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Existence of global solutions for systems of

reaction-diffusion equations on unbounded

domains ∗

Salah Badraoui

Abstract

We consider, an initial-value problem for the thermal-diffusive com-
bustion system

ut = a∆u− uh(v)

vt = b∆u+ d∆v + uh(v),

where a > 0, d > 0, b 6= 0, x ∈ Rn, n ≥ 1, with h(v) = vm, m is an even
nonnegative integer, and the initial data u0, v0 are bounded uniformly
continuous and nonnegative. It is known that by a simple comparison
if b = 0, a = 1, d ≤ 1 and h(v) = vm with m ∈ N∗, the solutions
are uniformly bounded in time. When d > a = 1, b = 0, h(v) = vm with
m ∈ N∗, Collet and Xin [2] proved the existence of global classical solutions
and showed that the L∞ norm of v can not grow faster than O(log log t)
for any space dimension. In our case, no comparison principle seems to
apply. Nevertheless using techniques form [2], we essentially prove the
existence of global classical solutions if a < d, b < 0, and v0 ≥ b

a−du0.

1 Introduction

In this paper, we are concerned with the existence of global solutions of the
reaction-diffusion system

ut = a∆u− uvm, (x, t) ∈ Rn × (0,∞),
vt = b∆u+ d∆v + uvm, (x, t) ∈ Rn × (0,∞),

(1.1)

with initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Rn. (1.2)

In (1.1), the constants a, b, d are such that a > 0, d > 0, b 6= 0, m is an even
nonnegative integer. Also 4ad ≥ b2 which reflects the parabolicity of the system.
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2 Existence of global solutions for systems EJDE–2002/74

∆ is the Laplace operator in x. In (1.2), the initial data u0, v0 are nonnegative
and are in CUB(Rn) the space of uniformly bounded continuous functions on
R
n.

One of the basic questions for (1.1) with L∞ initial data is the Existence
of global solutions and possibly bounds uniform in time. For b = 0 and the
Arrhenius reaction, i.e. with u exp {−E/v}, E > 0 replacing uvm in (1.1), there
are many works on global solutions, see Avrin [1], Larrouturou [7] for results in
one space dimension, among others. Recently, Collet and Xin [2] has studied
the system (1.1) but with b = 0; they proved the existence of global solutions
and showed that the L∞ norm of v can not grow faster than O(log log t) for any
space dimension.

The system

ut = a∆u− uh(v), (x, t) ∈ Ω× (0,∞)
vt = b∆u+ d∆v + uh(v), (x, t) ∈ Ω× (0,∞),

on a bounded domain Ω ⊂ R
n with Neumann boundary conditions, b ≥ 0,

a > d, v0 ≥ b
a−du0 ≥ 0, and h(s) is a differentiable nonnegative function on R

has been studied by Kirane [6].
Such equations describe reaction-diffusion processus in physics, chemistry,

biology and population dynamics. If we have two substances of concentrations
u = u(x, t) and v = v(x, t) in interaction, the positive numbers a and d are the
so-called diffusion coefficients and b = ϑa, where ϑ is an arbitrary real number
which describes the drift of the mass of the substance of concentration v(x, t)
(cf. [3, 4, 9]).

Our work is a continuation of the work of Collet and Xin [2]. Here we Have
a triangular diffusion matrix (b 6= 0). By the same idea we prove the existence
of global solutions to system (1.1).

In the sequel, we use the notation:

• ‖ · ‖ is the supremum norm on Rn: ‖u‖ = supx∈Rn |u(x)|

• For any θ ∈ CUB(Rn), we write
∫
θ ≡

∫
Rn
θ(x)dx

• For θ ∈ Lp(Rn) (p ≥ 1), we denote ‖θ‖pp =
∫
|θ|p.

2 Existence of a Local Solutions and its Positiv-
ity

We convert the system (1.1)-(1.2) to an abstract first order system in the Banach
space X := CUB(Rn)× CUB(Rn) of the form

w′(t) = Aw(t) + F (w(t)), t > 0,
w(0) = w0 ∈ X .

(2.1)
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Here w(t) =
(
u(t)
v(t)

)
; the operator A is defined as

Aw :=
(
a∆ 0
b∆ d∆

)
w = (a∆u, b∆u+ d∆v),

where D(A) :=
{
w =

(
u
v

)
∈ X :

(
∆u
∆v

)
∈ X

}
. The function F is defined as

F (w(t)) =
(
−u(t)h(v(t))
u(t)h(v(t))

)
.

It is known that for λ > 0 the operator λ∆ generates an analytic semigroup
G(t) in the space CUB(Rn):

G(t)u = (4πλt)−n/2
∫
Rn

exp
(
− |x− y|

2

4λt
)
u(y)dy. (2.2)

Hence, the operator A =
(
a∆ 0
b∆ d∆

)
generates an analytic semigroup defined

by

S(t) =
(

S1(t) 0
b

a−d (S1(t)− S2(t)) S2(t)

)
, (2.3)

where S1(t) is the semigroup generated by the operator a∆, and S2(t) is the
semigroup generated by the operator d∆ (See [6]).

Since the map F is locally Lipschitz in w in the space X, then proving the
existence of classical solutions on maximal existence interval [0, T0) is standard
(cf. [5], [8]).

3 Existence of a Global solution and its Bound-
edness

For the existence of a global solution, we use the fact that the solutions are
positive.

Proposition 3.1 Let (u, v) be the solution of the problem (1.1)-(1.2) such that

u0(x) ≥ 0, x ∈ Rn, (3.1)

a > d, b > 0, v0(x) ≥ b

a− d
u0(x) ∀x ∈ Rn, (3.2)

then
u(x, t) ≥ 0, v(x, t) ≥ b

a− d
u(x, t) ∀(x, t) ∈ Rn × (0, T0). (3.3)

Moreover, the solution is global and uniformly bounded on Rn × [0,∞). In fact
for any t > 0, we have the estimates:

‖u(t)‖ ≤ ‖u0‖ (3.4)

‖v(t)‖ ≤
(

b

a− d
+
√
a

d
+

b

a− d

√
a

d

)
‖u0‖+ ‖v0‖ . (3.5)
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Proof. The nonnegativity of u is obtained by simple application of the com-
parison theorem. Then by the maximum principle we get (3.4). To prove v ≥ 0
under the conditions (3.1)-(3.2) (see [6]).

The solution (u, v) satisfies the integral equations

u(x, t) = S1(t)u0 −
∫ t

0

S1(t− τ)u(τ)vm(τ)dt, (3.6)

v(x, t) =
b

a− d
S1(t)u0 + S2(t)

(
v0 −

b

a− d
u0

)
− b

a− d

∫ t

0

S1(t− τ)u(τ)vm(τ)

+
∫ t

0

S2(t− τ)
(
u(τ)vm(τ) +

b

a− d
u(τ)vm(τ)

)
dτ .

(3.7)

Here S1(t) and S2(t) are the semigroups generated by the operators a∆ and d∆
in the space CUB(Rn) respectively. Since a > d, using the explicit expression of
S1(t− τ) [u(τ)vm(τ)] and S2(t− τ) [u(τ)vm(τ)], one can observe that

∫ t

0

S2(t− τ) [u(τ)vm(τ)] dτ ≤
√
a

d

∫ t

0

S1(t− τ) [u(τ)vm(τ)] dτ. (3.8)

On the other hand, using (3.7), (3.8) and the positivity of the function u given
in (3.6), we deduce the estimate (3.5). Thus, from (3.4) and (3.5), we deduce
that the solution (u, v) is global and uniformly bounded on Rn × [0,∞).

In the case where d > a, no comparison principle seems to apply. Neverthe-
less, we prove the existence of global classical solutions but with b < 0.

Theorem 3.2 Let (u, v) be the solution of the problem (1.1)-(1.2) satisfying
(3.1) and

a < d, b < 0, v0(x) ≥ b

a− d
u0(x) ∀x ∈ Rn, (3.9)

then we have (3.3) and (3.4). Moreover, (u, v) is a global solution.

Proof. By the same method given in [6], we can show that under the condi-
tions (3.1) and (3.9) the solution satisfies (3.3) and (3.4). However, in this case,
it is not easy to prove global existence.

To derive estimates of solutions independent of T0, so as to continue the
classical solutions forever in time, we need to some lemmas.

Lemma 3.3 Let (u, v) be the solution of the system (1.1)-(1.2). Define the
functional L(u, v) = (α + 2u − ln(1 + u)) exp(εv) with α, ε > 0. Then, for any
ϕ = ϕ(x, t) (x ∈ Rn) a smooth nonnegative function with exponential spacial
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decay at infinity, we have

d

dt

∫
ϕL

≤
∫

(ϕt + d∆ϕ)L+
∫
ϕ(L2 − L1)uvm +

∫
((d− a)L1 + bL2)∇ϕ∇u

−
∫
ϕ
[
(aL11 + bL12) |∇u|2 + ((a+ d)L12 + bL22)∇u∇v + dL22 |∇v|2

]
,

(3.10)

where L1 = ∂L
∂u , L2 = ∂L

∂v , L11 = ∂2L
∂u2 , L12 = ∂2L

∂u∂v , L22 = ∂2L
∂v2 .

Proof. Note that L ≥ 0, L1 ≥ 0, L2 ≥ 0, L11 ≥ 0, L12 ≥ 0 and L22 ≥ 0. We
can differentiate under the integral symbol

d

dt

∫
ϕL =

∫
ϕtL+

∫
ϕ(L2−L1)uvm+a

∫
ϕL1∆u+b

∫
ϕL1∆u+d

∫
ϕL2∆v .

(3.11)
Using integration by parts, we get

∫
ϕL1∆u = −

∫
L1∇ϕ∇u−

∫
ϕL11 |∇u|2 −

∫
ϕL12∇u∇v,∫

ϕL2∆u = −
∫
L2∇ϕ∇u−

∫
ϕL12 |∇u|2 −

∫
ϕL22∇u∇v,∫

ϕL2∆v = −
∫
L2∇ϕ∇v −

∫
ϕL22 |∇v|2 −

∫
ϕL12∇u∇v.

(3.12)

Since −
∫
L2∇ϕ∇v =

∫
L∆ϕ +

∫
L1∇ϕ∇u, using (3.12) in (3.11) our basic

identity (3.10) follows. ♦

Lemma 3.4 In lemma 3.3, there exist two positive numbers α = α (a, b, d, ‖u0‖)
and ε = ε (a, b, d, ‖u0‖) depending only on the coefficients a, b, d and the datum
‖u0‖, such that

d

dt

∫
ϕL ≤

∫
(ϕt + d∆ϕ)L− 1

2

∫
ϕL1uv

m

+
∫

((d− a)L1 + bL2)∇ϕ∇u− 1
2

∫
ϕ
[a

2
L11 |∇u|2 + dL22 |∇v|2

]
.

(3.13)
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Proof. We choose α and ε in lemma 3.3 such that for any (u, v) ∈ [0, ‖u0‖]×
R

+,

L2 ≤
1
2
L1, (3.14)

(a+ d)2L2
12 + b2L2

22 + b(2a+ d)L12L22 − adL11L22 ≤ 0 (3.15)

L2
1

L11
≤ L. (3.16)

L12 ≤
a

2 |b|
L11. (3.17)

We verify these conditions as follows. Let L1 = (2 − 1
1+u )eεv, and L2 =

ε (α+ 2u− ln(1 + u)) eεv; so (3.14) is satisfied if

ε ≤ 1 + 2‖u0‖
2(α+ 2‖u0‖)(1 + ‖u0‖)

. (3.18)

We have L11 = eεv/(1 + u)2, L12 = ε(2− 1
1+u )eεv and L22 = ε2(α+ 2u− ln(1 +

u))eεv.
The condition (3.15) is satisfied if

4(a+ d)2 + b2ε2 (α+ 2‖u0‖)2 + b(2a+ d)ε (α+ 2‖u0‖)

− ad

(α+ 2‖u0‖)2 (α− ln(1 + ‖u0‖) ≤ 0. (3.19)

This equation is verified if b2ε2 (α+ 2‖u0‖)2 ≤ 1 and

4(a+ d)2 +
ad

(1 + ‖u0‖)2 (α− ln(1 + ‖u0‖) + 1 ≤ α ad

(1 + ‖u0‖)2 .

Hence we get from these equations that

α ≥ ln(1 + ‖u0‖) +
(1 + ‖u0‖)2

ad

(
1 + 4(a+ d)2

)
, (3.20)

ε ≤ 1
|b| (α+ 2‖u0‖)

. (3.21)

Now, to verify (3.16), It suffices to take

α ≥ ln(1 + ‖u0‖) + (1 + 2‖u0‖)2
. (3.22)

To verify (3.17), it suffices to take

ε ≤ a

2 |b| (1 + ‖u0‖)2 . (3.23)
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Thus, from (3.18), (3.20)-(3.23), the real positive constants α and ε cited in the
lemma are defined by

α ≥ ln(1 + ‖u0‖) + max
{ (1 + ‖u0‖)2

ad

(
1 + 4(a+ d)2

)
, (1 + 2‖u0‖)2

.
}
, (3.24)

ε ≤ min
{ 1 + 2‖u0‖

2(α+ 2‖u0‖)(1 + ‖u0‖)
,

1
|b| (α+ 2‖u0‖)

,
a

2 |b| (1 + ‖u0‖)2

}
. (3.25)

From (3.14) we get ∫
ϕ(L2 − L1)uvm ≤ −1

2

∫
ϕL1uv

m (3.26)

and from (3.15), (3.17) we get

(aL11 + bL12) |∇u|2 + ((a+ d)L12 + bL22)∇u∇v + dL22 |∇v|2

≥ 1
2

[
(aL11 + bL12) |∇u|2 + dL22 |∇v|2

]
≥ 1

2

[a
2
L11 |∇u|2 + dL22 |∇v|2

]
.

(3.27)

From (3.26) and (3.27) into (3.10) we get our desired inequality (3.13). As a
consequence of the expressions of α, ε and the functional L, they must be such
that α > 16, ε < 1/16. ♦

Lemma 3.5 With the value of α given in (3.24) and of ε given in (3.25), there
exist a test function ϕ and two real positive constants β and σ such that∫

ϕL ≤ βeσt, ∀t > 0. (3.28)

Proof. As in [2], we define the test function

ϕ(x) =
1

(1 + |x− x0|)2 , (3.29)

where x0 is arbitrary in Rn. It is clear that ϕ is a smooth function with expo-
nential decay at infinity and satisfies

|∆ϕ| ≤ Kϕ , |∇ϕ| ≤ Kϕ , (3.30)

for some positive constant K.
From (3.13) with the test function given in (3.29) and taking in consideration

(3.14), (3.17), (3.30), we obtain

d

dt

∫
ϕL ≤ Kd

∫
ϕL+K

[
(d− a) +

1
2
|b|
] ∫

L1ϕ |∇u| −
1
4
a

∫
ϕL11 |∇u|2 .

(3.31)
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We can easily deduce that

K
[
(d− a) +

1
2
|b|
] ∫

ϕL1 |∇u| −
1
4
a

∫
ϕL11 |∇u|2

≤ K2

a

(
(d− a) +

1
2
|b|
)2 ∫

ϕ
L2

1

L11
. (3.32)

Because of (3.16), L2
1

L11
≤ L; hence, from (3.32) and (3.31), we obtain

d

dt

∫
ϕL ≤

[
Kd+

K2

a

(
(d− a) +

1
2
|b|
)2] ∫

ϕL.

Thus, we obtain the relation (3.28). More precisely,

β ≤ (α+ 2‖u0‖) eε‖v0‖‖ϕ‖1 and σ = Kd+
K2

a

(
|a− d|+ 1

2
|b|
)2
.

♦
We use our bound on the nonlinear functional (3.28) to control the Lp,

1 < p < ∞, norms of solutions over any unit cube in space. Here we rely on
the fact that the integrand L is exponential in v, and so bounds any powers of
v from above.

Lemma 3.6 For any unit cube Q and any finite p ≥ 1,∫
Q

|v|p dx ≤ 2n
β

αεp
eσt(p+ 1)p+1. (3.33)

Proof. For any nonnegative integer p, we have

βeσt ≥
∫
ϕL ≥ α

∫
ϕeεv ≥ αεp

p!

∫
Q

vp dx . (3.34)

By taking x0 as defined in (3.29) at the center of Q, we get (3.33). ♦
As consequence of the lemma above, we can prove that there exist two

constants c = c(n, λ) and ω = ω(n, λ, ‖u0‖, ‖v0‖) such that

G(t)u(t)vm(t) ≡
(
4πλt

)−n/2 ∫
Rn

exp
(
− |x− y|

2

4λt
)
u(y, t)vm(y, t)dy

≤cωe
σ
p tε−m(mp+ 1)m+ 1

p

(
t
n
2q + t−

n
2p

)
,

(3.35)

for any p > max
{

1, n2
}

, 1/P +1/q = 1. The inequality follows. Here G(t) is the
semigroup generated by the operator λ∆(λ > 0) on the space CUB(Rn) (See
[2]). ♦
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Existence of a Global Solution

From (3.7) we have

v(x, t) =
b

a− d
S1(t)u0 + S2(t)

(
v0 −

b

a− d
u0

)
− b

a− d

∫ t

0

S1(t− τ)u(τ)vm(τ)dτ

+
(
1 +

b

a− d
) ∫ t

0

S2(t− τ)u(τ)vm(τ)dτ.

(3.36)
Since the semigroups S1(t) and S2(t) are of contractions and b

a−d > 0, we can
deduce

b

a− d
S1(t)u0 + S2(t)

(
v0 −

b

a− d
u0

)
≤ b

a− d
‖u0‖+ ‖v0‖. (3.37)

Integrating on τ ∈ [0, t] and using (3.35), we obtain∫ t

0

S1(t− τ)u(τ)vm(τ)dτ ≤c1ω1

∫ t

0

(
(t− τ)

n
2q + (t− τ)

n
2q

)
dτ

≤c1ω1

[ 2q
2q + n

t
n
2q+1 +

2p
2p− n

t1−
n
2p
]
,

(3.38)

and ∫ t

0

S1(t− τ)u(τ)vm(τ)dτ ≤ c2ω2

[ 2q
2q + n

t
n
2q+1 +

2p
2p− n

t1−
n
2p
]
, (3.39)

where c1 = c(n, a), ω1 = ω(n, a, ‖u0‖, ‖v0‖ ), c2 = c(n, d), ω2 = ω(n, d, ‖u0‖,
‖v0‖). Using (3.37)-(3.39) in (3.36), we get

‖v(t)‖ ≤ b

a− d
‖u0‖+ ‖v0‖+

(
1 +

b

a− d
)
c2ω2

[ 2q
2q + n

t
n
2q+1 +

2p
2p− n

t1−
n
2p
]
,

(3.40)
for all t ≥ 0, where p > n

2 . Thus the estimates (3.4) and (3.40) and the
standard parabolic regularity theory implies the existence of a global classical
solution (u, v) ∈ (C([0,+∞);CUB) ∩ C1((0,+∞);CUB))2. ♦

Corollary 3.7 Under the assumptions in Theorem 3.2, there exists a classi-
cal global solution when the nonlinear reaction term has the form uf(v), where
f(v) is nonnegative continuous in v ∈ R and nondecreasing for v ≥ 0, f(0) =
limv↘0+ f(v) = 0, and limv↗∞ f(v) > 0, limv↗∞

1
v log[f(v)] = 0. In partic-

ular, this form includes the Arrhenius reaction uvm exp[−Ev ], for m an even
nonnegative integer and E > 0.

Proof. The estimates in Theorem 3.2 remain true for f(v), since it is bounded
from above by the exponential function eεv in the nonlinear functional L, thanks
to the subexponential growth condition on f . In fact, inequality (3.34), now
simply reads

βeσt ≥
∫
ϕL ≥ α

∫
ϕeεv ≥ α

2ncp

∫
Q

[f(v)]p dx,
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for some constant cp depending on p and f . The remaining estimates go through
as before. Elsewhere we replace vm by f(v). ♦

4 Remarks

(a) In the system (1.1) we have assumed that m is an even integer number in
order the maximum principle will be applicable, and consequently the second
component v will be positive. The positivity of v is used to prove the global
existence of solutions. In the other cases of m the existence of global solution
is unknown.

(b) In the case where a < d and b > 0; the possibility of the existence of a
global solution is an open question.
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