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Boundary behavior of blow-up solutions to some

weighted non-linear differential equations ∗

Ahmed Mohammed

Abstract

We investigate, under appropriate conditions on the weight g and the
non-linearity f , the boundary behavior of solutions to(

rα(u′)p−1)′ = rαg(r)f(u),

0 < r < R, u′(0) = 0, u(r) → ∞ as r → R. The results obtained here
generalize, and in some cases improve known results.

1 Introduction

Let α ≥ 0, p > 1, R > 0. For 0 < r < R we consider positive and increasing
solutions of the problem (

rα(u′)p−1
)′ = rαg(r)f(u),

u′(0) = 0, u(r)→∞ as r → R,
(1.1)

where f(s) is assumed to satisfy

f(0) = 0, f(s) > 0,
∫ 1

0

(∫ s

0

f(t)dt
)−1/p

ds =∞,

f ′(s) ≥ 0 for s > 0.
(1.2)

Solutions of (1.1) are called blow-up solutions. Note that radial solutions of the
p-Laplace equation

div(|∇u|p−2∇u) = g(|x|)f(u),

in the ball B := B(0, R) ⊆ R
N satisfy the differential equation (1.1) with

α = N − 1. It will be convenient to rewrite (1.1) as(
(u′)p−1

)′ + α

r
(u′)p−1 = g(r)f(u), u′(0) = 0, u(R) =∞. (1.3)
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Throughout the paper we shall assume the following condition on the non-
identically-zero weight function:

g ≥ 0, g ∈ C([0, R)), and g is non-decreasing near R. (1.4)

Whenever the monotonicity condition on g is not required, we will state it
explicitly.

A necessary and sufficient condition for the existence of a solution to (1.1),
when g(r) = C > 0, is the Keller-Osserman condition [6, 9]:∫ ∞

1

ds

F (s)1/p
<∞, F (s) =

∫ s

0

f(t)dt. (1.5)

If this condition holds for f , then the function

ψ(t) :=
∫ ∞
t

1
(qF (s))1/p

ds, t > 0, (1.6)

is well-defined, decreasing and convex. Here q := p/(p−1). Let φ be the inverse
function of ψ. Then lims→0 φ(s) = ∞, lims→∞ φ(s) = 0, and φ is known to
satisfy the 1-dimentional equation (−(−φ′)p−1)′ = f(φ).

The case g = C > 0 has been investigated extensively. For p = 2, α =
N − 1, asymptotic boundary estimates have been obtained in [8, 2]. For p >
1 such estimates were obtained in [5]. The question of existence of blow-up
solutions when g(r) is bounded and vanishes on a set of positive measure has
been considered in [7], when p = 2 and α = N − 1. Again for p = 2 and
α = N − 1, the situation when g(r) is unbounded near r = R has recently been
discussed in [4]. In [10], equation (1.1) was investigated in the general case when
g(r) is unbounded near R.

Our purpose in this paper is to study the boundary behavior of blow-up
solutions of (1.1) when g is unbounded near R and f satisfies the condition
(1.5).

For later reference, let us recall the following two results from [11] and [5].
The first is a comparison Lemma (see a proof in [11]). For notational convenience
in stating the Lemma, we let L denote the differential operator on the left hand
side of equation (1.3) above.

Lemma 1.1 (Comparison) Let 0 ≤ a < b. Suppose u,w ∈ C1([a, b]) with
(u′)p−1, (w′)p−1 ∈ C1((a, b]) satisfy

Lu− g(r)f(u) ≤ Lw − g(r)f(w) in (a, b]
u(a+) < w(a+), u′(a) ≤ w′(a).

Then u′ ≤ w′ in [a, b], which implies u < w in (a, b].

In this Lemma u(a+) < w(a+) means that there exists ε > 0 such that
u < w in (a, a+ ε).

The second result we shall need is stated below (see [5] for a proof).
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Lemma 1.2 If conditions (1.2) and (1.5) hold for some p > 1, then

lim
t→∞

tp

F (t)
= 0.

2 Existence of blow-up solutions

Let us first make a few remarks about solutions of (1.3). Starting with the
inequality (which follows from (1.3))

((u′)p−1)′ ≤ g(r)f(u(r)), 0 < r < R,

we multiply both sides of the inequality by u′(r) and integrate the resulting
inequality on (r0, r), to arrive at

(u′(r))p ≤ q
∫ r

r0

g(s)f(u(s))u′(s) ds+ (u′(r0))p, r0 < r < R.

Here 0 < r0 < R is such that g is increasing on (r0, R). Since u(r) → ∞ as
r → R we find that

u′(r) ≤ 2g1/p(r)(qF (u(r)))1/p, r1 < r < R, (2.1)

for some r0 ≤ r1 < R, depending on u.
Since g(r), and f(u(r)) are increasing in (r0, R) it easily follows, on integrat-

ing both sides of equation (1.1) on (r0, r), that for a given ε > 0 there is r2 that
depends on u and ε such that

(u′)p−1 <
r(1 + ε)
α+ 1

g(r)f(u), r2 < r < R . (2.2)

The use of this inequality in (1.3) gives

((u′)p−1)′ >
1− αε
α+ 1

g(r)f(u(r)), r2 < r < R. (2.3)

Note that this last inequality implies that u′ is increasing near R.

Remark 2.1 Suppose g is non-decreasing on (0, R), and u is a solution of
(1.1). Taking note of the fact that u′(0) = 0, the argument leading up to the
inequality (2.3) shows that this inequality holds for 0 < r < R with ε = 0.

To restate some of the main results that were proved in [10], let us consider
the following two conditions:

g1/p ∈ L1(0, R) (2.4)

lim inf
r→R

(R− r)g(r)1/p > 0 . (2.5)

We recall the following two results from [10].
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Theorem 2.2 Assume that (2.4) holds. Then (1.1) has a solution if and only
if condition (1.5) holds.

Theorem 2.3 Assume that (2.5) holds. Then (1.1) has a solution if and only
if condition (1.5) fails to hold.

Let us give a proof of the sufficiency of the (1.5) condition for the existence
of a blow-up solution in Theorem 2.2. For the proof of the rest of the assertions
in Theorems 2.2 and 2.3, we refer the reader to [10].

Proof. Let 0 < r0 < R be such that g is increasing on (r0, R) and let us fix
a positive integer m with 1/m < R − r0. For each k ≥ m, let wk be a blow-up
solution of (1.3) on (0, R − 1/k). Since g is bounded on this interval, such a
solution exists by the (1.5) condition. Then we must have wk+1(0) ≤ wk(0), for
if wk+1(0) > wk(0) then by the Comparison Lemma, we would have wk(r) ≤
wk+1(r), 0 < r < R− 1/k. But this is not possible as wk blows up at R− 1/k,
and wk+1 does not. In fact we must have

wk+1(r) ≤ wk(r), 0 ≤ r < R− 1
k
.

To see this, suppose on the contrary wk+1(r) > wk(r) for some 0 < r < R −
1/k. Then since wk+1(0) ≤ wk(0) the function wk+1 − wk takes on a positive
maximum in the interior of [0, r1] where r1 is chosen sufficiently close to R−1/k
so that wk+1(r1) ≤ wk(r1). If 0 < r∗ < r1 is such a maximum point, then we
have wk+1(r∗) > wk(r∗) and w′k+1(r∗) = w′k(r∗). But then by the Comparison
Lemma again, we would have wk+1 > wk on (r∗, R − 1/k) which is obviously
not possible. Therefore the claimed inequality holds.

Using this and the fact that wk and wk+1 satisfy equation (1.1) we obtain

(w′k+1(r))p−1 = r−α
∫ r

0

sαg(s)f(wk+1(s)) ds

≤ r−α
∫ r

0

sαg(s)f(wk(s)) ds

= (w′k(r))p−1, 0 < r < R− 1/k,

thus showing that

w′k+1(r) ≤ w′k(r), 0 ≤ r < R− 1/k. (2.6)

For t, r ∈ (0, R− 1/k), and n > k we have

|wn(r)− wn(t)| =
∣∣ ∫ r

t

w′n(s) ds
∣∣

≤ w′n(ζ)|r − t|
≤ w′k+1(R− 1/k)|r − t|,
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where ζ = max{r, t}. Thus {wn}∞n=k+1 is a bounded equicontinuous family in
C([0, R−1/k]), and hence has a convergent subsequence. Let u be the limit. We
will show that u is the desired blow-up solution of (1.3) in (0, R). To see this,
note that for r ∈ [0, R − 1/k] and n > k the solution wn satisfies the integral
equation

wn(r) = wn(0) +
∫ r

0

(∫ t

0

(s
t

)α
g(s)f(wn(s)) ds

) 1
p−1

dt.

Letting n → ∞ we see that u satisfies the same integral equation. Since k is
arbitrary we conclude that u satisfies equation (1.3) in (0, R). We now show that
u(r)→∞ as r → R. Let r1 such that (2.1) holds for wm in r1 < r < R− 1/m.
Because of the inequality (2.6), the same r1 can be used for wk in the interval
(r1, R− 1/k) for any k ≥ m. Thus using the inequality (2.1) for wk we see that

w′k(s)
(qF (wk(s)))1/p

≤ 2g1/p(s), r1 < s < R− 1/k.

Integrating this on (r,R− 1/k) for any r1 < r < R− 1/k leads to∫ ∞
wk(r)

1
(qF (s))1/p

ds ≤ 2
∫ R−1/k

r

g1/p(s) ds ≤ 2
∫ R

r

g1/p(s) ds.

Now letting k →∞ we obtain the integral estimate∫ ∞
u(r)

1
(qF (s))1/p

ds ≤ 2
∫ R

r

g1/p(s) ds, r1 ≤ r < R.

Letting r → R, we notice that the left hand side integral tends to zero, since by
hypothesis g ∈ L1/p(0, R). Thus we conclude that u(r) → ∞ when r → R, as
desired. �

Remark 2.4 The above theorems do not cover the situation when g satisfies
neither condition (2.4) nor (2.5). The following example shows that neither
theorem is true in this case. Let p > 1 and 0 < R ≤ 1 be fixed. Then
u(r) = − log(R− r)− r/R satisfies the equations, (j = 0, 1),

(u′(r)p−1)′ = gj(r)fj(u), u′(0) = 0, u(r)→∞ as r → R,

where

gj(r) = (p− 1)(rR−1)p−2(R− r)−p(− log(R− r)− r/R)−p+j ,

and fj(t) = tp−j , j = 0, 1. Observe that

lim
r→R

(R− r)gj(r)1/p = 0, and g
1/p
j /∈ L1(0, R), j = 0, 1.

Furthermore it is clear that f0 satisfies (1.5), but f1 does not. Both satisfy all
the hypotheses in (1.2).
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Remark 2.5 Suppose f satisfies (1.2) and (1.5). If (1.3) admits a blow-up
solution, then it is known (Theorem 2.2 of [10]) that

lim
r→R

g(r)1/p(R− r) = 0.

However it remains unclear whether this limit condition is also sufficient for
existence of blow-up solutions.

3 Boundary Behavior of Blow-up Solutions

The following condition, introduced in [3], will be useful in investigating some
boundary behavior of solutions to (1.3). Let the function ψ defined in (1.6)
satisfy

lim inf
t→∞

ψ(βt)
ψ(t)

> 1, for any 0 < β < 1. (3.1)

This condition implies the following Lemma given in [3] without proof. Since
subsequent results rely on this Lemma, we shall include the short proof for the
readers’ convenience as well as for completeness.

Lemma 3.1 Let ψ ∈ C[t0,∞). Suppose that ψ is strictly monotone decreasing
and satisfies (3.1). Let φ := ψ−1. Given a positive number γ there exist positive
numbers ηγ , δγ such that the following hold:

1. If γ > 1, then φ((1− η)δ) ≤ γφ(δ) for all η ∈ [0, ηγ ], δ ∈ [0, δγ ]

2. If γ < 1, then φ((1 + η)δ) ≥ γφ(δ) for all η ∈ [0, ηγ ], δ ∈ [0, δγ ].

Proof. We prove (1) only, as (2) is an easy consequence of (1). Let γ > 1 be
given. By hypothesis,

lim inf
t→∞

ψ(γ−1t)
ψ(t)

= α, for some α = α(γ) > 1.

Let us fix 1 < θ < α. Then for some tγ we have

ψ(γ−1t) ≥ θψ(t), for all t ≥ tγ . (3.2)

Now let δγ := θψ(tγ), and ηγ := (θ − 1)/θ. If 0 < δ ≤ δγ , then φ(δ/θ) ≥ tγ ,
and hence by (3.2), we obtain φ(δ/θ) ≤ γφ(δ). Thus if 0 < η ≤ ηγ so that
(1− η)δ ≥ δ/θ then we conclude that φ((1− η)δ) ≤ φ(δ/θ) ≤ γφ(δ) as desired.
�

We will also need the following consequence of the above Lemma.

Lemma 3.2 Let ψ and φ be as in Lemma 3.1, and let γ > 0, C > 0 be given.
Then there is a positive constant δ0 = δ0(C, γ) and a positive integer m =
m(C, γ) such that the following hold:

1. If γ > 1, then φ(Cδ) ≤ γmφ(δ) for all 0 < δ < δ0

2. If γ < 1, then φ(Cδ) ≥ γmφ(δ) for all 0 < δ < δ0.
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Proof. We prove (1) only, as (2) is an immediate consequence of (1). If C ≥ 1,
then there is nothing to prove. So assume that 0 < C < 1. Corresponding to
γ > 1, let ηγ and δγ be the positive constants given in Lemma 3.1. Choose
0 < η < ηγ such that 0 < C < 1− η, and let δ0 = (1− η)mδγ/C, where m is the
smallest positive integer such that (1 − η)m < C. With such a choice of δ0 we
clearly see that 0 < Cδ/(1− η)j < δγ for all j = 1, · · ·m whenever 0 < δ < δ0.
Thus if 0 < δ < δ0, we apply Lemma 3.1 repeatedly to obtain

φ(Cδ) ≤ γmφ
( C

(1− η)m
δ
)
.

Recalling that φ is decreasing we obtain the claimed inequality. �
Note that if condition (1.5) holds for f , and equation (1.1) admits a solution,

then g1/p(r)(R− r)→ 0 as r → R (see Remark 2.5). Thus φ
(
g1/p(r)(R− r)

)
→

∞ as r → R.

Theorem 3.3 Suppose that f satifies (1.2), and (1.5) condition together with
condition (3.1). If u is a solution of (1.1), then

1. lim sup
r→R

u(r)
φ
(
g1/p(r)(R− r)

) ≤ 1.

2. If, moreover, g satisfies (2.4), then lim inf
r→R

u(r)

φ
( ∫ R

r
g1/p(s) ds

) ≥ 1.

Proof. (1) Let k be the smallest positive integer such that 1/k < R, and
for each positive integer j ≥ k let g(Mj) := max{g(r) : 0 ≤ r ≤ R − 1/j}.
Furthermore, let wj be a solution of

((w′)p−1)′ +
α

r
(w′)p−1 = (α+ 1)g(Mj)f(w), w′(0) = 0, w(R− 1/j) =∞,

in (0, R− 1/j). Since for j > m we have

((w′j)
p−1)′ +

α

r
(w′j)

p−1 ≥ (α+ 1)g(Mm)f(wj), on (0, R− 1/m),

by the Comparison Lemma we conclude that wj(0) ≤ wm(0). In particular we
have wj(0) ≤ wk(0) for all j > k. On using Remark 2.1 we get

w′j(r) ≥ (qg(Mj))1/p(F (wj(r))− F (wj(0)))1/p

= (g(Mj))1/p(qF (wj(r)))1/p
(

1− F (wj(0))
F (wj(r))

)1/p

.

Rewriting this expression, and using the inequality wj(0) ≤ wk(0) for all j > k
we find that

w′j(r)
(qF (wj(r)))1/p

≥ (g(Mj))1/p
(

1− F (wk(0))
F (wj(r))

)1/p

.
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Integrating this on (r,R− 1/j) we obtain∫ ∞
wj(r)

1
(qF (t))1/p

dt

≥ (g(Mj))1/p(R− 1/j − r)
[ 1
R− 1/j − r

∫ R−1/j

r

(
1− F (wk(0))

F (wj(s))

)1/p

ds
]
.

Note that the expression in the bracket on the right tends to one as r approaches
R− 1/j. Thus we have obtained

ψ(wj(r)) ≥ (g(Mj))1/p(R− 1/j − r)(1− ηj(r)),

where

ηj(r) = 1−
[ 1
R− 1/j − r

∫ R−1/j

r

(
1− F (wk(0))

F (wj(s))
)1/p

ds
]
,

so that ηj(r)→ 0 as r → R− 1/j.
Hence we obtain, by Lemma 3.1, that for any ε > 0 there is r0(ε, j) such

that (recall that g(Mj) ≥ g(r), 0 ≤ r ≤ R− 1/j)

wj(r) ≤ φ
(
(g(Mj))1/p(R− 1/j − r)(1− ηj(r)

)
≤ (1 + ε)φ

(
g1/p(r)(R− 1/j − r)

)
, r0(ε, j) < r < R− 1/j.

But then given any j ≥ k, the inequality u(r) ≤ wj(r) holds for r sufficiently
close to R− 1/j so that

u(r) ≤ (1 + ε)φ
(
g1/p(r)(R− 1/j − r)

)
.

Therefore, we conclude that

lim sup
r→R−1/j

u(r)
φ
(
g1/p(r)(R− 1/j − r)

) ≤ 1.

Since j can be taken arbitrarily large, the claim follows.
To prove (2), suppose that g is non-decreasing on (r0, R) for some 0 < r0 <

R. On multiplying both sides of the inequality ((u′)p−1)′ < g(r)f(u) by u′ and
integrating the resulting inequality on (r0, r), we obtain

u′(r)
(qF (u))1/p

≤ g(r)1/p
(

1 +
u′(r0)p

qg(r)F (u(r))

)1/p

. (3.3)

Integrating this inequality on (r,R) for r > r0,∫ ∞
u(r)

1
(qF (t))1/p

dt ≤
(

1 +
u′(r0)p

qg(r)F (u(r))

)1/p
∫ R

r

g(t)1/p dt

= (1 + ϑ(r))
∫ R

r

g(t)1/p dt,
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where ϑ(r)→ 0 as r → R. Therefore,

u(r) ≥ φ
(

(1 + ϑ(r))
∫ R

r

g(t)1/p dt
)
.

By Lemma 3.1, we see that for any ε > 0 we can find r1(ε) > r0 such that

u(r) > (1− ε)φ
(∫ R

r

g(t)1/p dt
)
, r1(ε) < r < R.

Since ε is arbitrary, this proves the desired inequality. �

Remark 3.4 (a) For the conclusion in (1) of the above theorem to hold, g need
not be non-decreasing near R.
(b) If g is assumed to be non-decreasing on (0, R), then by taking r0 to be 0 in
(3.3) it immediately follows that

u(r) ≥ φ
(∫ R

r

g(ζ)1/p dζ
)
, 0 < r < R.

Remark 3.5 Without further condition on the weight g the limits in the above
Theorem may not be 1. In fact the limit supremum in (1) of Theorem 3.3 could
be zero, while the limit infimum in (2) of the same Theorem could be infinity.
See [4] for such examples.

Let us now introduce a condition on g that will ensure that the limits in
Theorem 3.3 are unity for any blow-up solution.

lim
r→R

1
R− r

∫ R

r

(g(s)
g(r)

)1/p
ds = 1. (3.4)

Theorem 3.6 Let f satisfy (1.2), (1.5), and (3.1). Suppose also that g satisfies
(3.4). Then for any blow-up solution u of (1.1) the following limits hold.

lim
r→R

u(r)

φ(
∫ R
r
g1/p(s) ds)

= 1, lim
r→R

u(r)
φ(g1/p(r)(R− r))

= 1. (3.5)

Proof. Let ε > 0 be given. Then by Lemma 3.1 we pick ηε and δε such that

φ((1− η)δ) ≤ (1 + ε)φ(δ), and φ((1 + η)δ) ≥ (1− ε)φ(δ), (3.6)

for all η ∈ [0, ηε], δ ∈ [0, δε]. By (3.4), we choose rε > 0 such that for all
rε < r < R we have

(
1− 1

2
ηε
)
g1/p(r)(R− r) ≤

∫ R

r

g1/p(s) ds ≤
(
1 +

1
2
ηε
)
g1/p(r)(R− r).
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That is

φ
(
(1 +

1
2
ηε)g1/p(r)(R− r)

)
≤ φ

(∫ R

r

g1/p(s) ds
)

≤ φ
(
(1− 1

2
ηε)g1/p(r)(R− r)

)
.

From these last inequalities and (3.6), we conclude that

(1− ε)φ
(
g1/p(r)(R− r)

)
≤ φ

(∫ R

r

g1/p(s) ds
)
≤ (1 + ε)φ

(
g1/p(r)(R− r)

)
,

for r∗ < r < R. Thus we have shown that

lim
r→R

φ
(
g1/p(r)(R− r)

)
φ
( ∫ R

r
g1/p(s) ds

) = 1. (3.7)

This limit and (1) from Theorem 3.3, then show that

lim sup
r→R

u(r)

φ
( ∫ R

r
g1/p(s) ds

) ≤ 1.

This last inequality with (2) of Theorem 3.3 would then give the desired limit.
The second limit in (3.5) follows on similar lines. This concludes the proof of
the Theorem. �

Remark 3.7 The proof of Theorem 3.6 shows that the weight g need not be
non-decreasing near R for (3.7) to hold. Consequently the first limit in (3.5)
holds for any non-negative continuous weight g. (See Remark (3.4)).

Now, we show a class of weights g that satisfy the condition (3.4). For this
let h ∈ C([0, R]) be a non-decreasing positive function. Given 0 ≤ β ≤ p, let

g(s) := h(s) logβ(1/(R− s)), 0 ≤ s < R.

Then g is non-decreasing near R, and for r sufficiently close to R

1 ≤ 1
R− r

∫ R

r

(g(s)
g(r)

)1/p
ds

≤ 1
R− r

(h(R)
h(r)

)1/p ∫ R

r

( log(1/(R− s))
log(1/(R− r))

)β/p
ds

≤ 1
R− r

(h(R)
h(r)

)1/p ∫ R

r

log(1/(R− s))
log(1/(R− r))

ds

=
(h(R)
h(r)

)1/p(1− 1
log(R− r)

)
.

Therefore, it follows that g satisfies (3.4).
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For convenience we will use the following notation in our subsequent consid-
erations.

λ := lim inf
r→R

1
R− r

∫ R

r

(g(s)
g(r)

)1/p
ds, Λ := lim sup

r→R

1
R− r

∫ R

r

(g(s)
g(r)

)1/p
ds.

For our next result, we consider the following condition on f :

lim
r→R

sf(s)
F (s)

= E (3.8)

where E is an extended real number.
In the following two Theorems, we do not require g to be non-decreasing.

The first theorem provides a converse to Theorem 3.6 under some conditions on
f .

Theorem 3.8 Suppose f satisfies (1.2), (1.5), and (3.8). Assume also that
(2.4) holds for the weight g. If u is a solution of (1.3) such that the limits in
(3.5) hold, then the weight g satisfies (3.4), or the limit E in (3.8) is ∞.

Proof. Suppose that g fails to satisfy condition (3.4). Using the notation
given above, we then have λ < 1 or Λ > 1. Let δ > 0 such that λ < 1 − δ or
1 + δ < Λ. Then we pick some sequence rm that converges to R so that

(1 + δ)g1/p(rm)(R− rm) <
∫ R

rm

g1/p(s) ds, if Λ > 1

or

(1− δ)g1/p(rm)(R− rm) >
∫ R

rm

g1/p(s) ds, if λ < 1.

If the limits in (3.5) hold, then clearly we have the limit

lim
m→∞

φ
(
g1/p(rm)(R− rm)

)
φ
( ∫ R

rm
g1/p(s) ds

) = 1.

By the mean value theorem, and using that −φ′ is decreasing, we have

∣∣∣φ (g1/p(rm)(R− rm)
)

φ
( ∫ R

rm
g

1
p (s) ds

) − 1
∣∣∣

=
−φ′(ϑ(rm))

∣∣ ∫ R
rm
g

1
p (s) ds− g1/p(rm)(R− rm)

∣∣
φ
( ∫ R

rm
g

1
p (s) ds

)
≥
−φ′

( ∫ R
rm
g1/p(s) ds

)
·
( ∫ R

rm
g1/p(s) ds

)
φ
( ∫ R

rm
g1/p(s) ds

) ∣∣∣1− g1/p(rm)(R− rm)∫ R
rm
g1/p(s) ds

∣∣∣
(3.9)
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From (3.9) and the above limit, we conclude that

lim
m→∞

−φ′
( ∫ R

rm
g1/p(s) ds

)
·
( ∫ R

rm
g1/p(s) ds

)
φ
( ∫ R

rm
g1/p(s) ds

) ∣∣∣1− g1/p(rm)(R− rm)∫ R
rm
g1/p(s) ds

∣∣∣ = 0.

Since ∣∣∣1− g1/p(rm)(R− rm)∫ R
rm
g1/p(s) ds

∣∣∣ ≥ δ

1 + δ
> 0,

we conclude that the limit of the other factor must be zero. Recalling that

−φ′(t) = (qF (φ(t)))1/p,

and hence letting s = φ(t) so that s → ∞ if and only if t → 0, we have the
following chain of equalities.

lim
t→0

−φ′(t)t
φ(t)

= lim
t→0

(qF (φ(t)))1/pt

φ(t)

= lim
s→∞

ψ(s)
s/(qF (s))1/p

= lim
s→∞

−1
1− (sf(s))/(pF (s))

= 1/(E/p− 1).

In computing the above limit, we have used L’Hôpital’s rule which is justified
by Lemma 1.2. Going back to (3.9), since the first term on the right side of this
inequality tends to zero as m → ∞ we thus conclude that the limit in (3.8) is
E =∞. �

Theorem 3.9 Suppose f satisfies (1.2), (1.5), (3.1), (3.8) and g satisfies (2.4).
If for any solution u of (1.3), we have either

lim sup
r→R

u(r)
φ(g1/p(r)(R− r))

= 0, or lim inf
r→R

u(r)

φ(
∫ R
r
g1/p(s) ds)

=∞,

then either λ = 0 or Λ =∞.

Proof. We will prove the case when the limit superior is zero, the other case
being similar. Suppose contrary to our conclusion we have λ > 0 and Λ < ∞.
Let us fix λ0 and Λ0 with 0 < λ0 < λ and Λ0 > Λ. Then for some r0 we have∫ R

r

g1/p(s) ds > λ0g
1/p(r)(R− r), r0 < r < R.

By Lemma 3.2, we know that φ(λ0g
1/p(r)(R − r)) ≥ (1/2)mφ(g1/p(r)(R − r))

for r sufficiently close to R. Consequently, by hypothesis and by (2) of Theorem
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3.3 we conclude that

lim inf
r→R

φ(λ0g
1/p(r)(R− r))

φ(
∫ R
r
g1/p(s) ds)

≥ lim inf
r→R

u(r)

φ(
∫ R
r
g1/p(s) ds)

lim inf
r→R

φ(λ0g
1/p(r)(R− r))
u(r)

≥ ∞.

By the mean value theorem, and since −φ′ is decreasing, for r0 < r < R, we
have∣∣∣φ (λ0g

1/p(r)(R− r)
)

φ
( ∫ R

r
g

1
p (s) ds

) − 1
∣∣∣

=
−φ′(ϑ(r))

∣∣ ∫ R
r
g1/p(s) ds− λ0g

1
p (r)(R− r)

∣∣
φ
( ∫ R

r
g1/p(s) ds

)
≤
−φ′

(
λ0g

1/p(r)(R− r)
)
·
(
g1/p(r)(R− r)

)
φ
( ∫ R

r
g1/p(s) ds

) ∣∣∣ ∫ Rr g1/p(s) ds
g1/p(r)(R− r)

− λ0

∣∣∣
(3.10)

From the definition of Λ, we can choose r1 such that∫ R

r

g1/p(s) ds ≤ Λ0g
1/p(r)(R− r), r1 < r < R,

Then by Lemma 3.2, there is some positive integer m, such that for some r2

and all r2 < r < R, we have

φ
(∫ R

r

g1/p(s) ds
)
≥ φ

(
Λ0g

1/p(r)(R− r)
)
≥
(1

2
)m
φ
(
λ0g

1/p(r)(R− r)
)
.

Applying this inequality to the last inequality in (3.10), we find

∣∣∣φ (λ0g
1/p(r)(R− r)

)
φ
( ∫ R

r
g1/p(s) ds

) − 1
∣∣∣

≤
−2mφ′

(
λ0g

1/p(r)(R− r)
)
·
(
g1/p(r)(R− r)

)
φ
(
λ0g1/p(r)(R− r)

) ∣∣∣ ∫ Rr g1/p(s) ds
g1/p(r)(R− r)

− λ0

∣∣∣, (3.11)

for all max{r0, r1, r2} ≤ r < R. Recall from the computations in the proof of
the above theorem that

lim
t→0

−φ′(t)t
φ(t)

= lim
s→∞

−1
1− (sf(s))/(pF (s))

= 1/(E/p− 1),

where we have used the condition (and the notation) in (3.8) to write the last
limit. This shows that the limit inferior of the right hand side of (3.11) is finite
which contradicts our earlier conclusion that the left hand side has infinite limit.
�
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