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REACTION-DIFFUSION SYSTEMS WITH 1-HOMOGENEOUS
NON-LINEARITY

MATTHIAS BÜGER

Abstract. We describe the dynamics of a system of two reaction-diffusion

equations with 1-homogeneous non-linearity. We show that either an order-
preserving property holds and can be used in order to determine the limiting
behaviour in some (invariant) sets or the long time behaviour of all solutions
can be described by looking at one scalar reaction-diffusion equation only.

1. Introduction

The dynamics of solutions of one reaction-diffusion equation
d

dt
y = yxx + g(t, x, y) (1.1)

with Dirichlet or other boundary conditions on an interval (0, L), L > 0, has been
examined by many authors [10, 11, 12, 15, 18]. Far less is known for a system of
two reaction-diffusion equations

d

dt

(
u
v

)
=
(
uxx
vxx

)
+ f

(
t, x,

(
u
v

))
, x ∈ (0, L), t > 0. (1.2)

In this paper we examine system (1.2) with a 1-homogeneous non-linearity f(u, v) =
h1(u, v), which means that h1(µu, µv) = µh1(u, v) for all real µ. Furthermore, we
assume that h1 is C1 in R2 \ {(0, 0)}.
It turns out that there are two different cases, depending on whether the set

E :=
{
φ0 ∈ R :

(
− sinφ0

cosφ0

)
· h1

(
cosφ0

sinφ0

)
= 0
}

is empty or not.

Case 1: E 6= ∅. When E = R the dynamics has already been discussed in [2], so
we concentrate on the case E 6= R. Since E 6= ∅ implies that E has infinitely many
elements, we can take α, β ∈ E, α < β, such that γ 6∈ E for all α < γ < β. We
write the initial data (u0, v0) in polar coordinates(

u0

v0

)
= r0

(
cosϕ0

sinϕ0

)
. (1.3)
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If r0 is non-negative and ϕ0 has its values in the interval (α, β), then we show that
the solution (u, v) starting at (u0, v0) is flattened out and tends to a planar solution

r̄0

(
cos ϕ̄0

sin ϕ̄0

)
(1.4)

where ϕ̄0 is a constant and equals either α or β. We call a state (ū0, v̄0) planar,
if it can be written in the form (1.4) with a constant, i.e. x-independent angle ϕ̄0.
We note that (ū0, v̄0) is planar if and only if ū0 and v̄0 are linearly dependent. A
solution (ū, v̄) is called planar if (ū, v̄)(t) is planar for all t. This means that the
angle function ϕ̄ might depend on t but not on the space variable x. It is easy to
observe that (ū, v̄)(t) is a planar solution if and only if the initial value is planar.
This notation is motivated by the fact that for a planar solution (ū, v̄) the curve

γt : [0, L] 3 x 7→ (x, ū(t, x), v̄(t, x)) ∈ [0, L]× R2

lies in a plane Pt (which depends on t), as one can see in Figure 1.
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Figure 1. Curve γt for a planar solution (ū, v̄)

The proof of the fact that the angular function ϕ(t, ·) associated with (u, v)(t)
converges either to α or to β is based on the following order-preserving property:

If (ū−, v̄−)(t) is a planar solution with ϕ̄−(0) ≤ ϕ(0, ·), then we get ϕ̄−(t) ≤
ϕ(t, ·) for all t ≥ 0. Similarly, we get a function ϕ̄+ satisfying ϕ̄+(t) ≥ ϕ(t, ·) for all
t ≥ 0. Hence, the solution (u, v) lies between a lower and an upper planar solution.
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Figure 2. A situation in which ϕ̄−, ϕ̄+ and ϕ converge to β
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Then it only remains to show that the angle functions ϕ̄±(t) of the planar solutions
both converge either to α or to β.

We note that in the case E = π
2Z the non-linearity h1 can be written in the form

h1(u, v) =
(
uζ1(u, v)
vζ2(u, v)

)
.

Then the maximum principle yields that solutions (u, v) with initial value (u0, v0),
u0 > 0, v0 > 0, stay positive for all t > 0, and our result follows from well known
order-preserving properties [9, 14]. We note that in this paper we use a differ-
ent ordering relation which has the advantage that it does also work if E 6= π

2Z.
Therefore, our result in case 1 is a kind of generalization of the well known order-
preserving results for 1-homogeneous non-linearities.

Case 2: E = ∅. Another concept, however, is needed in the case E = ∅. In this
case, loosely speaking, the part of the non-linearity which induces a rotation on R2

around the origin does never vanish. Hence, we cannot expect the existence of any
stationary solution besides zero, but we should be able to observe periodic (or more
difficult) motion whenever zero is unstable.

The description of the dynamics in this case seems to be really complicated,
but we show that a major part can be done by looking at planar solutions that
are obtained from a scalar (time-periodic) reaction-diffusion equation instead of a
system of two equations. This method can be looked at as a generalization of the
approach used in [3, 4, 5] for the model system

d

dt

(
u
v

)
=
(
uxx
vxx

)
+
(
−v
u

)
+
(
u
v

)
F

(
u
v

)
(1.5)

As a main result we obtain that each bounded solution of (1.2) with 1-homogeneous
non-linearity h1 tends either to a stationary or periodic (planar) solution, i.e. we
get a Poincaré-Bendixson result.

Remarks on both cases. We note that the fact that the diffusion rates coincide
in both equations is a crucial point. Numerical studies show that the dynamics can
be totally different from the cases mentioned above for different diffusion rates, in
general. The restrictions on the non-linearity, however, can be weakened. It turns
out that all of our results hold for a non-linearity f of the form

f(t, x, u, v) = h1(u, v) +
(
u
v

)
F (t, x, u, v)

where F : [0,∞) × [0, L] × R2 → R is C1. We will work with the more general
system

d

dt

(
u
v

)
=
(
uxx
vxx

)
+ h1(u, v) +

(
u
v

)
F (t, x, u, v) (1.6)

with either Dirichlet or Neumann boundary conditions for the rest of this paper.

2. Notation and preliminaries

Let R2
∗ := R

2 \ {(0, 0)}. For every (ξ, η) ∈ R2
∗ the set {(ξ, η), (−η, ξ)} is a base

of R2 and, thus, h1(ξ, η) ∈ R2 can be written in the form

h1

(
ξ
η

)
=
(
ξ
η

)
f0

(
ξ
η

)
+
(
−η
ξ

)
g0

(
ξ
η

)
(2.1)
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where f0(ξ, η), g0(ξ, η) ∈ R are uniquely determined. Since h1 ∈ C1(R2
∗,R

2) and
(2.1) implies that

f0

(
ξ
η

)
=

1
ξ2 + η2

(
ξ
η

)
h1

(
ξ
η

)
,

g0

(
ξ
η

)
=

1
ξ2 + η2

(
−η
ξ

)
h1

(
ξ
η

)
,

we get f0, g0 ∈ C1(R2
∗,R). Since for all µ ∈ R

µ

(
ξ
η

)
f0

(
ξ
η

)
+ µ

(
−η
ξ

)
g0

(
ξ
η

)
= µh1

(
ξ
η

)
= h1

(
µξ
µη

)
= µ

(
ξ
η

)
f0

(
µξ
µη

)
+ µ

(
−η
ξ

)
g0

(
µξ
µη

)
,

we obtain that

f0

(
µξ
µη

)
= f0

(
ξ
η

)
, g0

(
µξ
µη

)
= g0

(
ξ
η

)
.

Therefore, it suffices to define f0, g0 on S1 where S1 is defined by

S1 := {(x, y) ∈ R2 : x2 + y2 = 1} .
In particular, this implies that f0, g0 and their derivatives are bounded (on S1 and,
hence, on R2

∗).
For φ0 ∈ R we introduce the solution φ(·;φ0) : R→ R of the ODE

d

dt
φ = g0(cosφ, sinφ) ,

φ(0) = φ0 .
(2.2)

Since g0 is C1 on S1 (and has, thus, bounded derivatives), φ is well defined.
Lemma 2.1. The function φ(·;φ0) is either constant or strictly monotone.
Proof. If g0(cosφ0, sinφ0) = 0, then φ(t;φ0) = φ0 for all t. We assume that
g0(cosφ0, sinφ0) 6= 0, without loss of generality, we deal only with g0(cosφ0, sinφ0) >
0. If φ was not strictly increasing, then there would be some t0 ∈ R with d

dtφ(t0;φ0) =
0 which would imply that g0(cosφ(t0;φ0), sinφ(t0;φ0)) = 0 and, thus, φ would be
constant, contradicting the assumption.
Lemma 2.2. If g0(cosφ∗, sinφ∗) = 0 for some φ∗ ∈ [0, 2π), i.e. φ∗ ∈ E, then
φ(·;φ0) is bounded for all φ0; if there is no such φ∗, i.e. E = ∅, then φ(·;φ0) is
unbounded.
Proof. 1. If there is φ∗ as above, then every non-constant function φ(·;φ0) satisfies

φ(t;φ0) 6= φ∗ mod 2π for all t.

Since φ(·;φ0) is continuous, φ(R;φ0) is contained in an interval of length 2π; in
particular, φ(·;φ0) is bounded.
2. If φ(·;φ0) is bounded, then the limit

φ∗ := lim
t→∞

φ(t;φ0) ∈ R

exists by Lemma 2.1. Thus, there is a sequence tn ↗ ∞ such that d
dtφ(tn;φ0) →

0 (n→∞). This implies that g0(cosφ∗, sinφ∗) = 0 which completes the proof.
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3. Main results

The case E = ∅. An element (u0, v0) of C1([0, L],R2) is called planar, if u0 and
v0 are linearly dependent over R, i.e. if there are r0 ∈ C1([0, L],R) and φ0 ∈ R such
that (

u0

v0

)
=
(

cosφ0

sinφ0

)
r0 .

The set of all planar elements of C1([0, L],R2) is denoted by P.
Theorem 3.1. Let (u, v) ∈ C1([0,∞)×[0, L],R2) be a (classical) solution of system
(1.6) with Dirichlet or Neumann boundary conditions. If E = ∅, then we get

distC1{(u, v)(t, ·),P} → 0 (t→∞) .

Since the ω-limit set ω = ω(u, v) associated with (u, v) consists of all states at which
the orbit {(u, v)(t) : t ≥ 0} accumulates, this result means that in the case E = ∅
the ω-limit set of any (bounded) solution (u, v) of (1.6) is contained in P.

By Theorem 3.1, the crucial part of the dynamics of (1.6) takes place in the set
P of planar elements. The following theorems deal with the dynamics on P.
Theorem 3.2. The set P is positively invariant, i.e. every solution (u, v) of (1.6)
which starts in P is a planar solution, i.e. (u, v)(t, ·) ∈ P for all t ≥ 0. If (u0, v0) =
(cosφ0, sinφ0)r0 with r0 ∈ C1([0, L],R), φ0 ∈ R, then (u, v) has the form(

u
v

)
(t, ·) =

(
cosφ(t;φ0)
sinφ(t;φ0)

)
r(t, ·) (3.1)

where r : [0,∞)× [0, L]→ R satisfies the scalar equation

d

dt
r = rxx + r

[
f0

(
cosφ(t;φ0)
sinφ(t;φ0)

)
+ F

(
t, x,

(
cosφ(t;φ0)
sinφ(t;φ0)

)
r
)]

(3.2)

with initial value r0.
We note that the assertion of Theorem 3.2 is also true in the case E 6= ∅, but

the dynamics on P is important only if we have the result of Theorem 3.1 which
ensures that all solutions finally tend to planar ones.
Theorem 3.3. Let (u, v) be a (bounded) planar solution and choose φ0, r0, r as in
Theorem 3.2. If E = ∅, then φ(·;φ0) mod 2π is periodic and the period pφ is given
by

pφ = inf{τ > 0 : |φ(τ ; 0)| = 2π} .
In particular, pφ depends only on g0. If, in addition, (1.6) is autonomous or F
is periodic in t with a period pF such that pF /pφ is rational, then the ω-limit set
associated with (u, v) consists of periodic planar elements only, i.e. if we take an
initial value (ū0, v̄0) ∈ ω(u, v) in the ω-limit set associated with (u, v), then (ū, v̄)
is a periodic planar solution of (1.6).

The case E 6= ∅. Given α, β ∈ R, α < β, we call

Iα,β : =
{

(u0, v0) ∈ C1([0, L],R2) : (u0, v0) = r0(cosϕ0, sinϕ0) with

r0, ϕ0 ∈ C([0, L],R)such that r0 > 0 and α < ϕ0 < β in (0, L)
}

the angular space between α and β. If, in addition,
• α, β ∈ E and
• γ 6∈ E for all α < γ < β,
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then we call Iα,β an angular space associated with E. We note that E 6= ∅ implies
that E contains infinitely many elements. We show that an angular space associated
with E is positively invariant under the semiflow generated by (1.6) and all solutions
with initial value in this angular space tend to planar solutions with (constant) angle
α or β.

Theorem 3.4. Let Iα,β be an angular space associated with E and (u, v) a (bounded)
solution with initial value (u, v)(0, ·) ∈ Iα,β. Then we get:

(a) (u, v)(t, ·) ∈ Iα,β for all t ≥ 0.
(b) There are continuous functions ϕ : (0,∞) → C([0, L],R) and r : (0,∞) →

C1([0, L],R) such that (
u
v

)
= r

(
cosϕ
sinϕ

)
.

(c) If g0(cos γ, sin γ) > 0 for α < γ < β, then ϕ(t, ·) converges to β in
C([0, L],R), in case g0(cos γ, sin γ) < 0 to α.

4. Interpretation of the results

If we have E = ∅, then the rotation on the values of (u, v) driven by g0 does never
stop — formally this means that φ(·;φ0) is strictly monotone and unbounded. In
this case, our main result, Theorem 3.1, ensures that a major part of the dynamics
of (1.6) can be described by looking only at the dynamics on P, because we know
that all solutions of (1.6) tend to P for t → ∞. Then Theorems 2 and 3 show
that the dynamics on P can be described by solving first the ODE (2.2) and then
looking at the scalar reaction-diffusion equation (3.2) which has been studied in
[6, 7, 8]. This is obviously much easier than dealing with the full system (1.6); in
particular we can use oscillation number results in order to attack equation (3.2)
which are, in general, not available for systems.

Nevertheless, we note that the global attractor of (1.6) (if it exists) contains,
in general, more elements than just the union of ω(u0, v0) for all points (u0, v0).
We can even show that in some cases the global attractor will contain non-planar
elements. The results [5] on unstable directions for periodic solutions of the model
system (1.5) could, for example, be used in order to prove the existence of non-
planar heteroclinic solutions.

If we have E 6= ∅ and α ∈ E, then φ(t;α) = α for all t and the set {(u0, v0) :=
r0(cosα, sinα) : r0 ∈ C1([0, L],R)} is invariant under the semiflow induced by
(1.6). In this case Theorem 3.4 describes the dynamics of all solutions starting in
an angular space Iα,β between two consecutive elements of E, i.e. in a space which
is bounded by invariant sets.

Theorem 3.4 says that all solutions which start in the angular space Iα,β will be
flattened out and converge to the boundary of this angular space (see Figure 2).
In the proof of Theorem 3.4 we will see that the crucial point is that α ≤ φ− ≤
ϕ(t0, ·) ≤ φ+ ≤ β for some t0 yields

φ(t− t0;φ−) ≤ ϕ(t, ·) ≤ φ(t− t0;φ+) for all t ≥ t0.

This (weak) order-preserving property together with the fact that φ(·;φ0) converges
for any φ0 is the main idea of the proof of Theorem 3.4.
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We note that outside the angular spaces even non-planar equilibria may exist.
We can, for example, take L = π, h1(u, v) = (u, 4v), and F (t, x, u, v) = 0 which has
the non-planar equilibrium (sinx, sin(2x)) (and E = π

2Z).

5. Construction of an appropriate transformation

Let (u, v) ∈ C1([0,∞) × [0, L],R2) be a solution of (1.6) with Dirichlet or Neu-
mann boundary conditions. For ϕ ∈ R we consider

M(ϕ) :=
(

cosϕ − sinϕ
sinϕ cosϕ

)
.

Given φ0 ∈ R we introduce(
w
z

)
(t, ·) := M(−φ(t;φ0))

(
u
v

)
(t, ·) .

An elementary computation shows that (w, z) satisfies

d

dt

(
w
z

)
=

(
wxx
zxx

)
+
(
−z
w

)[
g0

(
M(φ(t;φ0))

(
w
z

))
− d

dt
φ(t;φ0)

]
(5.1)

+
(
w
z

)[
F
(
t, x,M(φ(t;φ0))

(
w
z

))
+ f0

(
M(φ(t;φ0))

(
w
z

))]
.

6. Oscillation number results

The concept of oscillation numbers [1, 13, 16] (sometimes also called zero number,
lap number or Matano number) deals with solutions y : [0,∞) × [0, L] → R of a
linear equation

d

dt
y = yxx + q(t, x)y (6.1)

where q : [0,∞)× [0, L]→ R is bounded on [0, T ]× [0, L] for all T > 0. We define
the number of sign changes (the oscillation number) by

Z(t) := sup
{
k ∈ N : ∃ 0 < x1 < · · · < xk < L :

y(t, xj)y(t, xj+1) < 0 ∀ 1 ≤ j ≤ k − 1 .
}

It is remarkable that Z(t) is finite for all t > 0, no matter how many zeros the
initial state y(0, ·) has, as Angenent [1] proved. The most important result about
oscillation numbers is that Z : (0,∞) → N is a non-increasing function. Precisely,
the value of Z(t) decreases whenever y(t, ·) has a multiple zero, i.e. if y(t0, ·) has a
multiple zero, then Z(t1) > Z(t2) for all t1 < t0 < t2.

These oscillation number results play an important role in the examination of
a scalar reaction-diffusion equation but can in general not be applied to systems
of reaction-diffusion equations. Whenever z is not the zero function, we want to
have results on the oscillation number of z like those mentioned in the last section.
Thus, we have to show that z satisfies some equation of the form (6.1). Since z
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solves
d

dt
z = zxx + w

[
g0

(
M(φ(t;φ0))

(
w
z

))
− d

dt
φ(t;φ0)

]
+z
[
F
(
t, x,M(φ(t;φ0))

(
w
z

))
+ f0

(
M(φ(t;φ0))

(
w
z

))]
by (5.1), it only remains to show that

q1 :=
w

z

[
g0

(
M(φ(t;φ0))

(
w
z

))
− d

dt
φ(t;φ0)

]
is bounded on [0, T ]×[0, L] for all T > 0. If q1 is bounded, then z will solve equation
(6.1) with

q := q1 + F
(
t, x,M(φ(t;φ0))

(
w
z

))
+ f0

(
M(φ(t;φ0))

(
w
z

))
and we will be able to apply oscillation number results to z.

We assume that q1 is not bounded. Then there is T > 0 and a sequence (tn, xn)
in [0, T ] × [0, L] such that |q1(tn, xn)| → ∞ (n → ∞) and z(tn, xn) 6= 0 for all
n ∈ N. We may assume that (tn, xn) converges to (t0, x0) ∈ [0, T ]× [0, L]. Since g0

and, by definition of φ, also d
dtφ are bounded, this implies that

z(tn, xn)
w(tn, xn)

→ 0 (n→∞) .

Hence, (ωn, ζn) defined by(
ωn
ζn

)
:=

1√
w2(tn, xn) + z2(tn, zn)

(
w(tn, xn)
z(tn, xn)

)
fulfill ζn → 0 (n→∞). This means that |ωn| → 1 (n→∞) and without loss of
generality, we may assume that ωn → 1 (n→∞). Since the map

[0, 2π]× S1 3 (ϕ, (ω, ζ)) 7→ g0

(
M(ϕ)

(
ω
ζ

))
∈ R

is (uniformly) continuously differentiable, it is Lipschitz-continuous in (ω, ζ) ∈ S1

uniformly for all ϕ ∈ [0, 2π] with Lipschitz-constant Lg. Hence, we get∣∣∣g0

(
M(φ(tn;φ0))

(
w(tn, xn)
z(tn, xn)

))
− d

dt
φ(tn;φ0)

∣∣∣
=

∣∣∣g0

(
M(φ(tn;φ0))

(
ωn
ζn

))
− g0

(
M(φ(tn;φ0))

(
1
0

))∣∣∣
≤ Lg

∣∣∣ (ωn
ζn

)
−
(

1
0

) ∣∣∣
= Lg

√
(ωn − 1)2 + ζ2

n .

We define αn ∈ R by (ωn, ζn) = (cosαn, sinαn). Then tanαn = z(tn, xn)/w(tn, xn)
and αn → 0 ( mod π) (n→∞). Furthermore, it follows that√

(ωn − 1)2 + ζ2
n = 2

∣∣sin(
αn
2

)
∣∣ = O(tanαn) = O

( z(tn, xn)
w(tn, xn)

)
(n→∞)

and, thus, q1(tn, xn) is bounded for n→∞ contradicting our assumption.
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7. Proof of Theorem 3.1

Step 1: Assume that the assertion is false and construct a non-planar
element in the ω-limit set under this assumption.

By standard arguments [12, 17] we know that the solutions of (1.6) build a (local)
semiflow on some Sobolev space; in particular, the orbit

Γ := {(u, v)(t) : t ≥ 0}
of the bounded solution (u, v) is a precompact subset of the space Xα := D(∆α),
α ∈ (0, 1) (in the notation of Henry [12]. Taking α < 1 sufficiently large and using
the Sobolev embedding theorem, we obtain that Γ lies precompact in C1([0, L],R2).
This implies that, if the assertion of our theorem does not hold, then there is
(u′0, v

′
0) ∈ C1([0, L],R2) \ P and a sequence (tn), tn ↗∞, such that

‖(u, v)(tn, ·)− (u′0, v
′
0)‖C1 → 0 (n→∞) .

This means that (u′0, v
′
0) is contained in the ω-limit set associated with (u, v). Let

(u′, v′) be the solution of (1.6) with initial value (u′0, v
′
0). We note that (u′, v′) is

defined for all t ∈ R since (u′0, v
′
0) is an element of the ω-limit set.

Step 2: Definition of φ0. We want to take φ0 ∈ R such that z′(0, ·) defined using
the formula (

w′

z′

)
(t, ·) := M(−φ(t;φ0))

(
u′

v′

)
(t, ·)

has a multiple zero. If u′0 or v′0 have a multiple zero, then we can take φ0 = π/2
or φ0 = 0. If neither u′0 nor v′0 have multiple zeros, then we proceed as follows:
Using the result of the last section, we can apply oscillation number results to z′

— for every φ0. Since (u′, v′) are also defined for negative t, z′ solves an equation
of the form (6.1) for all t ∈ R. Then Angenent’s result [1] ensures that the number
of zeros of z′(t, ·) is finite for all t; in particular for t = 0. Applying this result
for φ0 = π/2 and φ0 = 0, we obtain that u′0 as well as v′0 have only finitely many
zeros (which are all simple by assumption). Hence, there is a continuous function
ϕ′0 : [0, L]→ R which satisfies

tanϕ′0(x) =
v′0(x)
u′0(x)

for all x ∈ [0, L] with u′0(x) 6= 0.

This result is an easy consequence of de l’Hospital’s formula, and it can also be
found in [2, p.696,Lemma 2]. We set

φ0 := max
{
ϕ′0(x) : x ∈ [0, L]

}
and take x0 ∈ [0, L] such that ϕ′0(x0) = φ0. Then we get z′(0, x0) = 0 using the
definition of z′. It remains to show that ∂

∂xz
′(0, x0) = 0.

Case 1: w′(0, x0) = 0. Then z′(0, x0) = 0 implies that u′0(x0) = v′0(x0) = 0 and,
thus,

tanφ0 =
∂
∂xv
′
0(x0)

∂
∂xu

′
0(x0)

.

Hence, it follows that
∂
∂xz
′(0, x0)

∂
∂xw

′(0, x0)
= tan(ϕ′0(x0)− φ0) = 0 .

In particular, we have ∂
∂xz
′(0, x0) = 0.
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Case 2: w′(0, x0) 6= 0. Let U0 be a neighborhood of x0 in [0, L] in which w′(0, ·)
has no zeros. Since ϕ′0(x) ≤ φ0 for all x ∈ [0, L], we get

0 ≥ tan(ϕ′0(x)− φ0) =
z′(0, x)
w′(0, x)

for all x ∈ U0.

Since w′(0, ·) has no sign change in U0, it follows that z′(0, ·) must not have a sign
change in U0, too. Hence x0 must be a multiple zero of z′(0, ·).
Step 3: Applying oscillation number results to z′. As shown in Section 6,
we can apply oscillation number results to z′. Let Z ′ : R→ N be the corresponding
oscillation number. We note that we can define Z ′ on the whole real axis because
z′ is defined for all t ∈ R (and solves a linear equation of the form (6.1) on each
interval [−τ,∞), τ ≥ 0). Since z′(0, ·) has a multiple zero by Step 2, we get

Z ′(t−) > Z ′(t+) for all t− < 0 < t+.

We note that z′(t, ·) can only have multiple zeros for countably many t ∈ R since Z ′

has its values in N, is non-increasing and decreases each time z′(t, ·) has a multiple
zero. Thus, we can choose t− < 0 < t+ in a way that z′(t±, ·) have no multiple
zeros.
Step 4: Definition of (w, z). By assumption, E is empty and, thus, φ(·;φ0) is
unbounded by Lemma 2.2. Therefore, φ(·;φ0) has to be periodic; we denote its
period by p. Without loss of generality, we assume that tn mod p ∈ [0, p) has the
same value τ for all n; otherwise we take a subsequence (tnk) such that mk := tnk
mod p converges in [0, p], denote its limit by τ and set τk := tnk − (mk − τ). Then
we get (u, v)(τk) → (u′0, v

′
0), and we can use (τk) instead of (tn). Without loss of

generality, we assume that τ = 0; otherwise replace (u, v) by (û, v̂) := (u, v)(· − τ)
which does also solve an equation of the form (1.6). Then we introduce (w, z) by(

w
z

)
(t, ·) := M(−φ(t;φ0))

(
u
v

)
(t, ·) for t ≥ 0.

We note that (tn) was chosen in a way that tn is an integer multiple of p for all n.
Thus, we get φ(tn;φ0) = φ0 and(

w
z

)
(tn, ·) = M(−φ(tn;φ0))︸ ︷︷ ︸

=M(−φ0)

(
u
v

)
(tn, ·) → M(−φ0)

(
u′

v′

)
(0, ·)

=
(
w′

z′

)
(0, ·) . (7.1)

Furthermore, an analogous computation shows that(
w
z

)
(tn + t±, ·)→

(
w′

z′

)
(t±, ·) in C1([0, L],R).

Since z′(t+, ·) and z′(t−, ·) have no multiple zeros, it follows that there are positive
integers n+, n− such that the number of zeros of z(tn+t±, ·) and z′(t±, ·) coincide for
all n ≥ n±. Since Z ′(t−) > Z ′(t+), the number Z(t) of zeros of z(t, ·) accumulates
at two different values Z ′(t±). Since oscillation number results hold for z by Section
6, Z has to be non-increasing which is a contradiction.
Remark. We note that the assumption E = ∅ is used in Step 4 only. It ensures
that φ(·;φ0) is unbounded and, thus, periodic. Otherwise (7.1) does not hold and
we cannot conclude that (w′, z′)(0) is a limit point of some function (w, z) defined
as above.
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8. Proof of Theorems 3.2 and 3.3

Suppose that (u0, v0), φ0 and r0 are given as in Theorem 3.2. First define r by
(3.2) and then (u, v) by (3.1). An elementary computation shows that (u, v) is a
solution of (1.6) with initial value (u0, v0). Using the uniqueness of the solutions of
(1.6) (see, for example, [13]), the assertion of Theorem 3.2 follows.

By Lemma 2.2, φ(·;φ0) is unbounded. In particular, φ(·;φ0) is not constant and
Lemma 2.1 implies that it is strictly monotone. Without loss of generality assume
that φ(·;φ0) is strictly increasing. Since φ(t;φ0) is not bounded for t → ∞, there
is a uniquely determined pφ > 0 such that

φ(pφ;φ0) = φ0 + 2π .

Thus, φ(·;φ0) is periodic with period pφ. Furthermore, there is t0 ∈ [φ0, φ0 + pφ)
such that φ(t0;φ0) = 2πk with some integer k. Then it follows that

φ(t0 + pφj;φ0) = 2π(k + j) for all integers j.

In particular, we get φ(t0 − pφk;φ0) = 0 and, thus,

φ(pφ; 0) = φ(pφ;φ(t0− pφk;φ0)) = φ(t0− pφk+ pφ;φ0) = φ(t0− pφ(k− 1);φ0) =2π

which shows that pφ is given by the expression mentioned in Theorem 3.3.
We assume that F is t-periodic with period pF where pφ/pF is rational. This

means that there is p > 0 such that p/pφ as well as p/pF are positive integers
(in the autonomous case, one can just take p = pφ). In particular, equation (3.2)
depends periodically on t (with period p).

Let (ū0, v̄0) be an element of ω(u, v) and (ū, v̄) be the corresponding solution of
(1.6). Then (ū, v̄) is planar by Theorem 3.1. By Theorem 3.2, there is φ̄0 ∈ R and
a function r̄ such that (3.1) and (3.2) hold. Since (ū0, v̄0) = r̄(0)(cos φ̄0, sin φ̄0) is
an element of ω(u, v), it is a chain-recurrent point. Then an elementary analysis
like it was done in [5, Theorem 2] shows that r̄(0) is a also chain-recurrent point for
equation (3.2). Then [8] ensures that r̄ is a p-periodic solution of (3.2) and, since
φ(·;φ0) is p-periodic, (ū, v̄) is a p-periodic solution of (1.6).

9. Proof of Theorem 3.4

1. We will prove the assertion only in the case α = −π/2. The general case can
easily be reduced to this situation setting(

u′

v′

)
(t) := M(−α− π/2)

(
u
v

)
(t) .

Then (u′, v′) solves an equation similar to (1.6) replacing F, f0, g0 by

f ′0

(
ξ
η

)
:= f0

(
M(α+ π/2)

(
ξ
η

))
,

g′0

(
ξ
η

)
:= g0

(
M(α+ π/2)

(
ξ
η

))
,

F ′
(
t, x,

(
ξ
η

))
:= F

(
t, x,M(α+ π/2)

(
ξ
η

))
.

Hence, we have α′ = −π/2, β′ = β − α − π/2 and the assertion follows using
ϕ = ϕ′ + α+ π/2.
2. We note that α = −π/2 (Step 1) implies π/2 ∈ E using the fact that g0(0, 1) =
g0(0,−1) (0-homogeneity). This gives β ∈ (−π/2, π/2]. Hence, (u, v)(0) ∈ Iα,β
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implies u0 = r0 cosϕ0 with r0 ≥ 0 and −π/2 ≤ α ≤ ϕ0 ≤ β ≤ π/2 and, thus,
u0 ≥ 0. Furthermore, we get g0(0,−1) = g0(cosα, sinα) = 0. Since the restriction
of g0 on S1 is continuously differentiable, then function ĝ0 given by

ĝ0 : S1 3 (cosφ, sinφ) 7→ g0(cosφ, sinφ)
cosφ

sinφ ∈ R

is well defined and continuous. Setting ĝ0(ξ, η) := g0(ξ,η)
ξ η for all (ξ, η) ∈ R2

∗, ĝ0 is
0-homogeneous, continuous and bounded; in particular, it is contained in L∞(R2).
Since u satisfies

d

dt
u = uxx + u(F + f0)− vg0 = uxx + u(F + f0 − ĝ0)

and u(0, ·) = u0 ≥ 0, maximum principle arguments imply that, for all t > 0,
u(t, x) > 0 for x ∈ (0, L) and ux(t, 0), ux(t, L) 6= 0 in case of Dirichlet boundary
conditions and u(t, x) > 0 for x ∈ [0, L] in case of Neumann boundary conditions.
Thus, there is a continuous function q : (0,∞)× [0, L]→ R such that

q(t, x) =
v(t, x)
u(t, x)

, x ∈ (0, L) .

(Note that q(t, 0), q(t, L) can be defined using de’l Hospital’s formula.) We define

ϕ : (0,∞)× [0, L] 3 (t, x) 7→ arctan q(t, x) ∈ (−π/2, π/2) ,

ϕ(t, ·) ∈ C([0, L],R), and r by r(t, ·) := u(t, ·)/ cosϕ(t, ·). Then, (b) follows. We
note that the positivity of u and the fact that ϕ(t, ·) has its values in (−π/2, π/2)
implies that r(t, ·) has only positive values in (0, L) for all t > 0.
3. We take t0 > 0 and set φ− := min[0,L] ϕ(t0, ·), φ+ := max[0,L] ϕ(t0, ·). Note that
ϕ is continuous by Step 2. Let z = z± be defined as in Section 5 where the constant
φ0 should have the value φ(−t0;φ±). Then we get

z±(t0, ·) = r(t0, ·) sin(ϕ(t0, ·)− φ±) .

Using the fact that r(t0, ·) is positive in (0, L) by Step 2 and ϕ(t0, ·)− φ− ∈ [0, π),
it follows that z−(t0, ·) ≥ 0. We take x− ∈ [0, L] such that ϕ(t0, x−) = φ−. Then
z−(t0, ·) has a multiple zero at x = x−. By Section 5, we can apply oscillation
number results to z−. Hence, z−(t, ·) is either the zero function or strictly positive
in (0, L) for all t > t0. In particular, we get

min
[0,L]

ϕ(t, ·) ≥ φ(t− t0;φ−) ∀t > t0.

Analogously, we get

max
[0,L]

ϕ(t, ·) ≤ φ(t− t0;φ+) ∀t > t0.

4. The solutions of (1.6) form a (local) semiflow on the space C1([0, L],R2). Hence,
(u, v)(0) ∈ Iα,β implies that there is δ > 0 such that

α < ϕ(t, ·) < β ∀0 ≤ t < δ.

Thus, we have (u, v)(t) ∈ Iα,β for t ∈ [0, δ). Take t0 := δ/2 and define φ± as in
Step 3. Then we get α < φ− ≤ φ+ < β and, by definition of the function φ(·;φ±),

α < φ(t;φ−) ≤ φ(t;φ+) < β ∀t ≥ 0.

Thus, Step 3 implies that (u, v)(t) ∈ Iα,β for all t ≥ δ/2 and, using the result
mentioned above, for all t ≥ 0. This proves (a).
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5. Take t0 > 0 and define φ± as in Step 3. Then we get (u, v)(t0) ∈ Iα,β by Step 4
and, thus,

α < φ− ≤ φ+ < β .

If g0(cosφ0, sinφ0) > 0 for α < φ0 < β, then Lemmata 2.1 and 2.2 yield φ(t;φ±)→
β (t→∞). Since

φ(t− t0;φ−) ≤ min
[0,L]

ϕ(t, ·) ≤ max
[0,L]

ϕ(t, ·) ≤ φ(t− t0;φ+) ∀t > t0

by Step 3, it follows that ϕ(t, ·) converges to β in C([0, L],R). Analogously, we get
convergence to α in the case g0(cosφ0, sinφ0) < 0 for α < φ0 < β. This proves (c).

Acknowledgement. The author thanks Professor B. Fiedler, Freie Universität
Berlin, for helpful suggestions that led to the examination of the problem dealt
with in this paper.
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[2] M. Büger, Torsion numbers, a tool for the examination of symmetric reaction-diffusion sys-

tems related to oscillation numbers, Disc. Cont. Dyn. Sys. 4 (1998), 691–708.
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