Periodic solutions of a piecewise linear beam equation with damping and nonconstant load *

Yukun An

Abstract

Using the Lyapunov-Schmidt reduction method, the authors discuss the existence and multiplicity of periodic solutions for a piecewise linear beam equation with damping and nonconstant load when the nonlinearities cross the eigenvalues. The result answers partially an open question possed by Lazer and McKenna [12].

1 Introduction

Choi and Jung [4] considered the piecewise linear one-dimensional beam equation

$$
\begin{gather*}
u_{t t}+u_{x x x x}+b u^{+}-a u^{-}=h(x, t), \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R} \tag{1.1}\\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \quad t \in \mathbb{R}
\end{gather*}
$$

with u being π-periodic in t and even in x and t. The authors assumed that the upward and the downward restoring coefficients in the vibrating beam are constant and different.

Let $h=s_{1} \phi_{00}+s_{2} \phi_{01}$, where $\phi_{00}=\cos x$ and $\phi_{01}=\cos x \cos 2 t$ are the eigenfunctions of $u_{t t}+u_{x x x x}$. In [4], by using of Lyapunov-Schmidt reduction method, the authors transformed problem (1.1) into a 2 -dimensional problem on the subspace $V=\operatorname{span}\left\{\phi_{00}, \phi_{01}\right\}$ and investigated the multiplicity of solutions for (1.1) with the nonlinearity $-\left(b u^{+}-a u^{-}\right)$crossing finitely many eigenvalues.

When $u_{t t}+u_{x x x x}$ is replaced by $u_{t t}-u_{x x}$ in (1.1), the problem is the piecewise linear wave equation, for which there is a large body of literature concerning the existence and multiplicity of periodic solutions; see for example $[5,6,14,18]$ and references therein. Problem (1.1) originates from a simple mathematical model of the suspension bridge presented by Lazer and McKenna in [12]:

$$
\begin{gather*}
u_{t t}+u_{x x x x}+\delta u_{t}+k u^{+}=W(x)+\epsilon h(x, t), \quad \text { in }(0, L) \times \mathbb{R}, \tag{1.2}\\
u(0, t)=u(L, t)=u_{x x}(0, t)=u_{x x}(L, t)=0, \quad t \in \mathbb{R},
\end{gather*}
$$

[^0]where $u(x, t)$ denotes the displacement of the road bed in downward direction at position x and $t, W(x)$ is the weight per unit length at x, and $\epsilon h(x, t)$ is an external forcing term. The constant k represents the restoring force of the cables, and δ is the viscous damping.

For (1.2), in an earlier paper, McKenna and Walter [16] investigated the simplified situation

$$
\begin{gather*}
u_{t t}+u_{x x x x}+k u^{+}=1+\epsilon h(x, t), \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R}, \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \quad t \in \mathbb{R} \tag{1.3}
\end{gather*}
$$

where u is π-periodic in t and even in x and t. Using degree theory, they proved that (1.3) has at least two solutions when $3<k<15$ and the one is signchanging. In [3], using degree theory and with critical point theory, Choi and Jung gave the relationship between multiplicity of solutions of (1.3) and the source term $s_{1} \cos x+s_{2} \cos 2 t \cos x$. Some other relevant studies can be found in $[1,2,4,8,9,10]$. In all these papers $\delta=0$; i.e., there is no damping present. As remarked in [16], the methods used in all these papers do not seem to be valid for the case $\delta \neq 0$. Meanwhile the later case is more interesting as studied in $[1,2,11,17]$. In [12], an open question was stated as Problem 6 which is relevant to this case. The question is

Is there a non-degeneracy condition on $h(x, t)$, which will ensure that solutions of (1.3) persist if damping is present?
In this paper, we assume that there is a damping term; i.e., $\delta \neq 0$ and the source term is

$$
h(x, t)=\alpha \cos x+\beta \cos 2 t \cos x+\gamma \sin 2 t \cos x .
$$

As in [4], we study the equation

$$
\begin{gather*}
u_{t t}+u_{x x x x}+\delta u_{t}+b u^{+}-a u^{-}=\alpha \cos x+\beta \cos 2 t \cos x+\gamma \sin 2 t \cos x \\
 \tag{1.4}\\
\text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R} \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \quad t \in \mathbb{R}
\end{gather*}
$$

where u is π-periodic in t and even in x.
The main goal of this paper is to establish the relationship between the constant a, b, δ and the source term h, so that there exists a sign-changing periodic solutions when $h(x, t)$ is of single-sign. We also guarantee the existence of multiple periodic solutions. The results extend the corresponding results in [4] and [2] and answer partially the open problem mentioned above.

2 Preliminaries

Let \mathbb{N}, \mathbb{Z} and \mathbb{R} be the set of positive integers, integers, and reals, respectively. Let $\Lambda=\mathbb{Z} \times \mathbb{N}, \Omega=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and $L^{2}(\Omega)$ be the usual space of
square integrable functions with usual inner product (\cdot, \cdot) and corresponding norm $\|\cdot\|$. For the Sobolev space $H^{1}(\Omega)$, we denote the standard inner product by $\langle u, v\rangle_{1}=(u, v)+\left(u_{x}, v_{x}\right)+\left(u_{t}, v_{t}\right)$, and norm by $\|u\|_{1}$.

It is known that the eigenvalue problem

$$
\begin{gathered}
u_{t t}+u_{x x x x}=\lambda u, \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R}, \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, \quad t \in \mathbb{R}, \\
u(x, t)=u(-x, t)=u(x, t+\pi), \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R}
\end{gathered}
$$

has infinitely many eigenvalues and corresponding eigenfunctions:

$$
\begin{gathered}
\lambda_{m n}=(2 n-1)^{4}-4 m^{2}, \\
\phi_{m n}=e^{2 m t i} \cos (2 n-1) x,
\end{gathered}
$$

where $(m, n) \in \Lambda$. Then we define the Hilbert space

$$
H=\left\{u \in L^{2}(\Omega): u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0, u(x, t)=u(-x, t)\right\}
$$

for which the set of functions $\left\{\phi_{m n}:(m, n) \in \Lambda\right\}$ forms an orthogonal base.
For $\delta \neq 0$ and functions $u(x, t)=\sum_{\Lambda} u_{m n} \phi_{m n}$, we define the selfadjoint linear operator

$$
A u=\sum_{\Lambda}\left((2 n-1)^{4}-4 m^{2}\right) u_{m n} \phi_{m n}
$$

on the domain

$$
D(A)=\left\{u \in H: u(x, t)=\sum_{\Lambda} u_{m n} \phi_{m n} \text { and } \sum_{\Lambda}\left((2 n-1)^{4}-4 m^{2}\right)^{2}\left|u_{m n}\right|^{2}<\infty\right\}
$$

where $u_{-m n}=\bar{u}_{m n}$. We also define the closed linear operator

$$
A_{\delta} u=A u+\delta u_{t}
$$

on the domain

$$
\begin{aligned}
& D\left(A_{\delta}\right)=\left\{u \in H: u(x, t)=\sum_{\Lambda} u_{m n} \phi_{m n}\right. \\
& \text { and } \left.\sum_{\Lambda}\left(\left((2 n-1)^{4}-4 m^{2}\right)^{2}+4 m^{2} \delta^{2}\right)\left|u_{m n}\right|^{2}<\infty\right\} .
\end{aligned}
$$

It is easy to check that set of eigenvalues for A and A_{δ} are

$$
\begin{gathered}
\sigma(A)=\left\{\lambda_{m n}=(2 n-1)^{4}-4 m^{2}:(m, n) \in \Lambda\right\} \\
\sigma\left(A_{\delta}\right)=\left\{\bar{\lambda}_{m n}=(2 n-1)^{4}-4 m^{2}+2 m \delta i:(m, n) \in \Lambda\right\} .
\end{gathered}
$$

We consider the weak solutions of (1.4), which are $u \in D\left(A_{\delta}\right)$ satisfying

$$
\begin{equation*}
A_{\delta} u+b u^{+}-a u^{-}=h(x, t), \tag{2.1}
\end{equation*}
$$

where $h(x, t)=\alpha \cos x+\beta \cos 2 t \cos x+\gamma \sin 2 t \cos x$. Assuming that δ satisfies

$$
\sqrt{9+4 \delta^{2}}<17
$$

we set

$$
\begin{equation*}
a_{0}=\min \left\{17, \sqrt{225+16 \delta^{2}}\right\}, \quad b_{0}=\sqrt{9+4 \delta^{2}} \tag{2.2}
\end{equation*}
$$

For section 4 in this paper we assume that

$$
\begin{equation*}
-1<a<b_{0}<b<a_{0} . \tag{2.3}
\end{equation*}
$$

For Section 5, we assume that

$$
\begin{equation*}
-a_{0}<a<-1, \quad b_{0}<b<a_{0} . \tag{2.4}
\end{equation*}
$$

To find solutions of (2.1), we first investigate the properties of operator A_{δ}. We have the following lemma.

Lemma 2.1 For all $u \in H$, the operator A_{δ} satisfies

$$
\left\|A_{\delta}^{-1} u\right\| \leq\|u\|, \quad\left\|A_{\delta}^{-1} u\right\|_{1} \leq 2\|u\| .
$$

Proof. Note that

$$
A_{\delta}^{-1} u=\sum_{\Lambda} \frac{1}{(2 n-1)^{4}-4 m^{2}+2 m \delta i} u_{m n} \phi_{m n}
$$

for $u=\sum_{\Lambda} u_{m n} \phi_{m n}, u \in H$. For any $(m, n) \in \Lambda$, we have

$$
\left|(2 n-1)^{4}-4 m^{2}+2 m \delta i\right|^{2} \geq 1
$$

then

$$
\left\|A_{\delta}^{-1} u\right\|^{2}=\sum_{\Lambda}\left|\frac{1}{(2 n-1)^{4}-4 m^{2}+2 m \delta i} u_{m n}\right|^{2} \leq \sum_{\Lambda}\left|u_{m n}\right|^{2}=\|u\|^{2}
$$

On the other hand,

$$
\left\|A_{\delta}^{-1} u\right\|_{1}^{2}=\sum_{\Lambda} \frac{1+4 m^{2}+(2 n-1)^{2}}{\left((2 n-1)^{4}-4 m^{2}\right)^{2}+4 m^{2} \delta^{2}}\left|u_{m n}\right|^{2}
$$

while

$$
\begin{aligned}
& \frac{1+4 m^{2}+(2 n-1)^{2}}{\left((2 n-1)^{4}-4 m^{2}\right)^{2}+4 m^{2} \delta^{2}} \\
& \quad=\frac{1+4 m^{2}+(2 n-1)^{2}}{\left((2 n-1)^{2}+2 m\right)^{2}\left((2 n-1)^{2}-2 m\right)^{2}+4 m^{2} \delta^{2}} \\
& \quad \leq \frac{1+4 m^{2}+(2 n-1)^{2}}{\left((2 n-1)^{2}+2|m|\right)^{2}+4 m^{2} \delta^{2}} \\
& \quad \leq \frac{\left((2 n-1)^{2}+2|m|\right)^{2}+1}{\left((2 n-1)^{2}+2|m|\right)^{2}} \leq 2
\end{aligned}
$$

Therefore,

$$
\left\|A_{\delta}^{-1} u\right\|_{1}^{2} \leq 2 \sum_{\Lambda}\left|u_{m n}\right|^{2}=2\|u\|^{2}
$$

which completes the proof.
By Lemma 2.1, it follows that the operator $A_{\delta}^{-1}: H \rightarrow H$ is compact since the embedding $H^{1} \hookrightarrow L^{2}$ is compact. Let

$$
\begin{aligned}
\phi_{1}(x, t) & =\cos x, \\
\phi_{2}(x, t) & =\cos 2 t \cos x, \\
\phi_{3}(x, t) & =\sin 2 t \cos x .
\end{aligned}
$$

Let V_{3} be the three-dimensional subspace of H spanned by $\phi_{1}, \phi_{2}, \phi_{3}, W_{3}$ be the orthogonal complement of V_{3} in H. Let P_{3} be the orthogonal projection H onto V_{3}. Then every element $u \in H$ is expressed by $u=v+w$, where $v=P_{3} u, w=\left(I-P_{3}\right) u$. Hence, equation (2.1) is equivalent to the system

$$
\begin{gather*}
A_{\delta} w+\left(I-P_{3}\right)\left(b(v+w)^{+}-a(v+w)^{-}\right)=0 \tag{2.5}\\
A_{\delta} v+P_{3}\left(b(v+w)^{+}-a(v+w)^{-}\right)=\alpha \phi_{1}+\beta \phi_{2}+\gamma \phi_{2} . \tag{2.6}
\end{gather*}
$$

Using the Lyapunov-Schmidt reduction method and the contraction mapping principle, we can easily obtain the following lemma.

Lemma 2.2 . Suppose that condition (2.3) or (2.4) hold, then, for fixed $v \in V_{3}$, equation (2.5) has a unique solution $w=\theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous (with respect to the L^{2}-norm) in terms of v.

By this lemma, the study of existence of solutions for equation (2.1) is reduced to that of equation (2.6). Namely, we need to study only the problem

$$
\begin{equation*}
A_{\delta} v+P_{3}\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right)=\alpha \phi_{1}+\beta \phi_{2}+\gamma \phi_{2} \tag{2.7}
\end{equation*}
$$

on the three dimensional subspace V_{3} spanned by $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$.
Now, define the mapping $\Phi: V_{3} \rightarrow V_{3}$ by

$$
\Phi(v)=A_{\delta} v+P_{3}\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right)
$$

and the mapping $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
F\left(s_{1}, s_{2}, s_{3}\right)=\left(t_{1}, t_{2}, t_{3}\right)
$$

where $v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}$, and $\Phi(v)=t_{1} \phi_{1}+t_{2} \phi_{2}+t_{3} \phi_{3}$. By Lemma 2.2, we know that Φ and F are continuous on V_{3} and \mathbb{R}^{3}, respectively. On the other hand, we have the following Lemma.

Lemma 2.3 $\Phi(c v)=c \Phi(v)$ for $c \geq 0$.

Proof. Let $c \geq 0$. If v satisfies

$$
A_{\delta} \theta(v)+\left(I-P_{3}\right) k(v+\theta(v))^{+}=0
$$

then

$$
A_{\delta}(c \theta(v))+\left(I-P_{3}\right) k(c v+c \theta(v))^{+}=0
$$

and hence, $\theta(c v)=c \theta(v)$. Therefore, we have

$$
\begin{aligned}
\Phi(c v) & =A_{\delta}(c v)+P_{3} k(c v+\theta(c v))^{+} \\
& =A_{\delta}(c v)+P_{3} k(c v+c \theta(v))^{+} \\
& =c \Phi(v) .
\end{aligned}
$$

Lemma 2.3 implies that Φ or F maps a ray to a ray and a cone with vertex 0 onto a cone with vertex 0 . Set

$$
\begin{aligned}
& C_{1}=\left\{S=\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{R}^{3}: s_{1} \geq 0, s_{2}^{2}+s_{3}^{2} \leq s_{1}^{2}\right\}, \\
& C_{2}=\left\{S=\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{R}^{3}: s_{1} \leq 0, s_{2}^{2}+s_{3}^{2} \leq s_{1}^{2}\right\}, \\
& C_{3}=\mathbb{R}^{3} \backslash\left(C_{1} \cup C_{2}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{1}=\left\{v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}: S=\left(s_{1}, s_{2}, s_{3}\right) \in C_{1}\right\}, \\
& D_{2}=\left\{v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}: S=\left(s_{1}, s_{2}, s_{3}\right) \in C_{2}\right\}, \\
& D_{3}=V_{3} \backslash\left(D_{1} \cup D_{2}\right) .
\end{aligned}
$$

Lemma 2.4 If $v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}$, then

1. $v \geq 0$ if only if $v \in D_{1}$,
2. $v \leq 0$ if only if $v \in D_{2}$.

The proof of this lemma is simple and we omit it.
Lemma 2.5 Suppose that v and $\theta(v)$ satisfy (2.5) and (2.7). If v is a signchanging solution of (2.7), then $u=v+\theta(v)$ is a sign-changing solution of (2.1).

Proof. If u is a single-sign solution, then $u^{+}=u$ or $u^{+}=0$. By (2.5) and Lemma 2.2, we know $\theta(v)=0$, and hence $v=u$ is a single-sign solution, which is a contradiction.

3 Uniqueness of the solution

In this section, we consider the general equation

$$
\begin{equation*}
A_{\delta} u+b u^{+}-a u^{-}=h, \tag{3.1}
\end{equation*}
$$

where $h(x, t) \in H$. By the contraction mapping principle, we obtain the following uniqueness result for (3.1).

Theorem 3.1 If the constant $\delta \neq 0$ and the constants a, b satisfy

$$
\begin{equation*}
-1<a, b<3+\delta^{2}, \tag{3.2}
\end{equation*}
$$

then equation (3.1) has a unique solution.
The proof of this theorem is standard and we omit it here.
Remark. Condition (3.2) should be replaced by $-1<k<3$ when $\delta \rightarrow 0$ and $a=0, b=k$. The condition $-1<k<3$ was used in [16] to ensure the uniqueness of solution to (1.3) when $\delta=0$.

4 The nonlinearity crosses one eigenvalue

In this section, we consider equation (2.1) under condition (2.3). From the discussions in section 2 , to consider equation (2.1) we need firstly to investigate the image of the cones C_{1}, C_{2} and C_{3} under F and the image of the cones D_{1}, D_{2} and D_{3} under Φ. Set

$$
\begin{aligned}
& \Theta_{1}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}: t_{1} \geq 0, t_{2}^{2}+t_{3}^{2} \leq \frac{(b-3)^{2}+4 \delta^{2}}{(b+1)^{2}} t_{1}^{2}\right\}, \\
& \Theta_{2}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}: t_{1} \leq 0, t_{2}^{2}+t_{3}^{2} \leq \frac{(a-3)^{2}+4 \delta^{2}}{(a+1)^{2}} t_{1}^{2}\right\}, \\
& \Theta_{3}=\mathbb{R}^{3} \backslash\left(\Theta_{1} \cup \Theta_{2}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& \Omega_{1}=\left\{v=t_{1} \phi_{1}+t_{2} \phi_{2}+t_{3} \phi_{3}:\left(t_{1}, t_{2}, t_{3}\right) \in \Theta_{1}\right\}, \\
& \Omega_{2}=\left\{v=t_{1} \phi_{1}+t_{2} \phi_{2}+t_{3} \phi_{3}:\left(t_{1}, t_{2}, t_{3}\right) \in \Theta_{2}\right\}, \\
& \Omega_{3}=V_{3} \backslash\left(\Omega_{1} \cup \Omega_{2}\right) .
\end{aligned}
$$

Suppose that a, b, δ satisfy (2.3) and

$$
\begin{equation*}
b>1+\frac{1}{2} \delta^{2}>a \tag{4.1}
\end{equation*}
$$

then we have

$$
\frac{(b-3)^{2}+4 \delta^{2}}{(b+1)^{2}}<1 \quad \text { and } \quad \frac{(a-3)^{2}+4 \delta^{2}}{(a+1)^{2}}>1
$$

Denote

$$
\begin{array}{ll}
C_{4}=C_{1} \backslash \overline{\Theta_{1}}, & C_{5}=\overline{\Theta_{2}} \backslash C_{2} \\
D_{4}=D_{1} \backslash \overline{\Omega_{1}}, & D_{5}=\overline{\Omega_{2}} \backslash D_{2} .
\end{array}
$$

By Lemma 2.4, we have that $v \geq 0$ for all $v \in D_{4}$ and v changes sign for every $v \in D_{5}$.

Lemma 4.1

$$
\begin{array}{lll}
F\left(C_{1}\right)=\Theta_{1}, & F\left(C_{2}\right)=\Theta_{2}, & C_{4} \subset \Theta_{3} \subset F\left(C_{3}\right) \\
\Phi\left(D_{1}\right)=\Omega_{1}, & \Phi\left(D_{2}\right)=\Omega_{2}, & D_{4} \subset \Omega_{3} \subset \Phi\left(D_{3}\right)
\end{array}
$$

Proof. Suppose $\left(s_{1}, s_{2}, s_{3}\right) \in C_{1}$, then $v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3} \in D_{1}$. By Lemmas 2.2 and 2.4, we know $v \geq 0$ and $\theta(v)=0$. At the same time, we obtain

$$
\begin{aligned}
A_{\delta} v+P_{3} k(v+\theta(v))^{+} & =A_{\delta}\left(s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}\right)+k\left(s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}\right) \\
& =\left(\phi_{1}, \phi_{2}, \phi_{3}\right)\left(\begin{array}{ccc}
b+1 & 0 & 0 \\
0 & b-3 & 2 \delta \\
0 & -2 \delta & b-3
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right) ;
\end{aligned}
$$

therefore, for all $\left(s_{1}, s_{2}, s_{3}\right) \in C_{1}$,

$$
F\left(s_{1}, s_{2}, s_{3}\right)=\left(\begin{array}{ccc}
b+1 & 0 & 0 \\
0 & b-3 & 2 \delta \\
0 & -2 \delta & b-3
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right) .
$$

Assuming that $\left(s_{1}, s_{2}, s_{3}\right) \in C_{2}$, in the same way, we obtain

$$
\begin{aligned}
A_{\delta} v+P_{3} k(v+\theta(v))^{+} & =A_{\delta}\left(s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}\right) \\
& =\left(\phi_{1}, \phi_{2}, \phi_{3}\right)\left(\begin{array}{ccc}
a+1 & 0 & 0 \\
0 & a-3 & 2 \delta \\
0 & -2 \delta & a-3
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right) .
\end{aligned}
$$

Therefore, for all $\left(s_{1}, s_{2}, s_{3}\right) \in C_{1}$,

$$
F\left(s_{1}, s_{2}, s_{3}\right)=\left(\begin{array}{ccc}
a+1 & 0 & 0 \\
0 & a-3 & 2 \delta \\
0 & -2 \delta & a-3
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right) .
$$

It follows that $F\left(C_{1}\right)=\Theta_{1}, F\left(C_{2}\right)=\Theta_{2}$ and $\Phi\left(D_{1}\right)=\Omega_{1}, \quad \Phi\left(D_{2}\right)=\Omega_{2}$. Moreover, By Lemma 2.3 and the continuity of F, we have

$$
\Theta_{3} \subset F\left(C_{3}\right), \quad \Omega_{3} \subset \Phi\left(D_{3}\right) .
$$

The proof of this Lemma is complete.
Now, combining Lemmas 2.2, 2.4, 2.5, and 4.1, we obtain the following result.
Theorem 4.2 Let $h(x, t)=\alpha \cos x+\beta \cos 2 t \cos x+\gamma \sin 2 t \cos x$. Suppose that δ, a, b satisfy $\delta>0$, (2.3) and (4.1), then equation (2.1), and hence problem (1.4) has a solution satisfying:

1. If $\alpha>0$ and

$$
\beta^{2}+\gamma^{2} \leq \frac{(b-3)^{2}+4 \delta^{2}}{(b+1)^{2}} \alpha^{2}
$$

then $h>0$ and the corresponding solution is positive.
2. If $\alpha>0$ and

$$
\frac{(b-3)^{2}+4 \delta^{2}}{(b+1)^{2}} \alpha^{2}<\beta^{2}+\gamma^{2}<\alpha^{2}
$$

then $h>0$ but the corresponding solution changes sign.
3. If $\alpha<0$ and

$$
\alpha^{2}<\beta^{2}+\gamma^{2} \leq \frac{(a-3)^{2}+4 \delta^{2}}{(a+1)^{2}} \alpha^{2}
$$

then h changes sign but the corresponding solution is negative.
4. If $\alpha<0$ and $\beta^{2}+\gamma^{2} \leq \alpha^{2}$, then $h<0$ and the corresponding solution is negative.
5. Elsewhere, the function h changes sign and the corresponding solution changes sign.

Remark. By Theorem 4.2, if $a=0, b=k \rightarrow 3$, and $\delta \rightarrow 0$, then for almost every $h>0$, problem (1.4) has sign-changing periodic solution. If the damping δ is large enough such that $\delta^{2}>2 k-2$ and condition (2.3) is satisfied, then when

$$
\alpha^{2}<\beta^{2}+\gamma^{2} \leq \frac{(k-3)^{2}+4 \delta^{2}}{(k+1)^{2}} \alpha^{2}
$$

the corresponding solution is positive though h changes sign.
This result answers partially the problem mentioned in section 1.

5 The nonlinearity crosses two eigenvalues

In this section, we consider equation (2.1) under condition (2.4). In addition, we suppose

$$
\begin{equation*}
b>1+\frac{1}{2} \delta^{2} . \tag{5.1}
\end{equation*}
$$

As in section 4, we first investigate the image of the cones C_{1}, C_{2} and C_{3} under F and the image of the cones D_{1}, D_{2} and D_{3} under Φ. Set

$$
\begin{aligned}
& \Theta_{1}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}: t_{1} \geq 0, t_{2}^{2}+t_{3}^{2} \leq \frac{(b-3)^{2}+4 \delta^{2}}{(b+1)^{2}} t_{1}^{2}\right\} \\
& \Theta_{6}=\left\{\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}: t_{1} \geq 0, t_{2}^{2}+t_{3}^{2} \leq \frac{(a-3)^{2}+4 \delta^{2}}{(a+1)^{2}} t_{1}^{2}\right\} \\
& \Theta_{7}=\overline{\Theta_{6}} \backslash \overline{\Theta_{1}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Omega_{1}=\left\{v=t_{1} \phi_{1}+t_{2} \phi_{2}+t_{3} \phi_{3}:\left(t_{1}, t_{2}, t_{3}\right) \in \Theta_{1}\right\}, \\
& \Omega_{6}=\left\{v=t_{1} \phi_{1}+t_{2} \phi_{2}+t_{3} \phi_{3}:\left(t_{1}, t_{2}, t_{3}\right) \in \Theta_{6}\right\} \\
& \Omega_{7}=\overline{\Omega_{6}} \backslash \overline{\Omega_{1}}
\end{aligned}
$$

Lemma 5.1 For every $v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3} \in V_{3}$, there exists a constant $d>0$ such that $\left(\Phi(v), \phi_{1}\right) \geq d\left|s_{2}+s_{3}\right|$.

Proof. Note that

$$
b u^{+}-a u^{-}+u=(b+1) u^{+}-(a+1) u^{-} \geq \min \{b+1,-(a+1)\}|u|=c|u|
$$

and

$$
\phi_{1} \geq \frac{1}{\sqrt{2}}\left|\phi_{2}+\phi_{3}\right|
$$

Let $v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}$. Then we have

$$
\begin{aligned}
\left(\Phi(v), \phi_{1}\right) & =\left(A_{\delta}\left(s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}\right)+P_{3}\left(b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right), \phi_{1}\right) \\
& =\left(\phi_{1}, v+\theta(v)+b(v+\theta(v))^{+}-a(v+\theta(v))^{-}\right) \\
& \geq\left(\phi_{1}, c|v+\theta(v)|\right) \\
& =c \int_{\Omega} \phi_{1}\left|s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}+\theta(v)\right| d t d x \\
& \geq \frac{c}{\sqrt{2}} \int_{\Omega}\left|\phi_{2}+\phi_{3}\right|\left|s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3}+\theta(v)\right| d t d x \\
& \geq \frac{c_{1}}{\sqrt{2}}\left|s_{2}+s_{3}\right|
\end{aligned}
$$

Taking $d=c_{1} / \sqrt{2}$, the conclusion follows.
Note that Lemma 5.1 implies $t_{1} \geq 0$ for every $v=s_{1} \phi_{1}+s_{2} \phi_{2}+s_{3} \phi_{3} \in V_{3}$ and $\Phi(v)=t_{1} \phi_{1}+t_{2} \phi_{2}+t_{3} \phi_{3}$.

Lemma 5.2

$$
\begin{array}{lll}
F\left(C_{1}\right)=\Theta_{1}, & F\left(C_{2}\right)=\Theta_{6}, & \Theta_{7} \subset F\left(C_{3}\right) \\
\Phi\left(D_{1}\right)=\Omega_{1}, & \Phi\left(D_{2}\right)=\Omega_{6}, & \Omega_{7} \subset \Phi\left(D_{3}\right)
\end{array}
$$

The proof of this lemma follows by similar calculations as in Lemma 4.1 with $a<-1$. Now we can obtain the main result in this section.

Theorem 5.3 Let $h(x, t)=\alpha \cos x+\beta \cos 2 t \cos x+\gamma \sin 2 t \cos x$. Suppose that δ, a, b satisfy $\delta>0$, (2.4) and (5.1), then we have:

1. If $h \in \overline{\Omega_{1}}$, (2.1) has a positive solution, and a negative solution.
2. If h belongs to interior of Ω_{7}, (2.1) has a negative solution and at least one sign-changing solution.
3. If $h \in \partial \Omega_{6}$, (2.1) has a negative solution.

References

[1] N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridge, SIAM. J. Appl. Math. 58(1998), 853-874.
[2] Y. K. An and C. K. Zhong, Periodic Solutions of A Nonlinear Suspension Bridge Equation with Damping and Nonconstant Load, J. Math. Anal. Appl. in press.
[3] Q. H. Choi and T. Jung , A nonlinear suspension bridge equation with nonconstant load, Nonlinear. Anal. 35(1999), 649-668.
[4] Q. H. Choi and T. Jung, A nonlinear beam equation with nonconstant load, Nonlinear. Anal. 30(1997), 5515-5525.
[5] Q. H. Choi and T. Jung, Multiplicity of solutions of nonlinear wave equations with nonlinearities crossing eigenvalues, Hokkaido Math. J. 24(1995), 53-62.
[6] Q. H. Choi and T. Jung, An application of variational reduction method to a nonlinear wave equation, J. Diff. Equ., 117(1995), 390-410.
[7] Q. H. Choi, T. Jung and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, Appl. Anal. 50(1995), 71-90.
[8] Y. Chen and P. J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Diff. Equ. 136(1997), 325-355.
[9] M. Feckan, Free vibrations of beam on bearing with nonlinear elastic responses, J. Diff. Equ. 154(1999), 55-72.
[10] L. D. Humphreys, Numerical Mountain Pass solutions of a suspension bridge equation, Nonlinear. Anal. 28(1997), 1811-1826.
[11] Wan Se Kim , Multiplicity result for semilinear dissipative hyperbolic equations, J. Math. Anal. Appl. 231(1999), 34-46.
[12] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis, SIAM Rev. 32(1990), 537-578.
[13] A. C. Lazer and P. J. McKenna, Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl. 181(1994), 648-655.
[14] A. C. Lazer and P. J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues 2, Commu. Part. Diff. Equ. 11(1986), 1653-1676.
[15] A. C. Lazer and P. J. McKenna, Large scale oscillatory behavior in loaded asymmetric systems, Anal. Nonli. I. H. P. 4(1987), 243-274.
[16] P. J. McKenna and W. Walter, Nonlinear oscillation in a suspension bridge, Arch. Rational Mech. Anal. 98(1987), 167-177.
[17] K. Tanaka, On the range of wave operators, Tokyo J. Math. 8(1985), 377387.
[18] M. Willem, Periodic solutions of wave equations with jumping nonlinearities, J. Diff. Equ. 36(1980), 20-27.

Yukun An
College of Mathematics and Information Science
Northwest Normal University
Lanzhou, 730070, Gansu, China
and
Department of Mathematics, Suzhou University
Suzhou, 215006, Jiangsu, China
e-mail:anyk@nwnu.edu.cn

[^0]: *Mathematics Subject Classifications: 35L30, 35B34.
 Key words: Keywords Piecewise linear beam equation, Damping, Periodic solution, Lyapunov-Schmidt reduction.
 © 2002 Southwest Texas State University.
 Submitted October 02, 2001. Published September 29, 2002.
 Partially supported by grant NWNU-KJCXGC-212.

