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Positive periodic solutions of functional

differential equations and population models ∗

Daqing Jiang, Junjie Wei, & Bo Zhang

Abstract

In this paper, we employ Krasnosel’skii’s fixed point theorem for cones
to study the existence of positive periodic solutions to a system of infinite
delay equations,

x′(t) = A(t)x(t) + f(t, xt).

We prove two general theorems and establish new periodicity conditions
for several population growth models.

1 Introduction

In this paper we study the existence of positive periodic solutions of the system
of functional differential equations

ẋ(t) = A(t)x(t) + f(t, xt) (1.1)

in which A(t) = diag[a1(t), a2(t), . . . , an(t)], aj ∈ C(R,R) is ω-periodic, f(t, xt)
is a function defined on R × BC, and f(t, xt) is ω-periodic whenever x is ω-
periodic, where BC denotes the Banach space of bounded continuous func-
tions φ : R → R

n with the norm ‖φ‖ = supθ∈R
∑n
j=1 |φj(θ)| where φ =

(φ1, φ2, . . . , φn)T , ω > 0 is a constant. If x ∈ BC, then xt ∈ BC for any
t ∈ R is defined by xt(θ) = x(t+ θ) for θ ∈ R.

One of the most used models, a prototype of (1.1), is the system of Volterra
integrodifferential equations

ẋi(t) = xi(t)
[
ai(t)−

n∑
j=1

bij(t)xj(t)−
n∑
j=1

∫ t

−∞
Cij(t, s)gij(xj(s))ds

]
(1.2)

which governs the population growth of interacting species xj(t), j = 1, 2, . . . , n.
The integral term here specifies how much weight to attach to the population
at varies past times, in order to arrive at their present effect on the resources
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availability. For an autonomous system (1.2), there may be a stable equilib-
rium point of the population. When the potential equilibrium point becomes
unstable, there may exist a nontrivial periodic solution. Then the oscillation
of solutions occurs. The existence of such stable periodic solution is of quite
fundamental importance biologically since it concerns the long time survival of
species. The study of such phenomena has become an essential part of quali-
tative theory of differential equations. For historical background, basic theory
of periodicity, and discussions of applications of (1.1) to a variety of dynamical
models, we refer to the reader to, for example, the work of Burton [1], Bur-
ton and Zhang [2], Cavani, Lizana, and Smith [3], Cushing [5], Gopalsamy [7],
Hadeler [8], Hatvani and Krisztin [9], Hino, Murakami, Taito [10], Kuang [12],
Makay [13], May [14], May and Leonard [15], Stech [17], and the references
therein.

It is our view that one of the most important problems in the study of
dynamical models and their applications is that of describing the nature of the
solutions for a large range of parameters involved. From a numerical point of
view, the existence of a periodic solution of the approximation scheme must also
be studied. The usual approach to fulfill such requirements is to have a set of
test equations which are as general as possible and for which explicit analytic
conditions can be given. The next step is to characterize the numerical methods
which show the same existence result under the same conditions when applied
to the test equations.

In this part of our investigation, we provide a unified approach to the study of
existence of positive periodic solutions of system (1.1) under general conditions
and apply the results to some well-known models in population dynamics. In
Section 2, we prove the main results concerning equation (1.1). Applications of
these results to population models will be given in Section 3.

Let R = (−∞,+∞),R+ = [0,+∞), and R− = (−∞, 0] respectively. For
each x = (x1, x2, . . . , xn)T ∈ Rn, the norm of x is defined as |x| =

∑n
j=1 |xj |.

R
n
+ = {(x1, x2, . . . , xn)T ∈ Rn : xj ≥ 0, j = 1, 2, . . . , n}. We say that x is

“positive” whenever x ∈ Rn+. BC(X,Y ) denotes the set of bounded continuous
functions φ : X → Y .

2 Existence of Positive Periodic Solutions

We establish the existence of positive periodic solutions of equation (1.1) by
applying Krasnosel’skii’s fixed point theorem (see [6],[11]) on cones. A com-
pact operator will be constructed. It will be shown that the operator has
a fixed point, which corresponds to a periodic solution of (1.1). We denote
f = (f1, f2, . . . , fn)T and assume

(H1)
∫ ω

0
aj(s)ds 6= 0 for j = 1, 2, . . . , n.

(H2) fj(t, φt)
∫ ω

0
aj(s)ds ≤ 0 for all (t, φ) ∈ R×BC(R,Rn+), j = 1, 2, . . . , n.

(H3) f(t, xt) is a continuous function of t for each x ∈ BC(R,Rn+).
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(H4) For any L > 0 and ε > 0, there exists δ > 0 such that
[φ, ψ ∈ BC, ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ− ψ‖ < δ, 0 ≤ s ≤ ω] imply

|f(s, φs)− f(s, ψs)| < ε. (2.1)

Definition. Let X be a Banach space and K be a closed, nonempty subset of
X. K is a cone if

(i) αu+ βv ∈ K for all u, v ∈ K and all α, β ≥ 0

(ii) u,−u ∈ K imply u = 0.

Theorem 2.1 (Krasnosel’skii [11]) Let X be a Banach space, and let K ⊂
X be a cone in X. Assume that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂
Ω2, and let

Φ : K ∩ (Ω̄2 \ Ω1)→ K

be a completely continuous operator such that either

(i) ‖Φy‖ ≤ ‖y‖ ∀y ∈ K ∩ ∂Ω1 and ‖Φy‖ ≥ ‖y‖ ∀y ∈ K ∩ ∂Ω2; or

(ii) ‖Φy‖ ≥ ‖y‖ ∀y ∈ K ∩ ∂Ω1 and ‖Φy‖ ≤ ‖y‖ ∀y ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω̄2 \ Ω1).

We now for (t, s) ∈ R2, j = 1, 2, . . . , n, we define

σ := min
{

exp(−2
∫ ω

0

|aj(s)|ds), j = 1, 2, . . . , n
}

(2.2)

Gj(t, s) =
exp(

∫ t
s
aj(ν)dν)

exp(−
∫ ω

0
aj(ν)dν)− 1

. (2.3)

We also define

G(t, s) = diag[G1(t, s), G2(t, s), . . . , Gn(t, s)].

It is clear that G(t, s) = G(t+ ω, s+ ω) for all (t, s) ∈ R2 and by (H2),

Gj(t, s)fj(u, φu) ≥ 0

for (t, s) ∈ R2 and (u, φ) ∈ R×BC(R,Rn+).
Next, we introduce two sets with ω and σ as given above.

Cω = {x ∈ C(R,Rn) : x(t+ ω) = x(t), ; t ∈ R},
K = {x ∈ Cω : xj(t) ≥ σ‖xj‖, t ∈ [0, ω], x = (x1, x2, . . . , xn)T }. (2.4)

One may readily verify that K is a cone.
Finally, we define an operator Φ : K → K as

(Φx)(t) =
∫ t+ω

t

G(t, s)f(s, xs)ds

for x ∈ K, t ∈ R, where G(t, s) is defined following (2.3). We denote

(Φx) =
(

Φ1x,Φ2x, . . . ,Φnx
)T
.

Lemma 2.2 Φ : K → K is well-defined.
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Proof. For each x ∈ K, since f(t, xt) is a continuous function of t, we have
(Φx)(t) is continuous in t and

(Φx)(t+ ω) =
∫ t+2ω

t+ω

G(t+ ω, s)f(s, xs)ds

=
∫ t+ω

t

G(t+ ω, v + ω)f(v + ω, xv+ω)dv

=
∫ t+ω

t

G(t, v)f(v, xv)dv = (Φx)(t).

Thus, (Φx) ∈ Cω. Observe that

pj :=
exp(−

∫ ω
0
|aj(ν)|dν)∣∣∣ exp(−

∫ ω
0
aj(ν)dν)− 1

∣∣∣ ≤ |Gj(t, s)| ≤ exp(
∫ ω

0
|aj(ν)|dν)

| exp(−
∫ ω

0
aj(ν)dν)− 1|

=: qj

(2.5)
for all s ∈ [t, t+ ω]. Hence, for x ∈ K, we have

‖Φjx‖ ≤ qj
∫ ω

0

|fj(s, xs)|ds (2.6)

and

(Φjx)(t) ≥ pj
∫ ω

0

|fj(s, xs)|ds ≥
pj
qj
‖Φjx‖ ≥ σ‖Φjx‖.

Therefore, (Φx) ∈ K. This completes the proof. �

Lemma 2.3 Φ : K → K is completely continuous, and x = x(t) is an ω-
periodic solution of (1.1) whenever x is a fixed point of Φ.

Proof. We first show that Φ is continuous. By (H4), for any L > 0 and ε > 0,
there exists a δ > 0 such that [φ, ψ ∈ Cω, ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ − ψ‖ < δ]
imply

sup
0≤s≤ω

|f(s, φs)− f(s, ψs)| <
ε

qω

where q = max1≤j≤n qj . If x, y ∈ K with ‖x‖ ≤ L, ‖y‖ ≤ L, and ‖x− y‖ < δ,
then

|(Φx)(t)− (Φy)(t)| ≤
∫ t+ω

t

|G(t, s)||f(s, xs)− f(s, ys)|ds

≤ q

∫ ω

0

|f(s, xs)− f(s, ys)|ds < ε

for all t ∈ [0, ω], where |G(t, s)| = max1≤j≤n |Gj(t, s)|. This yields ‖(Φx) −
(Φy)‖ < ε. Thus, Φ is continuous.
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Next, we show that f maps bounded sets into bounded sets. Indeed, let
ε = 1. By (H4), for any µ > 0 there exists δ > 0 such that [x, y ∈ BC, ‖x‖ ≤ µ,
‖y‖ ≤ µ, ‖x− y‖ < δ] imply

|f(s, xs)− f(s, ys)| < 1.

Choose a positive integer N such that µ
N < δ. Let x ∈ BC and define xk(t) =

x(t) kN for k = 0, 1, 2, . . . , N . If ‖x‖ ≤ µ, then

‖xk − xk−1‖ = sup
t∈R
|x(t)

k

N
− x(t)

k − 1
N
| ≤ ‖x‖ 1

N
≤ µ

N
< δ.

Thus,
|f(s, xks)− f(s, xk−1

s )| < 1

for all s ∈ [0, ω]. This yields

|f(s, xs)| ≤
N∑
k=1

|f(s, xks)− f(s, xk−1
s )|+ |f(s, 0)|

< N + sup
s∈[0,ω]

|f(s, 0)| =: Mµ. (2.7)

It follows from (2.6) that for t ∈ [0, ω],

‖Φx‖ = sup
θ∈R

n∑
j=1

|(Φjx)(θ)| ≤
n∑
j=1

qj

∫ ω

0

|fj(s, xs)|ds ≤ qωMµ.

Finally, for t ∈ R we have

d

dt
(Φx)(t) = G(t, t+ ω)f(t+ ω, xt+ω)−G(t, t)f(t, xt) +A(t)(Φx)(t)

= A(t)(Φx)(t) + [G(t, t+ ω)−G(t, t)]f(t, xt)
= A(t)(Φx)(t) + f(t, xt). (2.8)

Combine (2.6), (2.7), and (2.8) to obtain

| d
dt

(Φx)(t)| ≤ ‖A‖q
∫ ω

0

|f(s, xs)|ds+ |f(t, xt)|

≤ ‖A‖qωMµ +Mµ

where ‖A‖ = max1≤j≤n ‖aj‖. Hence, {(Φx) : x ∈ K, ‖x‖ ≤ µ} is a family
of uniformly bounded and equicontinuous functions on [0, ω]. By a theorem of
Ascoli-Arzela (Royden [16, p.169]), the function Φ is completely continuous. It
is clear from (2.8) that x = x(t) is an ω-periodic solution of (1.1) whenever x is
a fixed point of Φ. This proves the lemma.
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Theorem 2.4 Assume (H1)-(H4) and that there are positive constants R1 and
R2 with R1 < R2 such that

sup
‖φ‖=R1, φ∈K

∫ ω

0

|f(s, φs)|ds ≤ R1/q (2.9)

inf
‖φ‖=R2, φ∈K

∫ ω

0

|f(s, φs)|ds ≥ R2/p (2.10)

for all t ∈ [0, ω] with p = min1≤j≤n pj and q = max1≤j≤n qj, where pj , qj
are defined in (2.5). Then equation (1.1) has an ω-periodic solution x with
R1 ≤ ‖x‖ ≤ R2.

Proof. Let x ∈ K and ‖x‖ = R1. By (2.9), we have

|(Φx)(t)| ≤ q
∫ t+ω

t

|f(s, xs)|ds ≤ qR1/q = R1.

This implies that ‖(Φx)‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1, Ω1 = {ψ ∈ Cω : ‖ψ‖ < R1}.
If x ∈ K and ‖x‖ = R2, then

(Φjx)(t) ≥ pj
∫ t+ω

t

|fj(s, xs)|ds.

Use (2.10) to obtain

|(Φx)(t)| ≥ p
∫ t+ω

t

|f(s, xs)|ds ≥ p(R2/p) = R2

Thus, ‖(Φx)‖ ≥ ‖x‖ for x ∈ K ∩∂Ω2, Ω2 = {ψ ∈ Cω : ‖ψ‖ < R2}. By Theorem
2.1, Φ has a fixed point in K ∩ (Ω̄2 \Ω1). It follows from Lemma 2.3 that (1.1)
has an ω-periodic solution x with R1 ≤ ‖x‖ ≤ R2. This completes the proof. �

Corollary 2.5 Assume (H1)-(H4) and

lim
φ∈K, ‖φ‖→0

∫ ω
0
|f(s, φs)|ds
‖φ‖

= 0, (2.11)

lim
φ∈K, ‖φ‖→∞

∫ ω
0
|f(s, φs)|ds
‖φ‖

=∞. (2.12)

Then (1.1) has an ω-periodic solution.

Theorem 2.6 Assume (H1)-(H4) and that there are positive constants R1 and
R2 with R1 < R2 such that

inf
‖φ‖=R1, φ∈K

∫ ω

0

|f(s, φs)|ds ≥ R1/p, (2.13)

sup
‖φ‖=R2, φ∈K

∫ ω

0

|f(s, φs)|ds ≤ R2/q. (2.14)

Then equation (1.1) has an ω-periodic solution x with R1 ≤ ‖x‖ ≤ R2.
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The proof will be omitted here since it is similar to that of Theorem 2.4. We
now state a corollary to the above theorem.

Corollary 2.7 Assume (H1)-(H4) and that

lim
φ∈K, ‖φ‖→0

∫ ω
0
|f(s, φs)|ds
‖φ‖

=∞, (2.15)

lim
φ∈K, ‖φ‖→∞

∫ ω
0
|f(s, φs)|ds
‖φ‖

= 0. (2.16)

Then (1.1) has an ω-periodic solution.

3 Applications

We now apply the main result obtained in the previous section to some well-
known models in population dynamics. First, we consider the scalar integrodif-
ferential equation

Ṅ(t) = α(t)N(t)
[
1− 1

N0(t)

∫ 0

−∞
B(s)N(t+ s)ds

]
(3.1)

which governs the growth of the population N(t) of a single species whose
members compete among themselves for a limited amount of food and living
spaces. Equation (3.1) is a modification of the simple logistic equation

Ṅ(t) = αN(t)
[
1− N(t)

N0

]
(3.2)

where α is the intrinsic per capita growth rate and N0 is the total carrying
capacity. We refer the reader to May [14] for a detailed model construction
from (3.2) to (3.1). Suppose that

(P1) α(t), N0(t) are real-valued and ω-periodic functions on R with N0(t) pos-
itive and

∫ ω
0
α(t)dt > 0.

(P2) B(t) is nonnegative and piecewise continuous on R− with
∫ 0

−∞B(t)dt = 1.

Theorem 3.1 Under assumptions (P1) and (P2), equation (3.1) has at least
one positive ω-periodic solution.

Let a(t) = α(t) and

f(t, xt) = −x(t)α(t)
N0(t)

∫ 0

−∞
B(s)x(t+ s)ds.

It is clear that f(t, xt) is ω-periodic whenever x is ω-periodic. We need to
show that (H1)-(H4) hold. In fact,

∫ ω
0
a(t)dt > 0 and f(t, φt) ≤ 0 for all



8 Positive periodic solutions EJDE–2002/71

(t, φ) ∈ R × BC(R,R+). Thus, (H1) and (H2) are satisfied. To verify (H3),
let x ∈ BC(R,R+) with ‖x‖ ≤ B1. Notice that x(t)α(t)/N0(t) is continu-
ous. By Lebesgue Dominant Convergence Theorem, one can easily see that∫ 0

−∞B(s)x(t + s)ds is continuous for all t ∈ R. Thus, f(t, xt) is continuous in
t. Now let x, y ∈ BC(R,R+) with ‖x‖ ≤ L, ‖y‖ ≤ L for some L > 0. Then

|f(t, xt)− f(t, yt)|

=
∣∣∣x(t)α(t)
N0(t)

∫ 0

−∞
B(s)x(t+ s)ds− y(t)α(t)

N0(t)

∫ 0

−∞
B(s)y(t+ s)ds

∣∣∣
≤

∣∣∣x(t)α(t)
N0(t)

∣∣∣ ∫ 0

−∞
B(s)|x(t+ s)− y(t+ s)|ds

+
∣∣∣ (x(t)− y(t))α(t)

N0(t)

∣∣∣ ∫ 0

−∞
B(s)|y(t+ s)|ds

≤ L‖α‖
N0∗

sup
s∈R−

|x(t+ s)− y(t+ s)|+ |x(t)− y(t)|‖α‖L
N0∗

,

where N0∗ = inf{N(s) : 0 ≤ s ≤ ω}. For any ε > 0, choose δ = εN0∗/(2L‖a‖).
If ‖x− y‖ < δ, then

|f(t, xt)− f(t, yt)| < L‖α‖δ/N0∗ + δ‖α‖L/N0∗ = 2L‖α‖δ/N0∗ = ε.

This implies that (H4) holds.
We now verify (2.11) and (2.12) for equation (3.1). For φ ∈ K, we have

φ(t) ≥ σ‖φ‖ for all t ∈ [0, ω]. This yields

|f(t, φ)|
‖φ‖

≤ sup
τ∈[0,ω]

α(τ)
N0(τ)

∫ 0

−∞
B(s)ds‖φ‖ → 0

as ‖φ‖ → 0 and

|f(t, φ)|
‖φ‖

≥ inf
τ∈[0,ω]

α(τ)
N0(τ)

∫ 0

−∞
B(s)ds(σ2‖φ‖)→ +∞

as ‖φ‖ → ∞. Thus, (2.11) and (2.12) are satisfied. By Corollary 2.5, equation
(3.1) has a positive ω-periodic solution.

Next, consider a hematopoiesis model (Weng and Liang [19])

Ṅ(t) = −γ(t)N(t) + α(t)
∫ +∞

0

B(s)e−β(t)N(t−s)ds (3.3)

where N(t) is the number of red blood cells at time t, α, β, γ ∈ C(R,R) are
ω-periodic, and B ∈ L1(R+) is nonnegative and piecewise continuous. This is
a generalized model of the red cell system introduced by Wazewska-Czyzewska
and Lasota [18]

ṅ(t) = −γn(t) + αe−βn(t−r) (3.4)
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where α, β, γ, r are constants with r > 0. Periodicity in equation (3.4) has been
investigated extensively in the literature (see Chow [4]). Using Corollary 2.7
with a(t) = −γ(t) and

f(t, φt) = α(t)
∫ +∞

0

B(s)e−β(t)φ(t−s)ds,

we obtain the following theorem whose proof is essentially the same as that of
Theorem 3.1, and therefore will be omitted.

Theorem 3.2 Suppose that α(t)> 0, β(t) ≥ 0 for all t ∈ R+,
∫ ω

0
γ(t)dt > 0.∫ +∞

0
B(s)ds > 0. Then equation (3.3) has a positive ω-periodic solution.

We now consider the Volterra equation mentioned in Section 1.1.

ẋi(t) = xi(t)
[
ai(t)−

n∑
j=1

bij(t)xj(t)−
n∑
j=1

∫ t

−∞
Cij(t, s)gij(xj(s))ds

]
(3.5)

where xi(t) is the population of the ith species, ai, bij ∈ C(R,R) are ω-periodic
and Cij(t, s) is piecewise continuous on R2.

Theorem 3.3 Suppose that the following conditions hold for i, j = 1, 2, . . . , n.

(i)
∫ ω

0

ai(s)ds 6= 0,

(ii) bij(t)
∫ ω

0

ai(s)ds ≥ 0, Cij(t, s)
∫ ω

0

ai(ν)dν ≥ 0 for all (t, s) ∈ R2,

(iii) gij ∈ C(R+,R+) is increasing with gij(0) = 0,

(iv)
∫ ω

0

bii(s)ds 6= 0,

(v) Cij(t+ ω, s+ ω) = Cij(t, s) for all (t, s) ∈ R2 with
supt∈R

∫ t
−∞ |Cij(t, s)|ds < +∞.

Then equation (3.5) has an ω-periodic solution.

Proof. For x = (x1, x2, . . . , xn)T , define

fi(t, xt) = −xi(t)
n∑
j=1

bij(t)xj(t)− xi(t)
n∑
j=1

∫ t

−∞
Cij(t, s)gij(xj(s))ds

for i = 1, 2, . . . , n and set f = (f1, f2, . . . , fn)T . Then (3.5) can be written in
the form of (1.1) with (H1)− (H4) satisfied. Define

b∗ = max{‖bij‖ : i, j = 1, 2, ·, ·, ·, n}

C∗ = max
{

sup
t∈R

n∑
j=1

∫ t

−∞
|Cij(t, s)|ds : i = 1, 2, ·, ·, ·, n

}
g∗(u) = max{gij(u) : i, j = 1, 2, ·, ·, ·, n}
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Let x ∈ K, where K is defined in (2.4). Then

|fi(t, xt)| ≤ |xi(t)|
[
b∗‖x‖+

n∑
j=1

∫ t

−∞
|Cij(t, s)|gij(‖xj‖)ds

]
≤ |xi(t)|[b∗‖x‖+ C∗g∗(‖x‖)]

and ∫ ω

0

|f(t, xs)|ds ≤ ω‖x‖[b∗‖x‖+ C∗g∗(‖x‖)].

This implies ∫ ω
0
|f(t, xs)|ds
‖x‖

≤ ω[b∗‖x‖+ C∗g∗(‖x‖)]→ 0

as ‖x‖ → 0. Since xi(t) ≥ σ‖xi‖ for all t ∈ R whenever x ∈ K and bij(t), Cij(t, s)
have the same sign, we obtain∫ ω

0

|fi(t, xs)|ds

=
n∑
j=1

∫ ω

0

xi(t)|bij(t)|xj(t)dt+
n∑
j=1

∫ ω

0

xi(t)
∫ t

−∞
|Cij(t, s)|gij(xj(s))dsdt

≥
∫ ω

0

|bii(t)|xi(t)|2dt ≥ σ2‖xi‖2
∫ ω

0

|bii(t)|dt

and∫ ω

0

|f(t, xs)|ds ≥ σ2
n∑
i=1

‖xi‖2 min
1≤i≤n

∫ ω

0

|bii(t)|dt ≥
σ2

n
‖x‖2 min

1≤i≤n

∫ ω

0

|bii(t)|dt.

Here we have applied the inequality
(∑n

i=1 ‖xi‖
)2

≤ n
∑n
i=1 ‖xi‖2. Thus,∫ ω

0
|f(t, xs)|ds
‖x‖

→ +∞ as ‖x‖ → +∞.

By Corollary 2.5, equation (3.5) has an ω-periodic solution.

Remark. It is clear from the proof of Theorem 3.3 that condition (iv) can be
replaced by

(iv∗)
∫ ω

0

∫ t

−∞
|Cii(t, s)|dsdt 6= 0 and gii(u)→ +∞ as u→ +∞.

We conclude this paper by investigating the following scalar equation of
advanced and delay type which is highly nonlinear and takes a quite general
form.

ẋ(t) = a(t)x(t) +
∫ +∞

−∞
C(s)g(t, x(t− τ0(t)), x(t− τ1(t)), x(t+ s))ds (3.6)
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where a, τ0, τ1 ∈ C(R,R) are ω-periodic, g ∈ C(R4,R+), and C ∈ L(R−,R) is
piecewise continuous.

Let u = (u0, u1, u2)T ∈ R3 and define g(t, u) = g(t, u0, u1, u2). We assume
that g(t+ ω, u) = g(t, u) for all (t, y) ∈ R4 and

(P∗1)
∫ ω

0

a(s)ds 6= 0,

(P∗2) C(t)
∫ ω

0

a(s)ds ≤ 0 for all t ∈ R and
∫ +∞

−∞
|C(u)|du = 1.

Theorem 3.4 Under assumptions (P∗1) and (P∗2), equation (3.6) has at least
one positive ω-periodic solution, provided one of the following conditions hold

(P∗3)

lim
|u|↑0

max
t∈[0,ω]

g(t, u)
|u|

= 0 and lim
|u|↑∞, uj≥σ|u|, 0≤j≤2

min
t∈[0,ω]

g(t, u)
|u|

=∞,

(P∗4)

lim
|u|↑0, uj≥σ|u|, 0≤j≤2

min
t∈[0,ω]

g(t, u)
|u|

=∞ and lim
|u|↑+∞

max
t∈[0,ω]

g(t, u)
|u|

= 0

where σ is given in (2.2) and u = (u0, u1, u2)T .

Proof . We first show that under (P∗3), conditions (2.11) and (2.12) of Corol-
lary 2.5 hold. Let

f(t, xt) =
∫ +∞

−∞
C(s)g(t, x(t− τ0(t)), x(t− τ1(t)), x(t+ s))ds.

By (P∗3), for any ε > 0, there exists R1 > 0 such that |u| ≤ R1 implies |g(t, u)| ≤
ε|u| for all t ∈ [0, ω]. Now let x ∈ Cω with ‖x‖ < R1/3. Then

|x(t− τ0(t))|+ |x(t− τ1(t))|+ |x(t+ s)| ≤ 3‖x‖ < R1.

This yields

|f(t, xt)| ≤
∫ +∞

−∞
|C(s)|g(t, x(t− τ0(t)), x(t− τ1(t)), x(t+ s))ds

≤
∫ +∞

−∞
|C(s)|[ε(|x(t− τ0(t))|+ |x(t− τ1(t))|+ |x(t+ s)|)]ds

≤
∫ +∞

−∞
|C(s)|ds(3ε‖x‖) = 3ε‖x‖

and ∫ ω
0
|f(t, xt)|dt
‖x‖

≤ 3ωε.
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Thus, (2.11) holds. Next, it follows from the second part of (P∗3) that for any
M > 0 there exists R2 > 0 such that [|u| ≥ R2, uj ≥ σ|u|, 0 ≤ j ≤ 2] implies

g(t, u) ≥M |u|. (3.7)

Let K be given in (2.4) and observe that if x ∈ K, then x(t − τj(t)) ≥
σ‖x‖, |x(t+ s)| ≥ σ‖x‖ for all t ∈ R and j = 0, 1, and

|x(t− τ0(t))|+ |x(t− τ1(t))|+ |x(t+ s)| ≥ 3σ‖x‖ ≥ 3σ ·R2/(3σ) = R2

whenever ‖x‖ ≥ R2/(3σ). By (3.7), we have

g(t, x(t− τ0(t)), x(t− τ1(t)), x(t+ s))
≥ M(|x(t− τ0(t))|+ |x(t− τ1(t))|+ |x(t+ s)|) ≥M(3σ‖x‖).

Using the above inequality, we get∫ ω

0

|f(t, xt)|dt =
∫ ω

0

∫ +∞

−∞
|C(s)|g(t, x(t− τ0(t)), x(t− τ1(t)), x(t+ s))ds dt

≥
∫ ω

0

∫ +∞

−∞
|C(s)|(3σM‖x‖)ds dt = 3σωM‖x‖.

Thus, ∫ ω
0
|f(t, xt)|dt
‖x‖

≥ 3σωM.

This proves (2.12) holds. By Corollary 2.5, equation (3.6) has an ω-periodic
solution. We omit the case when (P∗4) holds. This completes the proof.
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