

f(x) ≥ γ
( 1
γ − 1

)1− 1
γ (qn)

1
γ (gn)1−

1
γ ,

this and (2.3) imply

∆wn ≤ −Qn +
∆ρn

ρn+1
wn+1 −

ρn

(ρn+1)
2 w2

n+1. (2.4)

Therefore,

m−1∑
n=n2

(m− n)λρnQn

≤ −
m−1∑
n=n2

(m−n)λ∆wn +
m−1∑
n=n2

(m−n)λ ∆ρn

ρn+1
wn+1−

m−1∑
n=n2

(m−n)λ ρn

ρ2
n+1

w2
n+1,

(2.5)

Now, after summing by parts, we have

m−1∑
n=n2

(m− n)λ∆wn = −(m− n2)λwn2 −
m−1∑
n=n2

wn+1∆2(m− n)λ,

where ∆2(m− n)λ = (m− n− 1)λ − (m− n)λ. Then

m−1∑
n=n2

(m− n)λ∆wn = −(m− n2)λwn2 +
m−1∑
n=n2

wn+1((m− n)λ − (m− n− 1)λ).
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Using the inequality, xβ − yβ ≥ βyβ−1(x − y) for all x≥ y > 0 and β ≥ 1, we
obtain

m−1∑
n=n2

(m− n)λ∆wn ≥ −(m− n2)λwn2 +
m−1∑
n=n2

λwn+1(m− n− 1)λ−1.

Substitute this expression in (2.5) to obtain

m−1∑
n=n2

(m− n)λρnQn ≤(m− n2)λwn2 −
m−1∑
n=n2

λwn+1(m− n− 1)λ−1

+
m−1∑
n=n2

(m− n)λ ∆ρn

ρn+1
wn+1 −

m−1∑
n=n2

(m− n)λ ρn

ρ2
n+1

w2
n+1.

Then

1
mλ

m−1∑
n=n2

(m− n)λρnQn

≤ (
m− n2

m
)λwn2

− 1
mλ

m−1∑
n=n2

(m− n)λ
[ ρn

ρ2
n+1

w2
n+1 −

( ∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)
wn+1

]
= (

m− n2

m
)λwn2

− 1
mλ

m−1∑
n=n2

(m− n)λ
[√ρn

ρn+1
wn+1 −

ρn+1

2
√

ρn

( ∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)]2

+
1

mλ

m−1∑
n=n2

(m− n)λ (ρn+1)
2

4ρn

( ∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2
,

which implies

1
mλ

m−1∑
n=n2

κ(m− n)λρnQn

< (
m− n2

m
)λwn2 +

1
mλ

m−1∑
n=n2

(m− n)λ (ρn+1)2

4ρn

( ∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2
.

Then

1
mλ

m−1∑
n=n2

(m− n)λ
[
ρnQn −

(ρn+1)
2

4ρn

(
∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2 ]
< (

m− n2

m
)λwn2 ,
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which yields

lim
m→∞

1
mλ

m−1∑
n=n2

(m− n)λ
[
ρnQn −

(ρn+1)
2

4ρn

(
∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2 ]
< ∞,

which contradicts (2.1). Next, we consider the case when xn < 0 for n ≥ n1.
We use the transformation yn = −xn is a positive solution of the equation
∆2yn−1 + qnyγ

n = −gn. Define the sequence {wn} by

wn = ρn
∆yn−1

xn
. (2.6)

then, wn > 0 and satisfies

∆wn ≤ −[qnxγ−1
n +

gn

xn
] +

∆ρn

ρn+1
wn+1 −

ρn

(ρn+1)2
w2

n+1. (2.7)

Set
F (x) = qnxγ−1 +

gn

x
.

Using differential calculus, we see that

F (x) ≥ γ
( 1
γ − 1

)1− 1
γ (qn)

1
γ (gn)1−

1
γ .

and then (2.4) holds. The remainder of the proof is similar to that of the proof
of the first part and hence is omitted. The proof is complete ♦

Corollary 2.2 Assume that all assumptions in Theorem 2.1 hold, except the
condition (2.1) which is replaced by

lim
m→∞

sup
1

mλ

m−1∑
n=1

(m− n)λρnQn = ∞,

and

lim
m→∞

1
mλ

m−1∑
n=1

(m− n)
(ρn+1)

2

ρn

( ∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2
< ∞ .

Then every unbounded solution of (1.1) oscillates.

Theorem 2.3 Assume that there exists a positive sequence {ρn}∞n=1. Further-
more, we assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0}
such that (i) Hm,m = 0 for m ≥ 0 (ii) Hm,n > 0 for m > n ≥ 0, (iii)
∆2Hm,n = Hm,n+1 −Hm,n ≤ 0 for m ≥ n ≥ 0. If

lim sup
m→∞

1
Hm,0

m−1∑
n=1

[
Hm,nρnQn −

ρ2
n+1

4ρn

(
hm,n −

∆ρn

ρn+1

√
Hm,n

)2
]

= ∞, (2.8)

where
hm,n = −∆2Hm,n√

Hm,n

, m > n ≥ 0,

then every unbounded solution of (1.1) oscillates.
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Proof We proceed as in the proof of Theorem 2.1, we may assume that (1.1)
has an unbounded non-oscillatory solution {xn}∞n=1 such that xn > 0 for n ≥ n1.
Define {wn} by (2.2) as before, then wn > 0 and satisfies (2.4) for all n ≥ n2.
Therefore,

m−1∑
n=n2

Hm,nρnQn

≤ −
m−1∑
n=n2

Hm,n∆wn +
m−1∑
n=n2

Hm,n
∆ρn

ρn+1
wn+1 −

m−1∑
n=n2

Hm,n
ρn

ρ2
n+1

w2
n+1,

which yields, after summing by parts,
m−1∑
n=n2

Hm,nρnQn

≤ Hm,n2wn2 +
m−1∑
n=n2

wn+1∆2Hm,n +
m−1∑
n=n2

Hm,n
∆ρn

ρn+1
wn+1

−
m−1∑
n=n2

Hm,n
ρn

ρ2
n+1

w2
n+1

= Hm,n2wn2 −
m−1∑
n=n2

hm,n

√
Hm,nwn+1 +

m−1∑
n=n2

Hm,n
∆ρn

ρn+1
wn+1

−
m−1∑
n=n2

Hm,n
ρn

ρ2
n+1

w2
n+1

= Hm,n2wn2

−
m−1∑
n=n2

[√
Hm,nρn

ρn+1
wn+1 +

ρn+1

2
√

Hm,nρn

(
hm,n

√
Hm,n −

∆ρn

ρn+1
Hm,n

)]2

+
1
4

m−1∑
n=n2

(ρn+1)
2

ρ̄n

(
hm,n −

∆ρn

ρn+1

√
Hm,n

)2
.

Then
m−1∑
n=n2

[
Hm,nρnQn −

ρ2
n+1

4ρn

(
hm,n −

∆ρn

ρn+1

√
Hm,n

)2
]

< Hm,n2wn2 ≤ Hm,0wn2 ,

which implies
m−1∑
n=1

[
Hm,nρnQn−

ρ2
n+1

4ρn

(
hm,n−

∆ρn

ρn+1

√
Hm,n

)2
]

< Hm,0

n2−1∑
n=1

ρnQn +Hm,0wn2 .

Hence

lim sup
m→∞

1
Hm,0

m−1∑
n=1

[
Hm,nρnQn −

ρ2
n+1

4ρn

(
hm,n −

∆ρn

ρn+1

√
Hm,n

)2
]

< ∞,
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which contradicts (2.8). Next, we consider the case when xn < 0 for n ≥ n1.
We use the transformation yn = −xn is a positive solution of the equation
∆2yn−1 + qnyγ

n = −gn. Define the sequence {wn} by (2.6), then (2.7) holds.
The remainder of the proof is similar to that of the proof of the first case and
hence is omitted. The proof is complete. ♦

Corollary 2.4 Assume that all the assumptions of Theorem 2.3 hold, except
the condition (2.7) which is replaced by

lim
m→∞

sup
1

Hm,0

m−1∑
n=0

Hm,nρnQn = ∞,

and

lim
m→∞

sup
1

Hm,0

m−1∑
n=1

ρ2
n+1

4ρn

(
hm,n −

∆ρn

ρn+1

√
Hm,n

)2
< ∞ .

Then every unbounded solution of (1.1) oscillates.

By choosing the sequence {Hm,n} appropriately, we can derive several oscil-
lation criteria for (1.1). For instance, consider the double sequence

Hm,n =
(

ln
(m + 1

n + 1
))λ

, λ ≥ 1, m ≥ n ≥ 0. (2.9)

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0.
Hence we have the following result.

Corollary 2.5 Assume that the assumptions in Theorem 2.3 hold, except the
condition (2.7) which is replaced by

lim sup
m→∞

1
lnλ(m + 1)

m−1∑
n=0

[(
ln

m + 1
n + 1

)λ

ρnQn −Bm,n

]
= ∞ (2.10)

where

Bm,n =
ρ2

n+1

4ρn

( λ

n + 1
(
ln

m + 1
n + 1

)λ−2
2 − ∆ρn

ρn+1

√(
ln

m + 1
n + 1

)λ
)2

for every positive number λ ≥ 1. Then every unbounded solution of (1.1) oscil-
lates.

Another choice for a sequence is

Hm,n = φ(m− n), m ≥ n ≥ 0,

where φ : [0,∞) → [0,∞) is a continuously differentiable function which satisfies
φ(0) = 0, φ(u) > 0, and φ′(u) ≥ 0 for u > 0.
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Yet another choice for a sequence is

Hm,n = (m− n)(λ) λ > 2, m ≥ n ≥ 0,

where (m− n)(λ) = (m− n)(m− n + 1) . . . (m− n + λ− 1) and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1).

For these two sequences we can state corollaries similar to the one above.
Note that our results can be extended to the equation

∆(an∆xn) + qnxγ
n = gn

where {an}∞n=1 is a sequence of positive real numbers. However, our results can
not be applied in the case when γ = 1 and also it remains an open problem to
give sufficient conditions for the oscillation of all bounded solutions in this case.
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Addendum posted by a managing editor on June 13, 2012.

A reader informed us of two inaccuracies in this article: In the proof of
Theorem 2.1, the statement

Since xn is positive and unbounded, there exists n2 ≥ n1 such that
∆xn ≥ 0 for n ≥ n2

is incorrect. The sequence xn = n+(−1)n + 1 provides a counterexample. Also
in the same proof, the statement

f(x) ≥ γ
( 1
γ − 1

)1− 1
γ (qn)

1
γ (gn)1−

1
γ

is incorrect.
Regarding these inaccuracies, Prof. Saker informed us that the results in

this paper have been corrected and improved in later publications, by the same
author.


