
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 80, pp. 1–10.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

A note on the singular Sturm-Liouville problem

with infinitely many solutions ∗

Nickolai Kosmatov

Abstract

We consider the Sturm-Liouville nonlinear boundary-value problem

−u′′(t) = a(t)f(u(t)), 0 < t < 1,

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,

where α, β, γ, δ ≥ 0, αγ + αδ + βγ > 0 and a(t) is in a class of singular
functions. Using a fixed point theorem we show that under certain growth
conditions imposed on f(u) the problem admits infinitely many solutions.

1 Introduction

In this paper we are interested in the Sturm-Liouville nonlinear boundary-value
problem

−u′′(t) = a(t)f(u(t)), 0 < t < 1, (1)
αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0. (2)

The paper is organized in the following manner. In the introduction we
briefly discuss the background of the problem, make standing assumptions on
the right side of (1) and state the theorems that will be used to obtain our main
results presented in Section 3. The approach is based on the properties of the
Green’s function of the homogeneous (1)-(2). They will be presented in Section
2.

Fixed point theorems have been applied to various boundary value problems
to establish the existence of multiple positive solutions. Just recently there have
been obtained several results concerning the existence of countably infinitely
many positive solutions, e.g., Ehme [3], Eloe, Henderson and Kosmatov [4],
Kaufmann and Kosmatov [5] and Kosmatov [6]. They cover the cases of (k, n−
k) and second order conjugate type boundary value problems. In addition,
[5, 6] deal with a singular BVP. Singular boundary value problems have been
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2 A note on the singular Sturm-Liouville problem EJDE–2002/80

considered by many authors, e.g., Agarwal, O’Regan and Wong [1] and Baxley
and Thompson [2]. This paper complements the results of [6] in which we
considered the conjugate type boundary value problem

−u′′(t) = a(t)f(u(t)), 0 < t < 1,
u(0) = u(1) = 0.

It needs to be mentioned that [6] only treats the class of symmetric about t = 1
2

solutions. The assumption of symmetry imposes a constraint on a(t): it must
also be chosen to be symmetric about t = 1

2 . In our situation we can more
generally locate the point of singularity anywhere in [0, 1].

We will analyze a family of singular functions

a(t) = |t− t′|−ε, (3)

where t′ ∈ (0, 1) and 0 < ε < 1. We will show that it is possible to construct
f(u) in such a fashion that it can be uniformly used for a range of value of the
parameter ε. To achieve a result that does not involve ε in growth conditions
Hölder’s inequality is to our advantage. It is utilized to yield norm-estimates
from “above” of Theorem 1.2 presented below.

The Green’s function of
−u′′ = 0

satisfying (2) is

G(t, s) =

{
σ(αt+ β)(γ + δ − γs), t ≤ s ≤ 1,
σ(αs+ β)(γ + δ − γt), 0 ≤ s ≤ t,

(4)

where σ = 1/(αγ + αδ + βγ) (note that αγ + αδ + βγ > 0).
At this point we assume that f(u) is a continuous nonnegative function and

introduce an integral operator, T , associated with the BVP (1), (2) as follows

Tu(t) =
∫ 1

0

G(t, s)a(s)f(u(s))ds, 0 ≤ t ≤ 1. (5)

Fixed points of (5) are in fact (positive) solutions of (1), (2).
The main tools used in this paper are the Krasnosel’skĭi’s fixed point theorem

[7] and Hölder’s inequality stated below. Now we define a cone in a Banach
space.

Definition 1.1 Let B be a real Banach space. A nonempty, closed set C ⊂ B
is said to be a cone provided:

(i) αu+ βv ∈ C for all u, v ∈ C and α, β ≥ 0,

(ii) u,−u ∈ C implies u = 0.
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Theorem 1.2 Let B be a Banach space and let C ⊂ B be a cone in B. Assume
Ω1, Ω2 are open bounded subsets of B with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : C ∩ (Ω̄2 \ Ω1)→ C

be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then T has a fixed point in C ∩ (Ω̄2 \ Ω1).

Under appropriate growth assumptions on f , Theorem 1.2 guarantees the
existence of fixed points of (5). With a(t) specified by (3), (5) becomes

Tu(t) =
∫ 1

0

G(t, s)|t′ − s|−εf(u(s))ds, 0 ≤ t ≤ 1. (6)

Evidently, T is a completely continuous operator.
We say that f is in the Lebesgue space of (real valued) functions, Lp[a, b], if∫ b

a

|f |pdx <∞.

The norm on Lp[a, b] is

‖f‖p =
( ∫ b

a

|f |pdx
)1/p

.

Now we state Hölder’s inequality.

Theorem 1.3 Let f ∈ Lp and g ∈ Lq, where p > 1 and q = p
p−1 . Then fg ∈ L1

and we have
‖fg‖1 ≤ ‖f‖p‖g‖q. (7)

2 Technical Results

For τ ∈ [0, 1
2 ), denote the interval [τ, 1−τ ] by Iτ . Note that, for each τ ∈ (0, 1

2 ),
(4) satisfies

min
t∈Iτ

G(t, s) ≥ LτG(t′, s),

where Lτ = min{ δ+γτδ+γ ,
β+ατ
β+α } for all t′, s ∈ [0, 1]. Let B = C[0, 1] endowed with

the norm ‖u‖ = maxt∈[0,1] |u(t)| and define Cτ ⊂ B by

Cτ = {u(t) ∈ B |u(t) ≥ 0 on[0, 1], min
t∈Iτ

u(t) ≥ Lτ‖u‖}.

Clearly, Cτ is a cone and it can be shown that (6) preserves Cτ .
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At this point we would like to establish the Lp-norm estimates on (3) and
(4) which will be used in Section 3. It is easy to see that a ∈ Lp for all p < 1

ε
with

‖a‖p =
1

(1− εp)1/p
(t′1−εp + (1− t′)1−εp)1/p ≤ 2ε

(1− εp)1/p
. (8)

To obtain the required estimates on (4) we consider the following three cases:
(1) α = 0, γ > 0, (2) γ = 0, α > 0, and (3) αγ > 0 .

If α = 0 and γ > 0, then (4) becomes

G(t, s) =

{
1 + δ

γ − s, t ≤ s ≤ 1,
1 + δ

γ − t, 0 ≤ s ≤ t.
(9)

Now, ∫ 1−τ

τ

G(t, s)ds = (1 +
δ

γ
)(1− 2τ) +

1
2
τ2 − t(1− τ)− 1

2
t2

attains its maximum at t = τ and

max
t∈[0,1]

∫ 1−τ

τ

G(t, s)ds = 2(1− τ +
δ

γ
)(

1
2
− τ) ≥ 1

2
− τ. (10)

If γ = 0 and α > 0, then (4) becomes

G(t, s) =

{
β
α + t, t ≤ s ≤ 1,
β
α + s, 0 ≤ s ≤ t.

(11)

Then ∫ 1−τ

τ

G(t, s)ds =
β

α
(1− 2τ)− 1

2
τ2 + t(1− τ)− 1

2
t2

has its maximum at t = 1− τ and

max
t∈[0,1]

∫ 1−τ

τ

G(t, s)ds = (1 + 2
β

α
)(

1
2
− τ) ≥ 1

2
− τ. (12)

If αγ > 0, then (4) takes shape of

G(t, s) =

{
σ′(t+ β′)(1 + δ′ − s), t ≤ s ≤ 1,
σ′(s+ β′)(1 + δ′ − t), 0 ≤ s ≤ t,

(13)

where β′ = β/α, δ′ = δ/γ, σ′ = 1/(β′ + δ′ + 1).
A direct computation gives that for all t ∈ [0, 1],∫ 1−τ

τ

G(t, s)ds = σ′(−2β′δ′τ− 1
2σ′

+β′(
1
2
−τ)+β′δ′+(β′τ+δ′−δ′τ+

1
2

)t− 1
2σ′

t2).
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The right side of the equation above attains its max at tm = σ′
2(β′τ +δ′−δ′τ +

1
2 ) ∈ (τ, 1− τ) and we obtain that

max
t∈[0,1]

∫ 1−τ

τ

G(t, s)ds = σ′[β′(1 + 2δ′)(
1
2
− τ) +

1
2σ′

(tm2 − τ2)]

= σ′[β′(1 + 2δ′)(
1
2
− τ) +

1
2

(2τ + σ′(1 + 2δ′)(
1
2
− τ))]

≥ σ′[β′(1 + 2δ′)(
1
2
− τ) +

σ′

4
(1 + 2α′)2(

1
2
− τ)]

=
σ′

2

4
(1 + 2β′)(2β′ + 1 + 2δ′)(2δ′ + 1)(

1
2
− τ) (14)

≥ 1
4

(
1
2
− τ)

Combining (10), (12), and (14) we get that (4) satisfies

max
t∈[0,1]

∫ 1−τ

τ

G(t, s)ds ≥ 1
4

(
1
2
− τ). (15)

Now we establish an estimate from above for (9). Let q ≥ 1. It is easy to
see that G(t, s) ≤ G(s, s) for all t, s ∈ [0, 1]. If α = 0, γ > 0, then

‖G(t, ·)‖qq =
∫ 1

0

Gq(t, s)ds

≤
∫ 1

0

Gq(s, s)ds

=
∫ 1

0

(1 +
δ

γ
− s)qds

≤ 1
q + 1

(1 +
δ

γ
)q+1

< (1 +
δ

γ
)
2q

so that

max
t∈[0,1]

‖G(t, ·)‖q < (1 +
δ

γ
)
2

. (16)

By the same argument applied to the case of γ = 0, α > 0 we get for (11)

max
t∈[0,1]

‖G(t, ·)‖q < (1 +
β

α
)
2

. (17)

If αγ > 0, then we have for (13)

G(t, s) ≤ G(s, s) = σ′(β′δ′ + β′ + (δ′ + 1− β′)s− s2).
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Consider the function g(s) = β′δ′ + β′ + (δ′ + 1 − β′)s − s2 on [0, 1]. There
are three cases: (i) δ′ − β′ ≤ −1, (ii) δ′ − β′ ≥ 1 and (iii) |β′ − δ′| < 1. In
cases (i) and (ii), the maximum of g(s) occurs at s = 0 and s = 1, respectively.
So that maxs∈[0,1] g(s) = g(0) = β′(1 + δ′) < 1

σ′2
and maxs∈[0,1] g(s) = g(1) =

δ′(1 + β′) < 1
σ′2

as corresponding to the above two cases. Combining cases (i)
and (ii), we get that if |δ′ − β′| ≥ 1, then

max
s∈[0,1]

g(s) <
1
σ′2

.

In case (iii) the maximum is attained at s = δ′+1−β′
2 ∈ (0, 1) and maxs∈[0,1] g(s) =

g( δ
′+1−β′

2 ) = 1
4 (β′ + δ′ + 1)2 = 1

σ′2
. Pasting all the cases together,

max
s∈[0,1]

g(s) <
1
σ′2

and so since G(s, s) = σ′g(s),

G(t, s) <
1
σ′
, t, s ∈ [0, 1].

In particular,

‖G(t, ·)‖qq =
∫ 1

0

Gq(t, s)ds

≤
∫ 1

0

Gq(s, s)ds

=
1
σ′2q

= (1 +
β

α
+
δ

γ
)
2q

and hence

max
t∈[0,1]

‖G(t, ·)‖q < (1 +
β

α
+
δ

γ
)
2

. (18)

Finally, combining (16), (17), and (18) we get

max
t∈[0,1]

‖G(t, ·)‖q < A, (19)

where

A =


(1 + δ

γ )2, α = 0, γ > 0
(1 + β

α )2, γ = 0, α > 0
(1 + β

α + δ
γ )2, αγ > 0.

(20)
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3 Main Results

Without loss of generality, let 0 < t′ < 1/2. First, we are going to consider the
case of 0 < ε < 1/2.

Theorem 3.1 Suppose the sequence {ti}∞i=1 satisfies 0 < ti < ti+1, i ∈ N , and

lim
i→∞

ti = t′ <
1
2
.

Suppose {ai}∞i=1 and {bi}∞i=1 are the sequences satisfying

ai+1 < Ltibi < bi <
16A

1
2 − ti

bi < ai i ∈ N,

where A is given by (20). Assume also that f satisfies the following conditions:

(H1) f(z) ≤ 1
4Aai for all z ∈ [0, ai], i ∈ N ,

(H2) f(z) ≥ 4
1
2−t′

bi for all z ∈ [Ltibi, bi], i ∈ N .

Then (1), (2) has infinitely many fixed points {ui}∞i=1 such that bi < ‖ui‖ < ai,
i ∈ N .

Proof. Consider the sequences {Ω1,i}∞i=1 and {Ω2,i}∞i=1 of open sets in B de-
fined, for each i ∈ N , by

Ω1,i = {u ∈ B : ‖u‖ < ai},
Ω2,i = {u ∈ B : ‖u‖ < bi},

Consider also the sequence of cones {Ci}∞i=1 defined by

Ci = {u(t) ∈ B|u(t) ≥ 0 on [0, 1] with min
t∈Iti

u(t) ≥ L(ti)‖u‖}.

Let i ∈ N and u ∈ Ci ∩ ∂Ω1,i, then

u(s) ≤ ‖u‖ = ai

for all s ∈ [0, 1]. So, by (H1)

‖Tu‖ = max
t∈[0,1]

∫ 1

0

a(s)G(t, s)f(u(s))ds

≤ max
t∈[0,1]

∫ 1

0

a(s)G(t, s))ds
1

4A
ai

(21)

Let 1 < p < 1/ε and set q = p/(p − 1). Then applying Hölder’s inequality (7)
to (21) yields

‖Tu‖ ≤ max
t∈[0,1]

‖G(t, ·)‖q‖a‖p
1

4A
ai,
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which by (8), (19) transforms into

‖Tu‖ < A
2ε

(1− εp)1/p

1
4A

ai =
2ε

(1− εp)1/p

1
4
ai. (22)

Now, for every 0 < ε < 1/2 there exists 1 < p < 1/ε such that 0 < pε < 1/2.
So, 1 < 1

1−εp < 2 and hence

1 < (
1

1− εp
)

1
p < 2

1
p .

Hence (22) takes shape of

‖Tu‖ < 2ε+
1
p

1
4
ai < ai

(ε+ 1
p < 2), that is,

‖Tu‖ < ‖u‖ (23)

for all u ∈ Ci ∩ ∂Ω1,i, i ∈ N.
Let now u ∈ Ci ∩ ∂Ω2,i, then

bi = ‖u‖ ≥ u(s) ≥ min
t∈[ti,1−ti]

u(s) ≥ Lti‖u‖ = Ltibi

for all s ∈ Iti . Then, by (H2)

‖Tu‖ = max
t∈[0,1]

∫ 1

0

a(s)G(t, s)f(u(s))ds

≥ max
t∈[0,1]

∫ 1−ti

ti

a(s)G(t, s)f(u(s))ds

≥ max
t∈[0,1]

∫ 1−ti

ti

a(s)G(t, s)ds
4

1
2 − t′

bi.

Note that because ti < t′ < 1/2 for all i ∈ N , a(s) ≥ 1
(t′−ti)ε >

1
( 1

2−ti)ε
, s ∈ Iti ,

the inequality above becomes

‖Tu‖ ≥ max
t∈[0,1]

∫ 1−ti

ti

G(t, s)ds
1

( 1
2 − ti)ε

4
1
2 − t′

bi

Now (15) applies and we get

‖Tu‖ =
1
4

(
1
2
− ti)

1
( 1

2 − ti)ε
4

1
2 − t′

bi

> (
1
2
− ti)1−ε 1

1
2 − t′

bi > bi;

that is,
‖Tu‖ > ‖u‖ (24)
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for all u ∈ Ci ∩ ∂Ω2,i, i ∈ N .
Note that since 0 ∈ Ω2,i ⊂ Ω̄2,i ⊂ Ω1,i and (23) and (24) hold, we can

apply Theorem 1.2 to conclude that the operator T has a fixed point ui ∈
Ci ∩ (Ω̄1,i \ Ω2,i) such that bi < ‖ui‖ < ai, i ∈ N . The proof is complete. �

Now, let us deal with the case 1
2 ≤ ε < 1.

Theorem 3.2 Suppose the sequence {ti}∞i=1 satisfies 0 < ti < ti+1, i ∈ N , and

lim
i→∞

ti = t′ <
1
2
.

Suppose {ai}∞i=1 and {bi}∞i=1 are sequences satisfying

ai+1 < Ltibi < bi <
16A

( 1
2 − ti)(1− ε)

bi < ai for each i ∈ N.

where B is as in Theorem 3.1 and C = 1
4 (1 − ε). Assume also that f satisfies

(H2) of Theorem 3.1 and

(H3) f(z) ≤ 1
4A (1− ε)ai for all z ∈ [0, ai] all i ∈ N .

Then (6) has infinitely many fixed points {ui}∞i=1 such that bi < ‖ui‖ ≤ ai,
i ∈ N .

Proof. Let {Ω1,i}∞i=1, {Ω2,i}∞i=1 and {Ci}∞i=1 be as in the proof of Theorem
3.1. Let i ∈ N . Let u ∈ Ci ∩ ∂Ω1,i, then for all s ∈ [0, 1]

u(s) ≤ ‖u‖ = ai

and by (H3)

‖Tu‖ = max
t∈[0,1]

∫ 1

0

a(s)G(t, s)f(u(s))ds

≤ max
t∈[0,1]

∫ 1

0

a(s)G(t, s))ds
1

4A
(1− ε)ai

(25)

Let now 1 < p < 1/ε and set q = p
p−1 . Applying (7) to (25), we get

‖Tu‖ ≤ max
t∈[0,1]

‖G(t, ·)‖q‖a‖p
1

4A
(1− ε)ai.

As in the proof of Theorem 3.1, we obtain that

‖Tu‖ ≤ A 2ε

(1− εp)1/p

1
4A

(1− ε)ai. (26)

Now we make a suitable choice of p. To this end, set p = ε+1
2ε and q = ε+1

1−ε .
Observe that 1 < p < 1/ε and q = p

p−1 and so (18) becomes

‖Tu‖ ≤ 2ε

( 1−ε
2 )

3ε−1
ε+1

1
4

(1− ε)ai

≤ 2
1−ε

2

1
4

(1− ε)ai = ai;
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that is,
‖Tu‖ ≤ ‖u‖ (27)

for all u ∈ Ci ∩ ∂Ω1,i, i ∈ N . Let u ∈ Ci ∩ ∂Ω2,i, then

bi = ‖u‖ ≥ u(s) ≥ min
t∈[ti,1−ti]

u(s) ≥ Lti‖u‖ = Ltibi

for all s ∈ Iti . Then, as in the proof Theorem 3.1, we obtain

‖Tu‖ > ‖u‖ (28)

for all u ∈ Ci ∩ ∂Ω2,i, i ∈ N.
Note that since Ω2,i ⊂ Ω̄2,i ⊂ Ω1,i and (27) and (28) hold, we can apply

Theorem 1.2 to conclude that the operator T has a fixed point ui ∈ Ci ∩ (Ω̄1,i \
Ω2,i) such that bi < ‖ui‖ ≤ ai, i ∈ N , which completes the proof. �

References

[1] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, “Positive Solutions of
Differential, Difference and Integral Equations”, Kluwer, Dordrecht, 1999.

[2] J. V. Baxley and H. B. Thompson, Boundary Behavior and Computation
of Solutions of Singular Nonlinear Boundary Value Problems, Commun.
Appl. Anal. 4 (2000), 207-226.

[3] J. Ehme, Denumerable Symmetric Positive Solutions for a Two Point Con-
jugate Problem, preprint.

[4] P. W. Eloe, J. L. Henderson and N. Kosmatov, Countable Positive Solutions
of a Conjugate Type Boundary Value Problem, Commun. Appl. Nonliner
Anal. 7 (2000), 47-55.

[5] E. R. Kaufmann and N. Kosmatov, A Multiplicity Result for a Boundary
Value Problem with Infinitely Many Singularities, J. Math. Anal. Appl. 269
(2002), 444-453.

[6] N. Kosmatov, On a Singular Conjugate Boundary Value Problem with In-
finitely Many Solutions, Math. Sci. Res. Hot-Line 4 (2000), 9-17.
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