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Pullback permanence for non-autonomous partial

differential equations ∗

Jose A. Langa & Antonio Suárez

Abstract

A system of differential equations is permanent if there exists a fixed
bounded set of positive states strictly bounded away from zero to which,
from a time on, any positive initial data enter and remain. However,
this fact does not happen for a differential equation with general non-
autonomous terms. In this work we introduce the concept of pullback
permanence, defined as the existence of a time dependent set of positive
states to which all solutions enter and remain for suitable initial time. We
show this behaviour in the non-autonomous logistic equation ut −∆u =
λu − b(t)u3, with b(t) > 0 for all t ∈ R, limt→∞ b(t) = 0. Moreover,
a bifurcation scenario for the asymptotic behaviour of the equation is
described in a neighbourhood of the first eigenvalue of the Laplacian. We
claim that pullback permanence can be a suitable tool for the study of
the asymptotic dynamics for general non-autonomous partial differential
equations.

1 Introduction

One of the main questions for a mathematical model from a natural phenomena
is that of the long-time behaviour of its solutions. In particular, of special inter-
est for an ecological model is to predict the long time persistence of the species
being modelled. In this sense, we can look for strictly positive globally attract-
ing equilibria (or stationary solutions) for the corresponding partial differential
equation associated to the model. But only in a restricted set of systems we
can assure the existence of stationary solutions. However, the concept of global
attractor serves to put some light in the understanding of the asymptotic be-
haviour of many dissipative systems (Hale [15], Temam [27]). Indeed, we can
infer uniform persistence or permanence (Cantrell et al. [4], [5]) of solutions
from the presence of a globally attracting positive set rather that a single at-
tracting equilibrium. A system is said to have uniform persistence (Butler et
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al. [3] ) if there exists a positive set which is bounded away from zero and
globally attracting for all positive solutions. Note that this allows the systems
to have a more complex dynamics, so that a wider set of (more natural) situa-
tions can be considered. On the other hand, we lose some information on the
location and size of these new sets, so that any study of their structure would
be useful. There exists a substantial literature on this subject for autonomous
differential equations (Hale and Waltman [16], Hutson and Schmitt [19]). The
system is said to be permanent if it is also dissipative, i.e., the orbits enter into
a bounded set in a finite time. Afterwards, Cao and Gard [6] introduced the
concept of practical persistence, defined as uniform persistence together with
some information on the location of the positive attractor.

In this work we study problems on the permanence of positive solutions for
the following non-autonomous logistic equation

ut −∆u = λu− b(t)u3,

with b(t) > 0, the interesting case being when we impose limt→+∞ b(t) = 0.
Previous works for non-autonomous equations focus on the periodic or bounded
by periodic functions in time cases (Cantrell and Cosner [4], Burton and Hutson
[2], see also Nkashama [23] for the finite dimensional case with bounded and
strictly positive non-autonomous terms). We treat a more general case, in that
we allow the equation a very weak dissipation effect as time goes to infinite, and
so previous works in the literature are not valid for our purposes.

The situation can be summarized as follows: when the parameter λ < λ1,
with λ1 the first eigenvalue of the negative Laplacian, we get the existence of
the zero solution as a globally attracting set. However, a drastic change in the
asymptotic behaviour happens as the parameter λ crosses the value λ1. We
describe in some detail this bifurcation scenario (Sections 3 and 4). Indeed,
we firstly show that the equation leads to an order-preserving system and the
method of sub and super solutions (Pao [24], Hess [18]) can be adapted to this
case. Afterwards, we find a non bounded order interval depending on time in
which all the asymptotic behaviour forward in time takes place (Section 4).
That is, there does not exist any bounded absorbing set for the problem, and so
no result on permanence in the sense of Cantrell and Cosner [4] can be expected.

However, very recently the theory of attractors for general non-autonomous
differential equations has been introduced (Cheban et al. [8], Kloeden and
Schamalfuss [20]; see also Crauel and Flandoli [12], Crauel et al. [13], for the
same concept in a stochastic framework). In this case, the semigroup becomes
a process, that is, a two-time dependent operator (Sell [26]), where the de-
pendence on initial time is as important as that on the final time. When the
non-autonomous terms are periodic or quasi-periodic, the same concept of at-
tractor in Temam [27] or Hale [15] can be used for these situations (Sell [26],
Chepyzhov and Vishik [10]). But important changes in the concept must be
introduced when we deal with general non-autonomous terms. Chepyzhov and
Vishik [10] define kernel and kernel sections. This last concept is similar to that
defined in Cheban et al. [8] as cocycle or pullback attractor. In our opinion, this
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is one of the right concepts to define the attractor for a general non-autonomous
differential equation, as some results on the upper-semicontinuity of pullback
attractors to the (autonomous) global attractor show (Caraballo and Langa
[7]). The attractor in this situation is a time-dependent family of compact sets,
invariant with respect to the cocycle and attracting from ‘−∞’ (see Defini-
tion 2.4).

We apply the theory of pullback attractors to our non-autonomous logistic
equation. We also apply a result on the upper semicontinuity of this pullback at-
tractor to the global attractor for the autonomous equation. This reinforces the
choice of working with the pullback attractor to study the asymptotic behaviour
of non-autonomous equations.

While forward in time we have not information on the stability of the equa-
tion when λ > λ1, we describe a bifurcation scenario at the parameter value
λ = λ1 from the pullback procedure: the zero solution becomes unstable for
λ > λ1 and there exists a transfer of stability to the pullback attractor, which
is a set strictly bigger than the zero solution, so that a result on permanence
follows. We think this is the sensible concept for permanence for general non-
autonomous partial differential equations (Definition 2.8). In Section 4.4 we are
able to give more information on the structure of this pullback attractor and
so on the bifurcation phenomena. Indeed, by introducing the concepts of sub-
trajectories, super-trajectories and complete trajectories for non-autonomous
systems in Section 3, as generalization of the theory of sub and super-equilibria
in the sense of Hess [18], Arnold and Chueshov [1] and Chueshov [11], we de-
scribe the existence of a maximal complete trajectory on the attractor with
some stability properties. We give a general theorem which can be applied to
more general situations.

Finally, some conclusions and possible generalizations are given in the final
Section.

2 Non-autonomous attractors

In this section, we introduce the general framework in which the theory of at-
tractors for non-autonomous systems is going to be studied (see Cheban et al. [8]
and Schmalfuss [25]). In a first step, we define processes as two-time dependent
operators related with the solutions of non-autonomous differential equations.
In this way, we are able to treat these equations as dynamical systems. Secondly,
we write the general definitions of invariance, absorption and attraction and we
finish with a general theorem on the existence of global attractors for these kind
of equations. Finally, we give the definition of permanence for non-autonomous
partial differential equations.

Let (X, d) be a complete metric space (with the metric d) with an order
relation ‘≤’ and {S(t, s)}t≥s, t, s ∈ R be a family of mappings satisfying:

i) S(t, s)S(s, τ)u = S(t, τ)u, for all τ ≤ s ≤ t, u ∈ X

ii) u 7→ S(t, τ)u is continuous in X.
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This map is called a process. In general, we have to consider S(t, τ)u as
the solution of a non-autonomous equation at time t with initial condition u at
time τ .

Let D be a non-empty set of parameterized families of non-empty bounded
sets {D (t)}t∈R. In particular, we could have D (t) ≡ B ∈ D, where B ⊂ X is
a bounded set. In what follows, we will consider fixed this base of attraction
D, so that the concepts of absorption and attraction in our analysis are always
referred to it.

For A,B ⊂ X define the Hausdorff semidistances as:

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), Dist(A,B) = inf
a∈A

inf
b∈B

d(a, b).

Definition 2.1 Given t0 ∈ R, we say that a bounded set K(t0) ⊂ X is attract-
ing at time t0 if for every {D (t)} ∈ D we have that

lim
τ→−∞

dist(S(t0, τ)D (τ) ,K(t0)) = 0.

A family {K(t)}t∈R is attracting if K(t0) is attracting at time t0, for all t0 ∈ R.

The previous concept considers a fixed final time and moves the initial time
to −∞. Note that this does not mean that we are going backwards in time,
but we consider the state of the system at time t0 starting at τ → −∞. This is
called pullback attraction in the literature (cf. [20], [25]).

Definition 2.2 Given t0 ∈ R, we say that a bounded set B(t0) ⊂ X is ab-
sorbing at time t0 if for every {D (t)} ∈ D there exists T = T (t0, D) ∈ R such
that

S(t0, τ)D (τ) ⊂ B(t0), for all τ ≤ T.

A family {B(t)}t∈R is absorbing if B(t0) is absorbing at time t0, for all t0 ∈ R.

Note that every absorbing set at time t0 is attracting.

Definition 2.3 Let {B(t)}t∈R be a family of subsets of X. This family is said
to be invariant with respect to the process S if

S(t, τ)B(τ) = B(t), for all (τ, t) ∈ R2, τ ≤ t.

Note that this property is a generalization of the classical property of in-
variance for semigroups. However, in this case we have to define the invariance
with respect to a family of sets depending on a parameter.

We define the omega-limit set at time t0 of D ≡ {D (t)} ∈ D as

Λ(D, t0) = ∩s≤t0∪τ≤sS(t0, τ)D(τ).

From now on, we assume that there exists a family {K(t)}t∈R of compact ab-
sorbing sets, that is, K(t) ⊂ X is non-empty, compact and absorbing for each
t ∈ R. Note that, in this case, Λ(D, t0) ⊂ K(t0), for all {D (t)} ∈ D, t0 ∈ R. As
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in the autonomous case, it is not difficult to prove that under these conditions
Λ(D, t0) is non-empty, compact and attracts {D (t)} ∈ D at time t0. The proof
is similar to that in Crauel et al. [13], where the set D consists only of bounded
sets.

Definition 2.4 The family of compact sets {A(t)}t∈R is said to be the global
non-autonomous (or pullback) attractor associated to the process S if it is in-
variant, attracting every {D (t)} ∈ D (for all t0 ∈ R) and minimal in the sense
that if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t)
for all t ∈ R.

Remark 2.5 Chepyzhov and Vishik [9] define the concept of kernel sections
for non-autonomous dynamical systems which corresponds to our definition of
global non-autonomous attractor with {D(t)} ≡ B ⊂ X bounded.

The general result on the existence of non-autonomous attractors is a gen-
eralization of the abstract theory for autonomous dynamical systems (Temam
[27], Hale [15]):

Theorem 2.6 (Crauel et al. [13], Schmalfuss [25]) Assume that there ex-
ists a family of compact absorbing sets. Then the family {A(t)}t∈R defined by

A(t) = ∪D∈DΛ(D, t)

is the global non-autonomous attractor.

Remark 2.7 All the general theory of non-autonomous attractors can be writ-
ten in the framework of cocycles (cf., among others, Cheban et al. [8], Crauel
and Flandoli [12], Kloeden and Schmalfuss [20], Schmalfuss [25]). We could have
also followed this notation here, but we think that, in this case, it is clearer to
keep the explicit dependence on time of the attractor, which, in addition, allows
us to compare in a more straightforward manner with the concept of attractor
in an autonomous framework.

From the concept of non-autonomous attractor, we can now give the follow-
ing definition of permanence, which will be suitable for non-autonomous partial
differential equations.

Definition 2.8 We say that a system has the property of pullback permanence
(or that it is permanent in the pullback sense) if there exists a time-dependent
family of sets U : R 7−→ X, satisfying

1. U(t) is absorbing for every bounded set D ⊂ X (cf. Definition 2.2).

2. Dist(U(t), {0}) > 0 for all t ∈ R.

Remark 2.9 This same concept has been also applied to systems of PDEs in
Langa et al. [21].
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3 Order-preserving non-autonomous differential
equations

We now introduce order-preserving systems and the concepts of sub, super and
complete trajectories as a generalization of sub, super and equilibria in Hess [18],
and of sub, super and equilibria in Arnold and Chueshov [1] in the stochastic
case and Chueshov [11] in the non-autonomous case under stronger conditions.

Definition 3.1 The process {S(t, s) : X → X}t≥s is order-preserving if there
exists an order relation ‘≤’ in X such that, if u0 ≤ v0, then S(t, s)u0 ≤ S(t, s)v0,
for all t ≥ s.

Definition 3.2 Let S be an order-preserving process. We call u (u) : R → X
a sub-trajectory (super-trajectory) of S if it satisfies

S(t, s)u(s) ≥ u(t), for all t ≥ s (S(t, s)u(s) ≤ u(t), for all t ≥ s ).

Definition 3.3 We call the continuous map v : R → X a complete trajectory
if, for all s ∈ R, we have

S(t, s)v(s) = v(t), for t ≥ s.

From a sub and super-trajectory (u, u) of a process such that u(t) ≤ u(t),
for all t ∈ R,we can define the “interval”

Iuu (t) = {u ∈ X : u(t) ≤ u ≤ u(t)}.

Clearly, it is a closed forward invariant set, i.e. S(t, s)Iuu (s) ⊂ Iuu (t), for all
t ≥ s.

The following result gives sufficient conditions for the existence of upper and
lower asymptotically stable complete trajectories, giving some information on
the structure of the non-autonomous attractor, adapting to our case the main
results in Arnold and Chueshov [1] and Chueshov [11]. Note that we slightly
generalize the results in [11] as we do not impose the set of parameters to be a
compact set.

Suppose the pullback attractor attracts time-dependent families of sets in a
base of attraction D.

Theorem 3.4 Let S be an order-preserving process and A(t) its associated pull-
back attractor. Let u, u be sub and super-trajectories such that u(t) ≤ u(t), for
all t ∈ R, and Iuu (t) the corresponding associated interval, such that A(t) ⊂
Iuu (t), for all t ∈ R and u, u ∈ D. Suppose that there exists t0 > 0 such that
S(t0 + s, s)Iuu (s) is relatively compact, for all s ∈ R. Then, there exist complete
trajectories u∗(t), u∗(t) ∈ A(t) such that

i) u(t) ≤ u∗(t) ≤ u∗(t) ≤ u(t), and A(t) ⊂ Iu∗u∗ (t), for all t ∈ R.

ii) u∗ (u∗) is minimal (maximal) in the sense that it does not exist any complete
trajectory in the interval Iu∗u (Iuu∗).
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iii) u∗(t) is globally asymptotically stable from below, that is, for all v ∈ D with
u(t) ≤ v(t) ≤ u∗(t), for all t ∈ R, we have that

lim
s→+∞

d(S(t,−s)v(−s), u∗(t)) = 0.

u∗(t) is globally asymptotically stable from above, that is, for all v ∈ D
with u∗(t) ≤ v(t) ≤ u(t), for all t ∈ R, we have that

lim
s→+∞

d(S(t,−s)v(−s), u∗(t)) = 0.

Proof. Write an(t) = S(t,−nt0)u(−nt0), bn(t) = S(t,−nt0)u(−nt0). Then,
we have

u(t) ≤ an(t) ≤ am(t) ≤ bm(t) ≤ bn(t) ≤ u(t), for all m > n. (3.1)

Indeed, an(t) = S(t,−nt0)u(−nt0) ≥ u(t), since u is a sub-trajectory. Moreover,
for s = σ + r, r > 0,

as(t) = S(t,−st0)u(−st0) = S(t,−(σ + r)t0)u(−(σ + r)t0)
= S(t,−σt0)S(−σt0,−(σ + r)t0)u(−(σ + r)t0) ≥ S(t,−σt0)u(−σt0)
= aσ(t).

On the other hand, we have

an+1(t) = S(t,−(n+ 1)t0)u(−(n+ 1)t0)
= S(t, t− t0)S(t− t0,−(n+ 1)t0)u(−(n+ 1)t0)
= S(t, t− t0)an+1(t− t0),

and so an+1(t) ∈ S(t, t− t0)Iuu (t− t0), for all n ∈ N. Thus, from (3.1) and the
relative compactness of S(t, t− t0)Iuu (t− t0), there exists the following limit

lim
n→+∞

an(t) $ u∗(t).

Clearly, u∗ : R→ X is a complete trajectory, as, by the continuity of the process
S(t, s),

S(t, s)u∗(s) = S(t, s) lim
n→+∞

S(s,−nt0)u(−nt0)

= lim
n→+∞

S(t, s)S(s,−nt0)u(−nt0)

= lim
n→+∞

S(t,−nt0)u(−nt0) = u∗(t).

We now prove that u∗(t), u∗(t) ∈ A(t). Indeed,

dist(S(t, s)u∗(s),A(t)) ≤ d(S(t, s)u∗(s), S(t, s)u(s)) + dist(S(t, s)u(s),A(t)),

and the right hand side of the inequality tends to zero when s → −∞. As
S(t, s)u∗(s) = u∗(t), for all s ∈ R, u∗(t) ∈ A(t).
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Is is also straightforward to show that, for all u(t) ∈ A(t),

u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),

by the definition of u∗ and u∗, the invariance of A(t) and the order in X.
On the other hand, for any complete trajectory v(·) such that u(t) ≤ v(t) ≤

u∗(t), for all t ∈ R, and by the order in the process,

u∗(t) = lim
n→+∞

S(t,−nt0)u(−nt0) ≤ lim
n→+∞

S(t,−nt0)v(−nt0) = v(t) ≤ u∗(t),

so that v(t) = u∗(t), for all t ∈ R. Note that this implies that u∗ and u∗ are
uniquely defined by the order in X.

Finally, for iii), let be v ∈ D with u(t) ≤ v(t) ≤ u∗(t), for all t ∈ R. Then,
by the attraction property of A(t)

u∗(t) = lim
s→+∞

S(t,−s)u(−s) ≤ lim
s→+∞

S(t,−s)v(−s)

≤ lim
s→+∞

S(t,−s)u∗(−s) = u∗(t).

All these arguments also hold for u∗. �
Note that the same conclusions can be got under weaker hypotheses:

Corollary 3.5 Let S be an order-preserving process and A(t) its associated
pullback attractor. Let u, u ∈ D be such that u(t) ≤ u(t), for all t ∈ R, and
assume that

A(t) ⊂ Iuu (t), ∀t ∈ R.

Then there exists two trajectories u∗(t), u∗(t) ∈ A(t) such that

i) u∗(t) ≤ u ≤ u∗(t), ∀t ∈ R and ∀u ∈ A(t).

ii) u∗ (u∗) is minimal (maximal) in the sense that it does not exist any complete
trajectory in the interval Iu∗u (Iuu∗).

iii) u∗(t) is globally asymptotically stable from below and u∗(t) is globally asymp-
totically stable from above.

Proof. Since Iuu (t) ⊂ D, the attractivity property of A(t) implies that

dist(S(t,−s)Iuu (−s),A(t))→ 0, as s→ +∞.

Now, the compactness of A(t) and the order relation in X imply that there exist
u∗(t), u∗(t) ∈ A(t) with

lim
s→+∞

S(t,−s)u(−s) = u∗(t) and lim
s→+∞

S(t,−s)u(−s) = u∗(t)

and the argument follows as in the previous theorem. �
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4 Non-autonomous logistic equation

Let Ω be a bounded domain in RN , N ≥ 1, with smooth boundary ∂Ω. Consider
the non-autonomous logistic equation

ut −∆u = λu− b(t)u3

u
∣∣
∂Ω

= 0, u(s) = u0,
(4.1)

with λ ∈ R and b ∈ Cν(R), ν ∈ (0, 1) assuming that there exists a positive
constant B such that

0 < b(t) ≤ B, for all t ∈ R. (4.2)

The next result provides us with the existence, uniqueness and helpful es-
timates of the solution of (4.1). Consider X = C0

0 (Ω) with norm |·|0 and its
positive cone

V+ = {u ∈ X : u(x) ≥ 0, a.a. x ∈ Ω}.

For (4.1), we can define an order with respect to V+. That is, u0 ≤ v0 if
v0−u0 ∈ V+. On the other hand, we say the u0 is strictly positive if u0 ∈ int(V+),
where

int(V+) =
{
v ∈ C1

0 (Ω) : v > 0 in Ω,
∂v

∂n
< 0 on ∂Ω

}
,

where n is the outward unit normal on ∂Ω.
Given a regular domain D ⊂ R

N , λD1 and ϕD1 stand for the principal
eigenvalue and the positive eigenfunction associated to −∆ under homogeneous
Dirichlet condition, normalized such that maxx∈D̄ ϕD1 (x) = 1. We write λ1 = λΩ

1

and ϕ1 = ϕΩ
1 .

Theorem 4.1 Assume (4.2) and u0 ∈ V+, u0 6= 0. Then, there exists a unique
solution u(t) = u(t, s;u0) ∈ X of (4.1), which is strictly positive for t > s.

Proof. We use the sub-supersolution method, see for instance [24]. We take
a domain D such that Ω ⊂ D and consider the pair

(u, u) := (0, εeγ(t−s)ϕD1 ),

where ε and γ are constants to be chosen. The pair (u, u) is a sub-supersolution
of (4.1) provided that

0 <
maxΩ u0

minΩ ϕ
D
1

≤ ε, (4.3)

and
0 ≤ γ + λD1 − λ+ b(t)ε2e2γ(t−s)(ϕD1 )2. (4.4)

Now, it is clear that (4.3) and (4.4) are satisfied if ε is large enough and

0 ≤ γ + λD1 − λ (4.5)
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This shows the existence of a nonnegative and nontrivial solution u of (4.1) such
that

u ≤ u ≤ u. (4.6)

Now, the strong maximum principle implies that u is strictly positive for t > s.
This completes the existence part. The uniqueness follows by a standard way
(Pao [24], Chapter 2). �

So, we can define the following flow in X, for t, s ∈ R and t ≥ s, we define
S(t, s) : X → X as

S(t, s)u0 = u(t, s;u0),

with u(t, s;u0) the unique solution of (4.1). Furthermore, (4.1) can be written
as the following differential equation in X:

du(t)
dt

+Au = λu(t)− b(t)u3(t)

u|∂Ω = 0
u(s) = u0

(4.7)

with A = −∆, the linear operator A : D(A) → X associated to the Laplacian.
Moreover, it is clear that S(t, s) is an order-preserving system. Indeed, it is
enough to consider two initial data u0, v0, with u0 ≤ v0, and apply the maximum
principle to S(t, s)u0 − S(t, s)v0.

Remark 4.2 Note that v : R→ X is a complete trajectory of problem (4.1) if

u(t, s; v(s)) = v(t) in X, for t ≥ s,

with u(t, s; v(s)) the unique solution of (4.1) with initial condition u(s) = v(s).

4.1 Asymptotic behaviour forward in time

We are interested in the study of qualitative properties in the asymptotic be-
haviour of problem (4.1) when the parameter λ changes. The family of maps
{S(t, s)}t≥s will allow us to treat this problem from a dynamical system point
of view.

If we fix the initial time s, and for λ < λ1, note that the asymptotic be-
haviour of (4.1) is determined around the zero solution, that is, {0} is globally
asymptotically stable. The following result shows this fact as an easy conse-
quence of Theorem 4.1.

Corollary 4.3 Assume (4.2) and λ < λ1. Then,

|u(t, s;u0)|0 → 0 as t→ +∞.
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Proof. From the monotonicity and continuity of the principal eigenvalue with
respect to the domain, there exists a domain D ⊃ Ω such that λ < λD1 < λ1.
So, according to (4.5) we can take γ < 0 in Theorem 4.1. So, by (4.6)

0 < u(t, s;u0) ≤ εeγ(t−s)ϕD1 , (4.8)

whence the result follows. �
The following argument, and Remark 4.4, follow from Cantrell and Cosner

[4]: Denote by Θ[λ,c] and Ψλ the unique positive solution respectively of

ut −∆u = λu− cu3

u
∣∣
∂Ω

= 0, u(s) = u0,
(4.9)

and

ut −∆u = λu

u
∣∣
∂Ω

= 0, u(s) = u0

where c is a positive constant. Hence, by the maximum principle we get

Θ[λ,B] ≤ u ≤ Ψλ for t ≥ s.

When λ > λ1, Ψλ goes to ∞ as t→ +∞ and Θ[λ,B] goes to θ[λ,B], where θ[λ,B]

is the unique positive solution of

−∆u = λu−Bu3 in Ω
u = 0 on ∂Ω.

(4.10)

Hence, when λ > λ1 there exist V ∈ C(Ω) and t0(u0) ∈ R such that

0 < V (x) ≤ Θ[λ,B](t, s;u0) = Θ[λ,B](t− s, 0;u0) ≤ u(t, s;u0) (4.11)

for any t− s ≥ t0(u0), so that a result on uniform persistence follows.

Remark 4.4 If there exists a positive constant A such that 0 < A ≤ b(t), then
there exists a positive function W ∈ C(Ω) such that

u(t, s, u0) ≤W (x) for any t ≥ s.

Indeed, in this case if we take 0 < M ,

M ≥ max{|u0|0 ,
√
λ/A}, (4.12)

then (u, u) = (0,M) is a sub-supersolution of (4.1), whence the result follows.
So, in this case we have that the equation is permanent.

In summary, when λ > λ1 the behaviour of the positive solution of (4.1)
changes drastically. In particular, the system is not permanent. The next result
shows this fact.

Lemma 4.5 Consider (4.1) with λ > λ1, u0 ∈ V+, u0 6= 0 and limt→+∞ b(t) = 0.
Then, for all M > 0 and t0 ∈ R, there exists t > t0 such that |u(t, s;u0)|0 > M .
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Proof. We argue by contradiction. Assume that there exist a positive constant
0 < K < +∞ and t0 ∈ R, such that for all t ≥ t0

|u(t, s;u0)|0 ≤ K. (4.13)

Since λ > λ1, we can take ε > 0 such that λ > λ1 + εK2. For this ε > 0, there
exists t1 > 0 such that b(t) ≤ ε for t ≥ t1. We define

q(t) =
∫

Ω

u(t, s;u0)ϕ1(x)dx.

Multiplying the equation for u by ϕ1, integrating over Ω and using the Green’s
formula, we obtain

q′(t) = (λ− λ1 − εK2)q(t) +
∫

Ω

(εK2 − b(t)u2)u(t, s;u0)ϕ1(x)dx,

and so, by (4.13), we get for t ≥ max{t0, t1}

q′(t) ≥ (λ− λ1 − εK2)q(t) and q(s) > 0.

This is a contradiction to (4.13). �
The preceding result implies that there does not exist any bounded absorbing

set for (4.1) in the sense of a bounded set B ⊂ X such that, for any D ⊂ X
bounded, S(t, s)D ⊂ B, for t big enough (Chepyzhov and Vishik [9], Temam
[27]). Thus, at the parameter value λ = λ1 it occurs a qualitative change of the
asymptotic behaviour of the equation, as a “disappearance” of the dissipative
effect in the equation. On the other hand, note that the presence of the term
-b(t)u3 is also causing some dissipativity in the problem. It is the possibility of
being b(t) as close to zero as time goes to ∞ which causes so big change in the
asymptotic behaviour.

Recently, the theory of global attractors for general non-autonomous differ-
ential equations has been introduced (see Section 2). In the following section
we apply this theory to our problem. Some new qualitative properties in the
asymptotic behaviour of (4.1) will arise by using this theory. In particular, we
will show a result on pullback permanence.

4.2 Existence of non-autonomous attractors for the logis-
tic equation

In this Section we will prove the existence of a compact absorbing set in X. In
fact, we will prove the existence of a compact absorbing set in C1

0 (Ω̄) by the
existence of a bounded absorbing ball in C2

0 (Ω̄). We will do it in two steps:

Absorbing set in X. Consider the non-autonomous differential equation

dy(y)
dt

= λy(t)− b(t)y3(y)

y(s) = ys
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whose solution satisfies

y2(t, s; ys) =
e2λt

e2λs

y2
s

+ 2
∫ t
s
e2λτ b(τ)dτ

.

Now, given D ⊂ X bounded, i.e., supd∈D |d| ≤M , for M > 0, and u0 ∈ D, the
pair (0, y(t, s;M)) is a sub-supersolution of (4.1) and so,

u(t, s;u0) ≤ y(t, s;M), for all t ≥ s and all u0 ∈ D.

Thus, there exists T (t) ∈ R such that

|u(t, s;u0)|0 ≤ r1(t) for s ≤ T (t) (4.14)

where

r2
1(t) =

e2λt∫ t
−∞ e2λτ b(τ)dτ

.

Clearly, this means that the ball in X with radius r1(t), BX(0, r1(t)), is absorb-
ing for the process S(t, s).

Absorbing set in C1
0 (Ω̄). To obtain a family of absorbing sets in C1

0 (Ω̄) we
need the following result which follows by [22], see also Lemma 3.1 in [5]. Here,
for a Banach space Y , Y β will denote the usual fractional power spaces with
norm |·|β .

Lemma 4.6 The operator A generates an analytic semigroup on Y = Ck0 (Ω̄)
for k = 0, 1. Moreover, it holds

Y β ↪→ Ck+q
0 (Ω̄) for q = 0, 1 and 2β > q.

Given D ⊂ X bounded, i.e., supd∈D |d| ≤ M , for M > 0, take u0 ∈ D. We
define

h(r, s) = λu(r, s;u0)− b(r)u3(r, s;u0) for r ≥ s.
Then, writing the equation from the variation of constants formula, we obtain

u(t, s;u0) = e−A(t−s)u0 +
∫ t

s

e−A(t−r)h(r, s)dr.

Hence, taking it between t− 1 and t, we get, for s ≤ t− 1,

u(t, s;u0) = e−Au(t− 1, s;u0) +
∫ t

t−1

e−A(t−r)h(r, s)dr.

Hence,

|u(t, s;u0)|β =
∣∣Aβu(t, s;u0)

∣∣
0

≤
∥∥Aβe−A∥∥

op
|u(t− 1, s;u0)|0

+ sup
r∈[t−1,t]

|h(r, s)|0
∫ t

t−1

∥∥Aβe−A(t−r)∥∥
op
dr.
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Now, using the estimate
∥∥Aβe−A(t−r)

∥∥
op
≤ Cβ(t − r)−βe−δ(t−r) for some con-

stants Cβ , δ > 0 (cf. Henry [17]) and (4.14), we obtain the existence of M(t)
and T0(t) such that

|u(t, s;u0)|β ≤M(t) for all s ≤ T0(t)

with β < 1 − ε, and any ε ∈ (0, 1). Applying now Lemma 4.6 with q = 1 and
β > 1/2, we obtain

|u(t, s;u0)|C1 ≤ R1(D, t) for all s ≤ T0(t),

and then the ball in C1
0 (Ω̄), B(0, R1(t)) is absorbing in C1

0 (Ω̄).
We can repeat the argument taking now Y = C1

0 (Ω̄) and D a bounded set
in Y . In this case, using again Lemma 4.6, we obtain that

|u(t, s;u0)|C2 ≤ R2(D, t) for all s ≤ T1(t),

and hence, the existence of an absorbing set in C2
0 (Ω̄), and so compact in X or

Y .

Remark 4.7 From (4.14) we conclude that the non-autonomous attractor A(t)
attracts not only the “pullback pseudotrajectories” ∪s≤tS(t, s)u0, but we have
a stronger attraction property: Consider the base of attraction

D = {v : R→ X continuous, such that, lim
s→−∞

e2λs

|v(s)|20
= 0},

that is, D is the set of tempered functions, which is also usually defined in the
literature as the base of attraction (see, for example, Schmalfuss [25] or Flandoli
and Schmalfuss [14]). Then, we have that, given v ∈ D,

lim
s→−∞

dist(S(t, s)v(s),A(t)) = 0. (4.15)

Indeed, we have that for s small enough

|u(t, s; v(s))|20 ≤
e2λt

e2λs

|v(s)|2s
+ 2

∫ t
s
e2λτ b(τ)dτ

≤ r2
1(t).

Note that every map v, with v(t) ≡ v0, for all t, is in D.

4.3 Upper semicontinuity of non-autonomous attractors
to the global attractor

Let bσ be a family of functions satisfying (4.2) and Sσ(t, s) be the non-au-
tonomous dynamical system associated to

ut −∆u = λu− bσ(t)u3, lim
σ↘0

bσ(t) = α > 0 (4.16)

uniformly on bounded sets of t ∈ R, λ > λ1, defined as a small perturbation of
the given semigroup S0 associated to the autonomous equation

ut −∆u = λu− αu3. (4.17)
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Remark 4.8 Note that this holds, for example, for 0 < bσ(t) = αe−σ|t|.

The asymptotic behaviour of this autonomous logistic equation is very well
known (cf., for example, Hale [15]). Indeed, it can be proved that (4.17) has a
global attractorA, that is, a compact invariant set (S0(t)A = A, for all t ≥ 0) at-
tracting every bounded set in X forward in time, i.e. limt→+∞ dist(S(t)D,A) =
0, for all D ⊂ X bounded. Moreover, we can get some information about the
structure of this set. Indeed, at the parameter value λ = λ1 we find a pitchfork
bifurcation, that is, it bifurcates from the zero solution a globally asymptotically
stationary solution u+ ∈ X, i.e. u+ satisfies

lim
t→+∞

|u(t;u0)− u+|0 = 0, for all u0 ∈ V+.

Note that the asymptotic behaviour of (4.16) is rather different. However, we
can apply a result on the upper semicontinuity of attractors associated to (4.16)
and (4.17). Indeed, suppose, for all t > s,

lim
σ↘0

d(Sσ(t, s)u0, S0(t)u0) = 0 (4.18)

uniformly on bounded sets of X.
On the other hand, suppose that there exist the pullback attractors Aσ(t)

andA, associated with Sσ and S0 respectively, such thatAσ(t) ⊂ Kσ(t), A ⊂ K,
where Kσ(t) and K are compact absorbing sets associated to the corresponding
flows, and satisfying

lim
σ↘0

dist(Kσ(t),K) = 0, for every t ∈ R. (4.19)

Then we have (Caraballo and Langa [7])

Theorem 4.9 Under the preceding assumptions (4.18), (4.19), it follows that,
for all t ∈ R,

lim
σ↘0

dist(Aσ(t),A) = 0.

It remains to prove that conditions (4.18) and (4.19) are satisfied in our
case. Indeed, (4.19) is a consequence of the expression for rσ1 (t), with rσ1 (t) the
corresponding radius of the absorbing ball associated to (4.1) with bσ(t). From
(4.14),

lim
σ↘0

rσ1 (t)2 = lim
σ↘0

e2λt∫ t
−∞ e2λτ bσ(τ)dτ

= 2
λ

α
,

which is independent of t ∈ R, so that the same is true for Rσ2 (t) and (4.19)
holds.

On the other hand, (4.18) is the content of the following lemma

Lemma 4.10 Given uσ(t, s;u0), u(t;u0) solutions of (4.16) and (4.17) respec-
tively with initial data uσ(s) = u(s) = u0, it holds that, for all t > s,

lim
σ↘0
|uσ(t, s;u0)− u(t;u0)|0 = 0. (4.20)
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Proof. Since limσ↘0 b
σ(t) = α > 0, for σ sufficiently small, positive constants

are supersolutions of (4.16), see (4.12), and so

|uσ(t, s;u0)|0 ≤M (independent of σ). (4.21)

Calling vσ(t, s;u0) = uσ(t, s;u0) − u(t;u0) and using the variation of con-
stants formula, we have

vσ(t, s;u0) =
∫ t

s

e−A(t−r)(λvσ(r, s;u0) + (α− bσ(r))u3
σ(r, s;u0)

+α(u3
σ(r, s;u0)− u3(r;u0)))dr.

Since
∥∥e−A(t−r)

∥∥
op
≤ e−δ(t−r) ≤ 1, we get

|vσ(t, s;u0)|0 ≤ λ

∫ t

s

|vσ(r, s;u0)|0 dr +
∫ t

s

|α− bσ(r)| sup
σ

∣∣u3
σ(r, s;u0)

∣∣
0
dr

+3α
∫ t

s

η2
σ(ξr) |vσ(r, s;u0)|0 dr.

Using now (4.21) and Gronwall’s lemma, we get (4.20). �

4.4 Bifurcation scenario for positive solutions

In this section we describe the changes in the asymptotic behaviour of the
equation as the parameter value crosses λ1. For λ < λ1, note that the zero
solution is globally asymptotically stable, in both the forward and the pullback
sense. Indeed, from (4.8) we have that

lim
t→+∞

|u(t, s;u0)|20 = lim
s→−∞

|u(t, s;u0)|20 = 0.

This means that, in this case, the non-autonomous attractor reduces to a fixed
(not depending on time) point, i.e. A(t) ≡ {0}, for all t ∈ R.

On the other hand, a nontrivial attractor exists for values of the parameter
bigger than λ1. In particular, we prove that the attractor is bigger than the
zero solution, i.e. {0}  A(t).

Proposition 4.11 Given u0 ∈ C1
0 (Ω̄) strictly positive, λ > λ1 and t ∈ R, there

exists ε > 0 such that, for all s ≤ t

|S(t, s)u0|0 > ε.

Proof. Since λ > λ1 and u0 ∈ C1
0 (Ω̄) is strictly positive, it is not hard to

prove that u=εϕ1 is a subsolution of (4.1) provided that ε verifies

0 < ε ≤ min
x∈Ω̄

u0(x)
ϕ1(x)

and ε2B ≤ λ− λ1.

Taking ε sufficiently small, we get εϕ1 ≤ u(t, s;u0) whence the result follows. �

Remark 4.12 Note that this implies that {0}  A(t). In fact, there exists a
subset of A(t) bounded away from zero “attracting” every u0 ∈ C1

0 (Ω̄) strictly
positive.
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On the structure of the pullback attractor. In this Section we apply the
results of Section 3 (Corollary 3.5) to our equation (4.1).

We take (u(t), u(t)) = (0, r1(t)). Observe that r1(t) ∈ D, because

lim
s→−∞

e2λs

r2
1(s)

= 0.

Moreover, A(t) ⊂ Ir10 (t), by (4.14). So, applying Corollary 3.5, there exists a
complete trajectory u∗(·) in the pullback attractor. Since A(t) 6= {0}, we have
that u∗(t) 6= {0}, for all t ∈ R.

Remark 4.13 Note that u∗(·) ∈ A(·) is a very special complete trajectory.
On the one hand, it is a maximal trajectory, an upper bound on the pullback
attractor in the positive cone, that is, for all u(t) ∈ A(t)

u(t) ≤ u∗(t).

On the other hand, it is globally asymptotically stable from above (cf. Theo-
rem 3.4).

Finally, we have the following result.

Theorem 4.14 Assume (4.2) and λ > λ1. Then, (4.1) is permanent in a
pullback sense.

Proof. Given a bounded set D ⊂ X and u0 ∈ D, by (4.11) we have that

0 < V (x) ≤ u(t, s;u0) for any s ≤ T (t,D).

Thus, the permanence follows for

U(t) = {u ∈ X : V (x) ≤ u ≤ r1(t)}.

5 Conclusions

We have studied permanence for a general non-autonomous logistic equation.
We allow the non-autonomous term to tend to zero, so that we have obtained
some information on the transfer of stability at the parameter value λ = λ1

from the zero solution to the pullback attractor.
On the one hand, we have introduced in a general way the concepts of sub,

super and trajectories to get some information on the structure of the pullback
attractor of order-preserving systems, finding u∗(t) as a maximal complete tra-
jectory in the attractor with some properties of stability. We think that all this
general framework could be appropriate to study bifurcation phenomena and
permanence for other non-autonomous partial differential equations. But note
that we do not have that u∗ it is globally asymptotically stable, that is, for all
u0 ∈ V+, lims→+∞ |S(t,−s)u0−u∗(t)|0 = 0. Observe that this being true would
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lead to a pitchfork bifurcation scenario, just as in the autonomous case for the
logistic equation.

But, on the other hand, it should be possible to define and apply to particular
non-autonomous examples a general theory of stable and unstable manifolds,
so that problems on the structure of attractors can be completed as it is known
in the autonomous case (Hale [15]). Also the definition of different kinds of
bifurcations has to be stated, as well as the application of these ideas to systems
of partial differential equations. But we think that what it is done in this work
put some light in these challenging problems, which we think to follow studying
in future.
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Departamento de Ecuaciones Diferenciales y Análisis Numérico,
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