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Dirichlet problem for quasi-linear elliptic

equations ∗

Azeddine Baalal & Nedra BelHaj Rhouma

Abstract

We study the Dirichlet Problem associated to the quasilinear elliptic
problem

−
n∑
i=1

∂

∂xi
Ai(x, u(x),∇u(x)) + B(x, u(x),∇u(x)) = 0.

Then we define a potential theory related to this problem and we show
that the sheaf of continuous solutions satisfies the Bauer axiomatic theory.

1 Introduction

The objective of this paper is to study the weak solutions of the following quasi-
linear elliptic equation in Rd, (d ≥ 2):

−
n∑
i=1

∂

∂xi
Ai(x, u(x),∇u(x)) + B(x, u(x),∇u(x)) = 0 (1.1)

where Ai : Rd ×R×Rd → R and B : Rd ×R×Rd → R are given Carathéodory
functions satisfying the conditions introduced in section 2.

An example of equation (1.1) is the perturbed p-Laplace equation

−div(|∇u|p−2∇u) + B(., u,∇u) = 0, 1 < p < d. (1.2)

When p = 2, equation (1.2) reduces to the perturbed Laplace equation

−∆u+ B(., u,∇u) = 0. (1.3)

Another example included in this study is the linear equation

L(u) = −
∑
j

(∑
i

aij
∂u

∂xi
+ dju

)
+
∑
j

bj
∂u

∂xj
+ cu = 0,
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where L is assumed to satisfy conditions stated in [25] (see also [12]).
Equation (1.1) have been investigated in many interesting papers [24, 26,

11, 21, 2]. Several papers have introduced an axiomatic potential theory for the
nonlinear equation (1.2) when B = 0; see for example [11]. For equations of
type (1.3), see [1, 2, 3, 4].

The existence of weak solutions of (1.1) in variational forms was treated
by means of the sub-supersolution argument [7, 8]. Later on, Dancers/Sweers
[6], Kura [15], Carl [5], Lakshmikantham [10], Papageorgiou [23], Le/Schmitt
[19], and others treated the existence of weak extremal solutions of nonlinear
equations of type (1.1) by means of the sub-supersolution method. Le [17]
studied the existence of extremal solutions of the problem∫

Ω

A(x,∇u(x))(∇v −∇u)dx ≥
∫

Ω

B(x, u(x))(v(x)− u(x))dx, (1.4)

for all v ∈ K, u ∈ K, where K is a closed convex subset of W 1,p
0 (Ω).

Note that the solutions of (1.4) correspond to the obstacle problem treated
in section 5 of this paper. Remark that in the references cited above, often B =
B(x, u(x)) and the growth of B in u is less then p−1 and when B = B(x, u,∇u),
the growth of B in u and ∇u is less then p− 1, but in our case the growth of B
in ∇u is is allowed to go until p− 1 + p

n and there is no condition on the growth
of B in u.

Our aim in this paper is to solve the Dirichlet problem for (1.1) with a
continuous data boundary and to give an axiomatic of potential theory related
to the associated problem.

This paper consists of four sections. First, we recall some definitions for
the (weak) subsolutions, supersolutions and solutions of the equation (1.1). In
particular, we prove that the supremum of two subsolutions is a subsolution
and that the infinimum of two supersolutions is also a supersolution. In section
3, we give some conditions that allow us to have the comparison principle for
sub and supersolutions. After this preparation we are able in section 4 to solve
the Dirichlet problem related to the equation (1.1). So at first we prove the
existence of solutions to the associated variational problem, after what we solve
the Dirichlet problem for continuous data boundary. In the last section, we
define a potential theory related to the equation (1.1), so we obtain that the
sheaf of continuous solutions of (1.1) satisfies the Bauer axiomatic theory [4].
We prove also that the set of all hyperharmonic functions and the set of all
hypoharmonic functions are sheaves.

Notation Throughout this paper we will use the following notation: Rd is
the real Euclidean d-space, d ≥ 2. For an open set U of Rd, we denote by
Ck(U) the set of functions which k-th derivative is continuous for k positive
integer, C∞(U) = ∩k≥1C

k(U) and by C∞0 (U) the set of all functions in C∞(U)
with compact support. Lq(E) is the space of all qth-power Lebesgue integrable
functions defined on measurable set E. W 1,q(U) is the (1, q)-Sobolev space on U .
W 1,q

0 (U) is the closure of C∞0 (U) in W 1,q(U) relatively to its norm. W−1,q′(U)
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denotes the dual of W 1,q
0 (U), q′ = q

q−1 . For a Lebesgue measurable set E, |E|
denotes the Lebesgue measure of E. u ∨ v and u ∧ v design respectively the
supremum and the infinimum of u and v. u+ = u∨ 0 and u− = u∧ 0. We write
⇀(resp. →) to design the weak (resp. strong) convergence.

2 Supersolutions of (1.1)

Let Ω be a bounded domain in Rd (d ≥ 2) with smooth boundary ∂Ω and let L
be a quasi-linear elliptic differential operator in divergence form

L(u)(x) = −
d∑
i=1

∂

∂xi
Ai(x, u(x),∇u(x)) + B(x, u(x),∇u(x)) a.e. x ∈ Ω

where Ai : Rd ×R×Rd → R and B : Rd ×R×Rd → R are given Carathéodory
functions. Let A = (A1, . . . ,Ad) and 1 < p < d. We suppose that the following
conditions are fulfilled: for a.e. x ∈ Ω,∀ζ ∈ R and ξ, ξ′ ∈ Rd:

(P1) |A(x, ζ, ξ)| ≤ k0(x) + b0(x)|ζ|p−1 + a|ξ|p−1

(P2) (A(x, ζ, ξ)−A(x, ζ, ξ′))(ξ − ξ′) > 0, if ξ 6= ξ′.

(P3) A(x, ζ, ξ)ξ ≥ α|ξ|p − d0(x)|ζ|p − e(x)

(P4) |B(x, ζ, ξ)| ≤ k(x) + b(x)|ζ|α + c|ξ|r, 0 < r < p
(p∗)′ , α ≥ 0.

Here a, c and α are positive constants, p′ = p
p−1 , p∗ = dp

d−p , while k0, b0, d0, e,

k and b are measurable functions on Ω satisfying: k0 ∈ Lp
′
, b0 ∈ L

d
p−1 , k ∈ Lq,

(p∗)′ < q < ( d
p−ε ∧

p
r ) and d0, e, b ∈ L

d
p−ε , (0 < ε < 1).

We can easily show that if u ∈ W 1,p(Ω), then A(., u,∇u) ∈ Lp
′

and that
B(., u,∇u) ∈ L(p∗)′ when α ≤ p− 1.

Definition We say that a function u ∈W 1,p
loc (Ω) is a (weak) solution of (1.1),

if
B(., u,∇u) ∈ L(p∗)′∫

Ω

A(., u,∇u)∇ϕ+
∫

Ω

B(., u,∇u)ϕ = 0,
(2.1)

for all ϕ ∈W 1,p
0 (Ω).

We say that u ∈W 1,p
loc (Ω) is a supersolution (resp. subsolution) of (1.1) if

B(., u,∇u) ∈ L(p∗)′∫
Ω

A(., u,∇u)∇ϕ+
∫

Ω

B(., u,∇u)ϕ ≥ 0 (resp. ≤ 0)

for every nonnegative function ϕ ∈W 1,p
0 (Ω).
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Note that if u is a supersolution of (1.1) then −u is a subsolution of the
equation

−div Â+ B̂ = 0

where Â(x, ζ, ξ) = −A(x,−ζ,−ξ) and B̂(x, ζ, ξ) = −B(x,−ζ,−ξ). Further-
more, the structure of Â and B̂ are similar to that of A and B.

We recall that if u is a bounded supersolution (resp. subsolution), then u is
upper (resp. lower) semicontinuous in Ω [21, Corollary 4.10].

Proposition 2.1 Let u and v be two subsolutions of (1.1) in Ω such that

(A(., v,∇u)−A(., u,∇u))∇(v − u) ≥ 0, a.e.x ∈ Ω.

Then, max(u, v) is also a subsolution. A similar statement holds for the mini-
mum of two supersolutions.

Proof. Fix ϕ in C∞0 (Ω), ϕ ≥ 0. Let Ω1 = {x ∈ Ω : u > v}, Ω2 = {x ∈ Ω : u ≤
v} and put I =

∫
Ω
A(., u ∨ v,∇(u ∨ v))∇ϕ = I1 + I2 where

I1 =
∫

Ω1

A(., u,∇u)∇ϕ and I2 =
∫

Ω2

A(., v,∇v)∇ϕ.

Let ρn : R→ R be such that ρn ∈ C1(R),

ρn(t) =

{
1 if t ≥ 1/n
0 if t ≤ 0

and ρ′n > 0 on ]0, 1/n[. For each x ∈ Ω define qn(x) = ρn((u − v)(x)). We
see that qn ∈ W 1,p

loc (Ω), qn → 1Ω1 and ‖qn‖∞ ≤ 1. It follows by Lebesgue’s
Theorem of dominated convergence that I1 = limn→∞

∫
Ω1
qnA(., u,∇u).∇ϕ and

I2 = limn→∞
∫

Ω2
(1− qn)A(., v,∇v).∇ϕ. Hence∫

Ω

qnA(., u,∇u).∇ϕ =
∫

Ω

A(., u,∇u)∇.(qnϕ)−
∫

Ω

A(., u,∇u)ϕ.∇(qn)

≤ −
∫

Ω

B(., u,∇u)(qnϕ)−
∫

Ωn

A(., u,∇u)ϕ.∇(qn),

where Ωn = {x ∈ Ω : v < u < v + 1
n}.

Put In =
∫

Ω
qnA(., u,∇u).∇ϕ and Jn =

∫
Ω

(1 − qn)A(., v,∇v).∇ϕ. Then,
similarly we have∫

Ω

(1− qn)A(., v,∇v).∇ϕ ≤ −
∫

Ω

(1− qn)B(., v,∇v)ϕ+
∫

Ωn

A(., v,∇v)ϕ.∇(qn).

So, we get

In + Jn ≤ −
∫

Ω

B(., u,∇u)(qnϕ)−
∫

Ω

(1− qn)B(., v,∇v)ϕ

+
∫

Ωn

(A(., v,∇v)−A(., u,∇u))ϕ.∇(qn).
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Using that ∇(qn) = ρ′n(u− v)∇(u− v), we get

In + Jn ≤ −
∫

Ω

B(., u,∇u)(qnϕ)−
∫

Ω

(1− qn)B(., v,∇v)ϕ

−
∫

Ωn

ρ′n(u− v)(A(., v,∇v)−A(., u,∇u))ϕ.∇(v − u)

≤ −
∫

Ω

B(., u,∇u)(qnϕ)−
∫

Ω

(1− qn)B(., v,∇v)ϕ.

Finally, we have∫
Ω

A(., u ∨ v,∇(u ∨ v)).∇ϕ+
∫

Ω

B(., u ∨ v,∇(u ∨ v))ϕ ≤ 0

which completes the proof. �

We say that L satisfies the property (±) , if for every k > 0 and every
supersolution (resp. subsolution) u of (1.1), the function u+ k (resp. u− k) is
also a supersolution (resp. subsolution) of (1.1)

Remark 2.1 1) Suppose that for each u ∈W 1,p
loc (Ω) and each k > 0,∫

(A(., u+ k,∇u)−A(., u,∇u)).∇ϕ+
∫

(B(., u+ k,∇u)− B(., u,∇u))ϕ ≥ 0

(2.2)
for every nonnegative function ϕ ∈W 1,p

0 (Ω). Then L satisfies the property (±).
2) Note that if L(u) = −

∑
j

∂
∂xj

(
∑
i aij

∂u
∂xi

+ dju) + (
∑
i bi

∂u
∂xi

+ cu) is a linear
elliptic operator of second order satisfying the conditions of [12], then (2.2) is
equivalent to (−

∑
j(dj) + c) ≥ 0 in the distributional sense.

3) Suppose that A(x, ζ, ξ) = A(x, ξ) and for a.e. x ∈ Ω and ξ ∈ Rd the map:
ζ → B(x, ζ, ξ) is increasing. Then the property (±) holds.

3 Comparison principle

In this section, we will give some conditions needed for the comparison principle.
This principle makes it possible to solve the Dirichlet problem and to develop a
potential theory in our case.

We say that the comparison principle holds for L, if for every supersolution
u and every subsolution v of (1.1) on Ω, such that

lim sup
x→y

v(x) ≤ lim inf
x→y

u(x)

for all y ∈ ∂Ω and both sides of the inequality are not simultaneously +∞ or
−∞, we have v ≤ u a.e. in Ω.

Theorem 3.1 Suppose that the operator L satisfies either one of the property
(±) and the following strict monotony condition (see [22]):

(A(x, ζ, ξ)−A(x, ζ ′, ξ′)).(ξ − ξ′) + (B(x, ζ, ξ)− B(x, ζ ′, ξ′))(ζ − ζ ′) > 0
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for (ζ, ξ) 6= (ζ ′, ξ′). Let u be a supersolution and v be a subsolution of (1.1), on
Ω, such that

lim sup
x→y

v(x) ≤ lim inf
x→y

u(x)

for all y ∈ ∂Ω and both sides of the inequality are not simultaneously +∞ or
−∞, then v ≤ u a.e. in Ω.

Proof. Let ε > 0 and K be a compact subset of Ω such that v − u ≤ ε on
Ω\K, then the function ϕ = (v − u− ε)+ ∈ W 1,p

0 (Ω). Testing by ϕ, we obtain
that

0 ≤
∫
v>u+ε

(A(., u+ ε,∇u)−A(., v,∇v))∇(v − u− ε)

+
∫
v>u+ε

(B(., u+ ε,∇u)− B(., v,∇v))(v − u− ε) ≤ 0 .

Hence ∇(v−u−ε)+ = 0 and (v−u−ε)+ = 0 a.e. in Ω. It follows that v ≤ u+ε
a.e. in Ω and therefore v ≤ u a.e. in Ω �

Corollary 3.2 we suppose that A(x, ζ, ξ) = A(x, ξ) and B(x, ζ, ξ) = B(ζ) such
that the map ζ → B(x, ζ) is increasing for a.e. x in Ω. Then, the comparison
principle holds.

Theorem 3.3 Suppose that

i) [A(x, ζ, ξ)−A(x, ζ ′, ξ′)].(ξ−ξ′) ≥ γ|ξ−ξ′|p for all ζ, ζ ′ in R, for all ξ, ξ′ ∈ Rd,
a.e. x in Ω and for some γ > 0 .

ii) For a.e. x ∈ Ω and for all ξ ∈ Rd, the map ζ → B(x, ζ, ξ) is increasing,

iii) |(B(x, ζ, ξ) − B(x, ζ, ξ′)| ≤ b(x, ζ)|ξ − ξ′|p−1 for a.e. x ∈ Ω, for all ζ ∈ R
and for all ξ, ξ′ ∈ Rd. Where sup|ζ|≤M b(., ζ) ∈ Lsloc(Ω), s > d, for all
M > 0.

Then the comparison principle holds.

Proof. The main idea in this proof comes from Professor J. Maly’. Let ρ > 0,
M = sup(v − u) and put w = v − u − ρ. Take w+ as test function . Then, we
get∫

Ω

[A(., u,∇u)−A(., v,∇v)] .∇(w+) +
∫

Ω

[B(., u,∇u)− B(., v,∇v)] (w+) ≥ 0

and by consequence

γ

∫
Ω

|∇w+|p ≤
∫

Ω

b(x, v)|∇w+|p−1w+

≤ C
[ ∫

Ω

|∇w+|p
] p−1

p
[ ∫

Ω

(w+)p
∗
] 1
p∗ |Aρ|

s−d
sd

≤ C‖∇w+‖pp |Aρ|
s−d
sd .
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where Aρ = {ρ < v − u < M}. Hence we get |Aρ| → 0 when ρ → M , which is
impossible if M > 0. Thus, v ≤ u on Ω �

4 Dirichlet Problem

Existence of solutions for 0 ≤ α ≤ p− 1 and 0 ≤ r ≤ p− 1

Definition Let g ∈W 1,p(Ω). We say that u is a solution of problem (P ) if

u− g ∈W 1,p
0 (Ω),∫

Ω

A(., u,∇u).∇ϕ+
∫

Ω

B(., u,∇u)ϕ = 0 ∀ϕ ∈W 1,p
0 (Ω).

Remark 4.1 Put v = u − g, then u is a solution of the above problem (P ) if
and only if v is a solution of

u ∈W 1,p
0 (Ω)∫

Ω

Ag(., u,∇u)∇ϕ+
∫

Ω

Bg(., u,∇u)ϕ = 0, ∀ϕ ∈W 1,p
0 (Ω),

(4.1)

where Ag(., u,∇u) = A(., u+g,∇(u+g)) and Bg(., u,∇u) = B(., u+g,∇(u+g)).

Let T : W 1,p
0 (Ω)→W−1,p′

0 (Ω) be the operator defined by

〈T (u), v〉 =
∫
Ag(., u,∇u)∇v +

∫
Bg(., u,∇u)v ∀v ∈W 1,p

0 (Ω).

Next we will establish the existence of solution of (4.1) when 0 ≤ α ≤ p − 1
and 0 ≤ r ≤ p− 1. Let C = C(d, p) be a constant such that ‖u‖p∗ ≤ C‖u‖p for
every u ∈W 1,p

0 (Ω). Then, we get the following result.

Proposition 4.1 Suppose that 0 ≤ α ≤ p− 1 and 0 ≤ r ≤ p− 1. If Ω is small
(i.e α > C(‖d0‖n/p + ‖b‖n/p)), then the operator T is coercive.

Proof. We have

〈T (u), u〉 =
∫
A(u+ g,∇(u+ g))∇u+

∫
B(u+ g,∇(u+ g))u

≥
(
α− C‖d0‖d/p − C‖b‖d/p

)
‖∇u‖pp −H1(‖u‖, ‖∇u‖, ‖g‖, ‖∇g‖)

where C = C(d, p) and the growth of H1 in ‖u‖ and ‖∇u‖ is less then p−1. So,
let Ω be small enough such that α > C(‖d0‖n/p+‖b‖n/p). Hence, 〈T (u),u〉

‖∇u‖p → +∞
as ‖∇u‖p → +∞ and therefore the operator T is coercive. �

Proposition 4.2 Suppose that 0 ≤ α ≤ p − 1 and 0 ≤ r ≤ p − 1. Then, the
operator T is pseudomonotone and satisfies the well known property (S+):
If un ⇀ u and lim supn→∞〈T (un)− T (u), un − u〉 ≤ 0, then un → u.

The proof of this proposition is found in [21].

Theorem 4.3 Suppose that T satisfies the coercive condition on Ω. Then (4.1)
has at least one weak solution in W 1,p

0 (Ω).
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Proof. The operator T is pseudomonotone, bounded continuous and coercive.
Hence, by [22] T is surjective. �

Existence of solutions for α ≥ 0 and p− 1 < r < p
(p∗)′

Definition Let g be an element of W 1− 1
p (∂Ω).

We say that a function u is a solution of (4.2) with boundary value g if

u ∈W 1,p(Ω),B(., u,∇u) ∈ Lp∗
′

loc Ω

u = g in W 1− 1
p (∂Ω),∫

Ω

A(., u,∇u)∇ϕ+
∫

Ω

B(., u,∇u)ϕ = 0 ∀ϕ ∈W 1,p
0 (Ω).

(4.2)

(For the definition and properties of the space W 1− 1
p (∂Ω) see e.g. [20]).

We say that u is an upper supersolution of (4.2) with boundary value g if

u ∈W 1,p(Ω),B(., u,∇u) ∈ Lp∗
′

LocΩ

u ≥ g in W 1− 1
p (∂Ω),∫

Ω

A(., u,∇u)∇ϕ+
∫

Ω

B(., u,∇u)ϕ ≥ 0

for all ϕ ∈W 1,p
0 (Ω) with ϕ ≥ 0.

Similarly, a lower subsolution is characterized by the reverse inequality signs
in the above definition.

We recall the following result given in [18, Theorem 2.2].

Theorem 4.4 Suppose that there exists an ordered pair ϕ ≤ ψ of subsolution
and supersolution of (4.2) satisfying the following condition: There exists k ∈
Lq(Ω), q > p∗′ such that for all ξ ∈ Rd and all ζ with ϕ(x) ≤ ζ ≤ ψ(x),
|B(x, ζ, ξ)| ≤ k(x) + c|ξ|r a.e.x ∈ Ω. Then, (4.2) has at least one solution
u ∈W 1,p

0 (Ω) such that ϕ ≤ u ≤ ψ.

Proposition 4.5 Suppose that (4.2) admits a pair of bounded lower subsolution
u and upper supersolution v such that u ≤ v, then there exists a solution w of
(4.2) such that u ≤ w ≤ v.

Proof. Let M be a positive real such that ‖u‖∞, ‖v‖∞, ‖g‖∞ ≤ M . Then,
for each ζ such that u(x) − g(x) ≤ ζ ≤ v(x) − g(x), we have |B(x, ζ, ξ)| ≤
k(x) + b(x)Mα + 2rc|∇g|r + c|ξ|r for a.e. x ∈ Ω. In addition, u (resp. v)
is a lower subsolution (resp. upper supersolution) of (4.2). Hence by the last
Theorem, there exists a solution w of (4.2) such that u ≤ w ≤ v. �

Corollary 4.6 Suppose that all positive constants are supersolutions and all
negative constants are subsolutions. Then for each g ∈W 1,p(Ω)∩L∞(Ω), there
exists a bounded solution w of (4.2) such that ‖w‖∞ ≤ ‖g‖∞.
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Proof. We see that v = ‖g‖∞ is an upper supersolution and u = −‖g‖∞ is
a lower subsolution. Hence by the Proposition given above, we get a solution
u ≤ w ≤ v �

4.1 Dirichlet Problem

In this section, we assume that A(., 0, 0) = 0 and B(., 0, 0) = 0 a.e. in Ω, that
the property (±) is satisfied, and that the comparison principle holds.

Suppose that the open set Ω is regular (p−regular) [21, 11]. Then it is
known that if u is a solution of (1.1) in Ω satisfying u − f ∈ W 1,p

0 (Ω) with
f ∈W 1,p(Ω) ∩ C(Ω), then

lim
x→z

u(x) = f(z) ∀z ∈ ∂Ω.

Definition Let f be a continuous function on ∂Ω. We say that u ∈ C(Ω)∩
W 1,p

loc (Ω) solves the Dirichlet problem with boundary value f if u is a solution
of (1.1) such that limx→z u(x) = f(z), for all z ∈ ∂Ω.

Theorem 4.7 For each f ∈ C(∂Ω), there exists u in C(Ω)∩ W 1,p
loc (Ω) solving

the Dirichlet problem with boundary value f .

Proof By the Tieze’s extension Theorem, we can assume that f ∈ C∞c (Rd).
Let (fn)n be a sequence of mollifiers of f such that ‖fn − f‖ ≤ 1/2n on Ω .

let un denote the continuous solution of

un − fn ∈W 1,p
0 (Ω),∫

Ω

A(., un,∇un)∇ϕ+
∫

Ω

B(., un,∇un)ϕ = 0, ∀ϕ ∈W 1,p
0 (Ω).

(4.3)

So, by the comparison principle, |un − um| ≤ 1
2n + 1

2m . Hence, the sequence
(un)n converges uniformly on Ω to a continuous function u. Let M be a positive
real such that for all n: |fn|+ |f | ≤M and |un|+ |u| ≤M on Ω.

Let G ⊂ G ⊂ Ω , take ϕ as a test function in (4.3) such that ϕ = ηpun, η ∈
C∞c (Ω), 0 ≤ η ≤ 1 and η = 1 on G. Then

∫
Ω

A(., un,∇un)ηp∇(un)

= −p
∫

Ω

A(., un,∇un)unηp−1∇(η)−
∫

Ω

B(., un,∇un)unηp
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Using the assumptions on A and B, we get

α

∫
Ω

ηp|∇(un)|p

≤ pM

∫
Ω

k0|∇η|+ pMp

∫
Ω

b0|∇η|+ pM

∫
Ω

a|∇un|p−1ηp−1|∇η|

+cM
∫

Ω

|∇un|rηp +
∫

Ω

(Mpd0 +Mk +Mα+1b+ e)

≤ a(p− 1)−1Mε
p
p−1 (

∫
Ω

|∇un|pηp) + crp−1Mε
p
r (
∫

Ω

|∇un|pηp)

+C(M,Ω, η,∇η).

Thus, for ε small enough, we obtain∫
G

|∇(un)|p ≤ C(M,Ω, η,∇η, ε).

So (∇un)n is bounded in Lp(G) and therefore (∇un)n converges weakly to ∇u
in (Lp(G))d.

Fix D an open subset of G and let η ∈ C∞0 (G) such that 0 ≤ η ≤ 1 and
η = 1 on D. Take ψ = η(un − u) as test function, then

−
∫

Ω

ηA(., un,∇un).∇(un − u)

=
∫

Ω

(un − u)A(., un,∇un).∇η +
∫

Ω

B(., un,∇un)(un − u)η

Since A(., un,∇un) is bounded in Lp
′
(G) and B(., un,∇un) is bounded in Lq(G),

lim
n→∞

∫
G

A(., un,∇un)(un − u)∇η = 0,

lim
n→∞

∫
G

B(., un,∇un)(un − u)η = 0.

Consequently, limn→∞
∫
G
A(., un,∇un)η∇(un − u) = 0 and

lim
n→∞

∫
G

(A(., un,∇un)−A(., un,∇u))∇(un − u) = 0.

To complete the proof, we need to prove that (∇un)n converges to ∇u a.e. in
Ω. That is the aim of the following lemma.

Lemma 4.8 Let G ⊂ Ω and suppose that the sequence (∇un)n is bounded in
Lp(G) and

lim
n→∞

∫
G

[A(., un,∇un)−A(., u,∇u)] .∇(un − u) = 0.

Then A(., un,∇un)→ A(., u,∇u) weakly in Lp
′
(G).
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Proof. Put vn = [A(., un,∇un)−A(., un,∇u)] .∇(un − u). Since∫
G

vn =
∫
G

[A(., un,∇un)−A(., u,∇u)] .∇(un − u)

−
∫
G

[A(., un,∇u)−A(., u,∇u)] .∇(un − u),

for a subsequence we get

lim
n→∞

[A(., un,∇un)−A(., un,∇u)] .∇(un − u) = 0

a.e. x ∈ G \N with |N | = 0. Let x ∈ G \N . By the assumptions on A we have

vn(x) ≥ α|∇un(x)|p − F (|∇un(x)|p−1, |∇u(x)|p−1).

Consequently, (∇un(x))n is bounded and converges to some ξ ∈ Rd. It follows
that [A(., u, ξ) − A(., u,∇u)].(ξ − ∇u) = 0 and hence ξ = ∇u. Finally we
conclude that A(., un,∇un)→ A(., u,∇u) a.e. in G and A(., un,∇un) converge
weakly to A(., u,∇u) in Lp

′
(G). �

Now we go back to the proof of Theorem 4.7. Using Lemma 4.8, we conclude
that ∇un → ∇u a.e. in Ω and A(., un,∇un) ⇀ A(., u,∇u) in Lp

′
(D). Hence,∫

D

A(., u,∇u)∇ϕ+
∫
D

B(., u,∇u)ϕ = 0 ∀ϕ ∈ C∞0 (Ω).

Moreover, using the fact that

− 1
2n
− 1

2m
≤ um − un ≤

1
2n

+
1

2m
∀n,m

we obtain

− 1
2n

+ un ≤ u ≤
1
2n

+ un, ∀n.

So, we deduce that for all n and all z ∈ ∂Ω,

− 1
2n

+ fn(z) ≤ lim inf
x∈Ω,x→z

u(z) ≤ lim sup
x∈Ω,x→z

u(z) ≤ 1
2n

+ fn(z)

which implies limx→z u(x) = f(z) and completes the proof of Theorem 4.7. �

Remark 4.2 Using the same techniques as in the proof of Theorem 4.7 we can
show that every increasing and locally bounded sequence (un)n of supersolu-
tions of (1.1) in Ω is locally bounded in W 1,p(Ω) and that u = limn un is a
supersolution of (1.1) in Ω.
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5 Sheaf property for Superharmonic functions

The obstacle Problem

Definition Let f , h ∈W 1,p(Ω) and let

Kf,h =
{
u ∈W 1,p(Ω) : h ≤ u a.e. in Ω, u− f ∈W 1,p

0 (Ω)
}
.

If f = h, we denote Kf,h = Kf .
We say that a function u ∈ Kf,h is a solution to the obstacle problem in

Kf,h if ∫
Ω

A(., u,∇u).∇(v − u) +
∫

Ω

B(., u,∇u)(v − u) ≥ 0

whenever v ∈ Kf,h. This function u is called solution of the problem with
obstacle h and boundary value f .

Remark 5.1 Since u+ϕ ∈ Kf,h for all nonnegative ϕ ∈W 1,p
0 (Ω), the solution

u to the obstacle problem is always a supersolution of (1.1) in Ω. Conversely,
a supersolution of (1.1) is always a solution to the obstacle problem in Ku(D)
for all open D ⊂ D ⊂ Ω.

Theorem 5.1 Let h and f be in W 1,p(Ω) ∩ L∞(Ω). If v is an upper bounded
supersolution of (4.2) with boundary value f such that v ≥ h, then there exists
a solution u to the obstacle problem in Kf,h with u ≤ v.

Proof. As in [18], we introduce the function

g(x, ζ, ξ) =

{
B̃(x, ζ, ξ) if ζ ≤ v(x)
B̃(x, v,∇v) if ζ > v(x).

As in [13], we define the function

a(x, ζ, ξ) =

{
A(x, ζ, ξ) if ζ ≤ v(x)
A(x, v,∇v) if ζ > v(x).

Note that a satisfies the conditions (P1), (P2), and (P3).
A Lemma in [7, p.52] proves that the map u→ g(x, u,∇u) from W 1,p(Ω) to

Lp
′
(Ω) is bounded and continuous. Without loss of generality we can assume

that r ≥ p− 1. Let l = max{q′, p
p−r}− 1, and define the following penalty term

γ(x, s) = [(s− v(x))+]l ∀x ∈ Ω, s ∈ R.

Let M > 0 and consider the map T : K0,h →W−1,p′(Ω) defined by

〈T (u), w〉 =
∫

Ω

a(., u,∇u)∇w +
∫

Ω

g(., u,∇u)w +M

∫
Ω

γ(., u)w.
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Then for any u,w ∈ K0,h, we have

|
∫

Ω

g(x, u,∇u)w| ≤ c1‖w‖l+1 + c2‖∇u‖rp‖w‖l+1,

|
∫

Ω

γ(x, u)w| ≤ c3‖w‖l+1 + c4‖u‖ll+1‖w‖l+1,

and for each u ∈ Kf,h − f , we have∫
Ω

γ(., u)u ≥ c5‖u‖l+1
l+1 − c6.

An easy computation shows that for ε > 0,

(T (u), u) ≥ (α− c2ε)‖∇u‖pp − (c‖u‖pp + c1‖u‖l+1
l+1 + c2c(ε)‖u‖l+1

l+1)

+Mc5‖u‖l+1
l+1 −Mc6 − c1c7.

where c(ε) is a constant which depends on ε and c > 0. Now, we choose M
large to get the operator T coercive. Since T is bounded , pseudomonotone
and continuous, then by a Theorem in [22], there exists w ∈ K0,h such that
(T (w), u− w) ≥ 0 for all u ∈ K0,h.

Next, we show that w ≤ v. Since w − ((w − v) ∨ 0) ∈ K0,h and since v is a
supersolution of (4.2), it follows that∫

{w>v}
[A(., w,∇w)−A(., v,∇v)]∇(w − v) ≤M

∫
{w>v}

γ(., w)(v − w).

Thus by (P2), (w − v)+ = 0 a.e. in Ω and hence, w ≤ v on Ω. Finally, if we
take w1 = w + f , we obtain a supersolution of the obstacle problem Kf,h. �

Nonlinear Harmonic Space

Definition Let V be a regular set. For every f ∈ C(∂V ), we denote by HV f
the solution of the Dirichlet problem with the boundary data f .

Proposition 5.2 Let f and g in C(∂V ) be such that f ≤ g. Then

i) HV f ≤ HV g

ii) For every k ≥ 0, we have HV (k+f) ≤ HV (f)+k and HV (f)−k ≤ HV (f−k).

Definition Let U be an open set. We denote by U(U) the set of all open,
regular subsets of U which are relatively compact in U .

We say that a function u is harmonic on U , if u ∈ C(U) and u is a solution
of (1.1). We denote by H(U) the set of all harmonic functions on U . Then,

H(U) =
{
u ∈ C(U) : HV u = u for every V ∈ U(U)

}
.

A lower semicontinuous function u is said to be hyperharmonic on U , if
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• −∞ < u

• u 6=∞ in each component of U

• For each regular set V ⊂ V ⊂ Ω and for every f ∈ H(V ) ∩ C(V ), the
inequality f ≤ u on ∂V implies f ≤ u in V .

We denote by ∗H(U) the set of all hyperharmonic functions on U .
An upper semicontinuous function u is said to be hypoharmonic on U , if

• u < +∞

• u 6=∞ in each component of U

• For each regular set V ⊂ V ⊂ Ω and each f ∈ H(V ) ∩C(V ), the inequality
f ≥ u on ∂V implies f ≥ u in V .

We denote by H∗(U) the set of all hypoharmonic functions on U .

Proposition 5.3 Let u ∈ ∗H(U) and v ∈ H∗(U), then for each k ≥ 0 we have
u+ k ∈ ∗H(U) and v − k ∈ H∗(U).

Proposition 5.4 Let u be a superharmonic function and v be a subharmonic
function on U such that

lim sup
x→z

v(x) ≤ lim inf
x→z

u(x)

for all z ∈ ∂U , and both sides of the previous inequality are not simultaneously
+∞ or −∞, then v ≤ u in U .

Proof. Let x ∈ U and ε > 0. Choose a regular open set V ⊂ V ⊂ U such
that x ∈ V and v < u + ε on ∂V . Let (ϕi) ∈ C∞(Ω) be a decreasing sequence
converging to v in V . Then ϕi ≤ u+ ε on ∂V for i large. Let h = HV (ϕi), then
v ≤ h ≤ u+ ε on V . By letting ε→ 0, we get v(x) ≤ u(x). �

Theorem 5.5 The space (Rd,H) satisfies the Bauer convergence property.

Proof. Let (un)n be an increasing sequence in H(U) locally bounded. By
Theorem 4.11 in [21], for every V ⊂ V ⊂ U , the set {un(x), x ∈ V,n ∈ N}
is equicontinuous . Then the sequence converges locally and uniformly in U
to a continuous function u. Take ε > 0, since u − ε ≤ un ≤ u +ε , we get
HV (u)− ε ≤ un ≤ HV (u) + ε and therefore HV (u) = u �

Theorem 5.6 Suppose that the conditions in subsection 4.1 are satisfied, k0 =
e = k = 0 and α ≥ p− 1. Then (Rd,H) is a nonlinear Bauer harmonic space.
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Proof. It is clear that H is a sheaf of continuous functions and by Theorem 4.7
there exists a basis of regular sets stable by intersection. The Bauer convergence
property is fulfilled by Theorem 5.5. Since k0 = e = k = 0 and α ≥ p − 1, we
have the following form of the Harnack inequality (e.g. [21],[26] or [24]): For
every non empty open set U in Rd, for every constant M > 0 and every compact
K in U , there exists a constant C = C(K,M) such hat

sup
K
u ≤ C inf

K
u

for every u ∈ H+(U) with u ≤M . It follows that the sheaf H is non degenerate.
�

Theorem 5.7 Suppose that the condition of strict monotony holds. Let u ∈
H∗(Ω) ∩ L∞(Ω). Then u is a supersolution on U.

Proof. Let V ⊂ V ⊂ Ω. Let (ϕi)i be an increasing sequence in C∞c (Ω) such
that u = supiϕi on V . Let

Kϕi =
{
w ∈W 1,p

loc (Ω) : ϕi ≤ w, w − ϕi ∈W 1,p
0 (V )

}
.

We know by Theorem 5.1 that there exists a solution ui to the obstacle problem
Kϕi such that ‖ui‖∞ ≤ ‖ϕi‖∞. We claim that (ui)i is increasing. In fact
ui ∧ ui+1 ∈ Kϕi , then∫

{ui>ui+1}
(A(., ui,∇ui)−A(., ui+1,∇ui+1))∇(ui+1 − ui)

+
∫
{ui>ui+1}

(B(., ui,∇ui)− B(., ui+1,∇ui+1))(ui+1 − ui) ≥ 0.

Hence ∇(ui+1 − ui)+ = 0 a.e. which yields that ui ≤ ui+1 a.e. in V .
On the other hand, for each i the function ui is a solution of (1.1) in Di :=

{ϕi < ui}. Indeed, let ψ ∈ C∞c (W ), W ⊂ W ⊂ Di, and ε > 0 such that
ε‖ψ‖ ≤ infW (ui − ϕi). Then, we get ui + εψ ∈ Kϕi and∫

W

A(., ui,∇ui).∇ψ +
∫
W

B(., ui,∇ui)ψ = 0.

Since
lim inf

x→y
u(x) ≥ u(y) ≥ ϕi(y) = lim

x→y
ui(x)

for all y ∈ ∂Di, it yields, by the comparison principle, that u ≥ ui in Di. Hence
u ≥ ui in D. Thus u = limi→∞ϕi ≤ limi→∞ ui ≤ u. Finally, using Remark 4.2
we complete the proof. �

Theorem 5.8 Suppose that the condition of strict monotonicity holds. Then
∗H is a sheaf.

The proof of this theorem is the same as in [2, Theorem 4.2].
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[22] J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equation, John
Wiley & Sons, (1983).

[23] N. Papageorgiou, On the existence of solutions for nonlinear parabolic prob-
lems with nonmonotonous discontinuities, J. Math. Anal. Appl. 205 (1997)
434-453.

[24] J. Serrin, Local behavior of Solutions of Quasi-linear Equations, Acta Math-
ematica, no. 111, (1964) 247-302.

[25] G. Stampacchia, Le Problème de Dirichlet pour les Equations Elliptiques du
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