
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 85, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu

ftp ejde.math.swt.edu (login: ftp)

A NONLOCAL PROBLEM FOR FOURTH ORDER HYPERBOLIC
EQUATIONS WITH MULTIPLE CHARACTERISTICS

BIDZINA MIDODASHVILI

Abstract. In this paper, we study fourth order differential equations with

multiple characteristics and dominated low terms. We prove the existence

and uniqueness of a Riemann function for this equation, and then provide an
integral representation of the general solution of the Goursat problem. We

also provide sufficient conditions for the solvability of a nonlocal problem.

1. Introduction

Partial differential equations of higher order with dominated low terms are en-
countered when studying mathematical models for certain natural and physical
processes. As an example of such type of equations, is the equation of moisture
transfer [2]

∂w

∂t
=

∂

∂x
(D

∂w

∂x
+A

∂2w

∂x∂t
),

where w is the concentration of moisture per unit, D is the coefficient of diffusivity,
and A > 0 is the varying coefficient of Hallaire. Under the proper schematization
of the process of absorbing the soil moisture by the roots of plants, the pressure
u(x, t) in the area of root absorption satisfies the equation of form [4]

(
∂

∂x
+

1
x

)(uxt + λux) = µut.

Obviously, the equation

∂2u

∂t2
− ∂2u

∂x2
− ∂4u

∂x2∂t2
= 0,

which describes the longitudinal waves in a thin elastic stem taking into account
the effects of transversal inertia, is of the same type [5].

In the present work, a class equations with fourth order partial derivatives and
dominated lower order terms is considered.

In the space R3 of the independent variables x1, x2 and x3 let

Π := {(x1, x2, x3) ∈ R3 : ai < xi < bi}; Πi :=]ai; bi[; Πij := Πi ×Πj

for i, j = 1, 2, 3. For the class of functions ϕ, continuous in Π̄ with partial derivatives
Di
x1
ϕ, Dj

x2
ϕ, Dk

x3
ϕ, 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l, we use the symbol Ci,j,k(Π̄).
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Consider the Goursat problem

∂4

∂x2
1∂x2∂x3

u(x) +
∑
i,j,k

ai,j,k(x)
∂i+j+k

∂xi1∂x
j
2∂x

k
3

u(x) = f(x), (1.1)

u(x1, x2, x
0
3) = ϕ12(x1, x2), u(x1, x

0
2, x3) = ϕ13(x1, x3),

u(x0
1, x2, x3) = ϕ23(x2, x3), ux1(x0

1, x2, x3) = ϕ̃23(x2, x3),
(1.2)

where i = 0, 1, 2; j, k = 0, 1; i + j + k 6= 4, x, x0 ∈ Π̄ and the functions ϕij satisfy
the following compatibility conditions

ϕ1(x1) := ϕ12(x1, x
0
2) = ϕ13(x1, x

0
3), ϕ2(x2) := ϕ12(x0

1, x2) = ϕ23(x2, x
0
3),

ϕ3(x3) := ϕ13(x0
1, x3) = ϕ23(x0

2, x3), ϕ0 := ϕ0
1 = ϕ2(x0

2) = ϕ3(x0
3).

(1.3)

Theorem 1.1. For any f ∈ C(Π̄), ai,j,k ∈ Ci,j,k(Π̄) and ϕ12 ∈ C2,1(Π̄12), ϕ13 ∈
C2,1(Π̄13), ϕ23 ∈ C1,1(Π̄23), ϕ̃23 ∈ C1,1(Π̄23) satisfying the compatibility conditions
(1.3) the Goursat problem (1.1), (1.2) has one and only one solution u ∈ C2,1,1(Π̄).
Lemma 1.2. Let a(x) and b(x) be continuous functions. An arbitrary solution of
equation

y′′ + a(x)y′ + b(x)y = 0, x ∈ [α, β] (1.4)
is monotonous if and only if b(x) = 0 everywhere in [α, β].

Let

D := {x = (x1, x2, x3) ∈ R3 : 0 < xi < x0
i },

Di :=]0;x0
i [; Dij := Di ×Dj ; i, j = 1, 2, 3.

For equation (1.1) consider the boundary conditions

u(x1, x2, 0) = ϕ12(x1, x2), u(x1, 0, x3) = ϕ13(x1, x3),

u(0, x2, x3) = ϕ23(x2, x3), u(x0
1, x2, x3) = ψ(x2, x3),

(1.5)

where the functions ϕij , ψ satisfy the compatibility conditions

ϕ12(x1, 0) = ϕ13(x1, 0), ϕ12(0, x2) = ϕ23(x2, 0),

ϕ13(0, x3) = ϕ23(0, x3), ϕ12(0, 0) = ϕ13(0, 0) = ϕ23(0, 0),

ϕ12(0, x2) = ψ(x2, 0), ϕ13(0, x3) = ψ(0, x3).
(1.6)

Theorem 1.3. Assume that f ∈ C(D̄), ai,j,k ∈ Ci,j,k(D̄), ϕ12 ∈ C2,1(D̄12), ϕ13 ∈
C2,1(D̄13), ϕ23, ψ ∈ C1,1(D̄23). If there holds the condition

(a0,1,1 − a1,1,1
x1

)(x) = 0, x ∈ D (1.7)

then problem (1.1), (1.5), (1.6) is uniquely solvable in the class C2,1,1(D̄).

2. The Riemann function and the solution of (1.1)

Following the scheme in [1, 3], we define the Riemann function v(x; ξ), (x; ξ) ∈
Π×Π as a solution of the Goursat problem

∂4

∂x2
1∂x2∂x3

v(x) +
∑
i,j,k

(−1)i+j+k
∂i+j+k

∂xi1∂x
j
2∂x

k
3

(ai,j,k(x)v(x)) = 0, (2.1)

[
vx1x1x2 − (a2,0,1v)x1x1 − (a1,1,1v)x1x2 + (a1,0,1v)x1

+(a0,1,1v)x2 − a0,0,1v
]
(x1, x2, ξ3) = 0, (x1, x2) ∈ Π̄12;
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vx1x1x3 − (a2,1,0v)x1x1 − (a1,1,1v)x1x3 + (a1,1,0v)x1

+(a0,1,1v)x3 − a0,1,0v
]
(x1, ξ2, x3) = 0, (x1, x3) ∈ Π̄13;[

vx1x2x3 − (a2,1,0v)x1x2 − (a2,0,1v)x1x3 + (a2,0,0v)x1

]
(ξ1, x2, x3) = 0, (x2, x3) ∈ Π̄23;[

vx1x1 − (a1,1,1v)x1 + a0,1,1v
]
(x1, ξ2, ξ3) = 0, x1 ∈ Π̄1; (2.2)[

vx1x2 − (a2,0,1v)x1

]
(ξ1, x2, ξ3) = 0, x2 ∈ Π̄2;[

vx1x3 − (a2,1,0v)x1

]
(ξ1, ξ2, x3) = 0, x3 ∈ Π̄3;

vx1(ξ) = 1; v(ξ1, x2, x3) = 0, (x2, x3) ∈ Π̄23,

where i = 0, 1, 2; j, k = 0, 1; i + j + k 6= 4. For simplicity, we have omitted the
second triplet of arguments of the Riemann function.

Remark 2.1. The boundary conditions (2.2) for the Riemann function can be
received from the certain consideration of the integral∫ x

x0
(vLu− uL∗v)(y)dy (2.3)

Further, by integration of equation (2.1) twice on the variable y1 and once on
the variables y2 and y3 in corresponding segments of integration (yi ∈ [ξi;xi], i =
1, 2, 3), and taking into account the differential relations (2.2), we have the following
Volterra integral equation of the second kind, with respect to the first triplet of
arguments of the Riemann function v(x; ξ)

v(x)−
∫ x1

ξ1

[(a1,1,1 − (x1 − y1)a0,1,1)v](y1, x2, x3)dy1

−
∫ x2

ξ2

(a2,0,1v)(x1, y2, x3)dy2 −
∫ x3

ξ3

(a2,1,0v)(x1, x2, y3)dy3

+
∫ x1

ξ1

∫ x2

ξ2

[(a1,0,1 − (x1 − y1)a0,0,1)v](y1, y2, x3)dy1dy2

+
∫ x1

ξ1

∫ x3

ξ3

[(a1,1,0 − (x1 − y1)a0,1,0)v](y1, x2, y3)dy1dy3

+
∫ x2

ξ2

∫ x3

ξ3

(a2,0,0v)(x1, y2, y3)dy2dy3

−
∫ x1

ξ1

∫ x2

ξ2

∫ x3

ξ3

[(a1,0,0 − (x1 − y1)a0,0,0)v](y1, y2, y3)dy1dy2dy3 = x1 − ξ1.

The last equation unconditionally has an unique solution and therefore the existence
and uniqueness of the solution of the problem (2.1), (2.2) is proved.

Now, integration (2.3) and taking into account the differential relations (2.2),
for the regular solution of problem (1.1), (1.2), (1.3), we have

u(x1, x2, x3) = [vx1 − a1,1,1v](x0
1, x

0
2, x

0
3;x)ϕ0

+
∫ x1

x0
1

([vx1 − a1,1,1v]ϕ′1 − a0,1,1vϕ1)(y1, x
0
2, x

0
3;x)dy1

+
∫ x2

x0
2

([vx1 − a1,1,1v]ϕ′2 + [(a2,0,1v)x1 − a1,0,1v]ϕ2)(x0
1, y2, x

0
3;x)dy2
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+
∫ x3

x0
3

([vx1 − a1,1,1v]ϕ′3 + [(a2,1,0v)x1 − a1,1,0v]ϕ3)(x0
1, x

0
2, y3;x)dy3

+
∫ x1

x0
1

∫ x2

x0
2

(
vx1

[ ∂2ϕ12

∂y1∂y2
+ a2,0,1 ∂ϕ12

∂y1

]
−v
[
a1,1,1 ∂

2ϕ12

∂y1∂y2
−(a2,0,1

x1
−a1,0,1)

∂ϕ12

∂y1
+a0,1,1 ∂ϕ12

∂y2
+a0,0,1ϕ12

])
(y1, y2, x

0
3;x)dy1dy2

+
∫ x1

x0
1

∫ x3

x0
3

(
vx1

[ ∂2ϕ13

∂y1∂y3
+ a2,1,0 ∂ϕ13

∂y1

]
−v
[
a1,1,1 ∂

2ϕ13

∂y1∂y3
−(a2,1,0

x1
−a1,1,0)

∂ϕ13

∂y1
+a0,1,1 ∂ϕ13

∂y3
+a0,1,0ϕ13

])
(y1, x

0
2, y3;x)dy1dy3

+
∫ x2

x0
2

∫ x3

x0
3

(
vx1

[ ∂2ϕ23

∂y2∂y3
+ a2,1,0 ∂ϕ23

∂y2
+ a2,0,1 ∂ϕ23

∂y3
+ a2,0,0ϕ23

]
− v
[
a1,1,1 ∂

2ϕ23

∂y2∂y3
− (a2,1,0

x1
−a1,1,0)

∂ϕ23

∂y2
− (a2,0,1

x1
−a1,0,1)

∂ϕ23

∂y3
− (a2,0,0

x1
−a1,0,0)ϕ23

+
∂2ϕ̃23

∂y2∂y3
+ a2,1,0 ∂ϕ̃23

∂y2
+ a2,0,1 ∂ϕ̃23

∂y3
+ a2,0,0ϕ̃23

])
(x0

1, y2, y3;x)dy2dy3

−
∫ x1

x0
1

∫ x2

x0
2

∫ x3

x0
3

v(y;x)f(y)dy1dy2dy3. (2.4)

This proves the Theorem (1.1). �
Let v(x; ξ), (x; ξ) ∈ Π × Π be the Riemann function for equation (1.1), and

let x0 ∈ Π be an arbitrary point. Assuming that u is the regular solution of
equation (1.1) in Π which satisfies homogenous boundary conditions u(x0

1, x2, x3) =
u(x1, x

0
2, x3) = u(x1, x2, x

0
3) = ux1(x0

1, x2, x3) = 0, then, as it is easy to see, from
formula (2.4) it follows next representation

u(x1, x2, x3) = −
∫ x1

x0
1

∫ x2

x0
2

∫ x3

x0
3

v(y1, y2, y3;x)f(y1, y2, y3)dy1dy2dy3, x ∈ Π,

for an arbitrary continuous function f .
Using the last representation and arbitrariness of the choices of point x0 and

function f , from equation (1.1) one can get following relations:

[vξ1ξ1ξ2 + a2,0,1vξ1ξ1 + a1,1,1vξ1ξ2 + a1,0,1vξ1 + a0,1,1vξ2 + a0,0,1v](x; ξ1, ξ2, x3) = 0,

[vξ1ξ1ξ3 + a2,1,0vξ1ξ1 + a1,1,1vξ1ξ3 + a1,1,0vξ1 + a0,1,1vξ3 + a0,1,0v](x; ξ1, x2, ξ3) = 0,

[vξ1ξ2ξ3 + a2,1,0vξ1ξ2 + a2,0,1vξ1ξ3 + a2,0,0vξ1 ](x;x1, ξ2, ξ3) = 0,

[vξ1ξ1 + a1,1,1vξ1 + a0,1,1v](x; ξ1, x2, x3) = 0,

[vξ1ξ2 + a2,0,1vξ1 ](x;x1, ξ2, x3) = 0, [vξ1ξ3 + a2,1,0vξ1 ](x;x1, x2, ξ3) = 0,

vξ1(x;x) = 1, v(x;x1, ξ2, ξ3) = 0.

These relations are dual to relations (1.2) in the certain sense (the left sides of (1.1)
and (2.1), considered as differential operators, are conjugated) , so, the definition of
the Riemann function as the solution of the Goursat problem (2.1),(2.2) is logically
correct.
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3. Proof of the Lemma 1.2 and the Theorem 1.3

The if - part is obvious, therefore only the only if - part has to be proved. Let
us assume the contrary: there exists x0 ∈ [α, β] satisfying b(x0) 6= 0 whereas an
arbitrary solution of

y′′ + a(x)y′ + b(x)y = 0, x ∈ [α, β] (3.1)

is monotonous. Certainly, because of continuity of b(x) there exists the segment
[α1, β1] such that it contains the point x0 and b(x) 6= 0, x ∈ [α1, β1]. Proceeding
from the well-known fact that any solution of class C2[α1, β1] can be uniquely
prolonged till the solution of (3.1) of class C2[α, β] on whole [α, β] we shall not
restrict the generality of reasoning if assume that b(x) 6= 0, x ∈ [α, β].

Let y(x) = c1y1(x) + c2y2(x) be an arbitrary solution of equation (3.1) and
y′(x) = c1y

′
1(x)+c2y

′
2(x) be a constant-signed function where y1(x) and y2(x) form

a fundamental system of solutions of (3.1).
Consider the sets Ki := {x ∈ [α, β] : y′i = 0}, i = 1, 2. Obviously, the sets K1

and K2 are closed. Let us see that there hold the following properties

A. K1 ∩K2 = ∅, B. K1 ∪K2 = [α, β].

The property A is obvious since assuming the opposite implies the existence of
a point x0 ∈ [α, β] such that y′1(x0) = y′2(x0) = 0 and therefore for Wronsky’s
determinant we have (W [y1, y2])(x0) = 0 which contradicts to the fundamentality
of system y1(x), y2(x).

Now suppose that the propertyB is not true. This implies the existence of a point
x0 ∈ [α, β] such that y′1(x0) 6= 0 and y′2(x0) 6= 0. Without restriction of a reasoning
generality we assume that y′1(x0) = y′2(x0) since in opposite case instead the pair
y1(x), y2(x) one may consider the pair y′2(x0)

y′1(x0)y1(x), y2(x). It is easy to note that
y′′1 (x0) 6= y′′2 (x0) because in other case from (3.1) we would have y1(x0) = y2(x0),
and according to y′1(x0) = y′2(x0) and uniqueness of Cauchy’s problem solution
we would get y1(x) = y2(x), x ∈ [α, β] contradicting to the condition of linear
independence of functions y1(x), y2(x). Therefore y′′1 (x0) 6= y′′2 (x0) and as it is
easy to verify for c1 = 1 and c2 = −1 the condition of sign-constancy of the
function y′(x) = c1y

′
1(x) + c2y

′
2(x) is violated in a neighborhood of the point x0.

This proves the property B.
Now, considering the segment [α, β] as a topological space with the relative

topology induced from R, which is obviously connected, we have from the properties
A and B that one of the sets K1, K2 is empty, whereas another coincides with
[α, β], say K1 = [α, β]. This means that y′1(x) = 0, x ∈ [α, β], whence from (3.1)
b(x)y1(x) = 0, x ∈ [α, β]. According to our assumption b(x) 6= 0 and therefore
y1(x) = 0, x ∈ [α, β]. The last contradicts to the linear independence of the
functions y1(x), y2(x) and so the lemma is proven.

Now, let us prove Theorem (1.3). Consider unknown function τ(x2, x3) assuming
that τ(x2, x3) = ux1(0, x2, x3). Then, according to (2.4) the regular solution of
equation (1.1) with boundary conditions

u(x1, x2, 0) = ϕ12(x1, x2), u(x1, 0, x3) = ϕ13(x1, x3),

u(0, x2, x3) = ϕ23(x2, x3), ux1(0, x2, x3) = τ(x2, x3),

and the compatibility conditions

ϕ12(x1, 0) = ϕ13(x1, 0) = ϕ1(x1), ϕ12(0, x2) = ϕ23(x2, 0) = ϕ2(x2),
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ϕ13(0, x3) = ϕ23(0, x3) = ϕ3(x3), ϕ1(0) = ϕ2(0) = ϕ3(0) = ϕ0,

are given by formula

u(x1, x2, x3) = [vx1 − a1,1,1v](0, 0, 0;x)ϕ0

+
∫ x1

0

([vx1 − a1,1,1v]ϕ′1 − a0,1,1vϕ1)(y1, 0, 0;x)dy1

+
∫ x2

0

([vx1 − a1,1,1v]ϕ′2 + [(a2,0,1v)x1 − a1,0,1v]ϕ2)(0, y2, 0;x)dy2

+
∫ x3

0

([vx1 − a1,1,1v]ϕ′3 + [(a2,1,0v)x1 − a1,1,0v]ϕ3)(0, 0, y3;x)dy3

+
∫ x1

0

∫ x2

0

(
vx1

[ ∂2ϕ12

∂y1∂y2
+ a2,0,1 ∂ϕ12

∂y1

]
−v
[
a1,1,1 ∂

2ϕ12

∂y1∂y2
−(a2,0,1

x1
−a1,0,1)

∂ϕ12

∂y1
+a0,1,1 ∂ϕ12

∂y2
+a0,0,1ϕ12

])
(y1, y2, 0;x)dy1dy2

+
∫ x1

0

∫ x3

0

(
vx1

[ ∂2ϕ13

∂y1∂y3
+ a2,1,0 ∂ϕ13

∂y1

]
−v
[
a1,1,1 ∂

2ϕ13

∂y1∂y3
−(a2,1,0

x1
−a1,1,0)

∂ϕ13

∂y1
+a0,1,1 ∂ϕ13

∂y3
+a0,1,0ϕ13

])
(y1, 0, y3;x)dy1dy3

+
∫ x2

0

∫ x3

0

(
vx1

[ ∂2ϕ23

∂y2∂y3
+ a2,1,0 ∂ϕ23

∂y2
+ a2,0,1 ∂ϕ23

∂y3
+ a2,0,0ϕ23

]
− v
[
a1,1,1 ∂

2ϕ23

∂y2∂y3
− (a2,1,0

x1
−a1,1,0)

∂ϕ23

∂y2
− (a2,0,1

x1
−a1,0,1)

∂ϕ23

∂y3
− (a2,0,0

x1
−a1,0,0)ϕ23

+
∂2τ

∂y2∂y3
+ a2,1,0 ∂τ

∂y2
+ a2,0,1 ∂τ

∂y3
+ a2,0,0τ

])
(0, y2, y3;x)dy2dy3

−
∫ x1

x0
1

∫ x2

x0
2

∫ x3

x0
3

v(y;x)f(y)dy1dy2dy3.

Now, putting x1 = x0
1 in the last expression and taking into account that

u(x0
1, x2, x3) = ψ(x2, x3) we come after some transformations to the Volterra inte-

gral equation with regard to the function τ(x2, x3):

v(0, x2, x3;x0
1, x2, x3)τ(x2, x3) +

∫ x3

0

θ1(0, x2, y3;x0
1, x2, x3)τ(x2, y3)dy3

+
∫ x2

0

∫ x3

0

θ2(0, y2, y3;x0
1, x2, x3)τ(y2, y3)dy2dy3 = χ(x2, x3), (3.2)

where θ1, θ2 and χ are known functions. As it is well-known the last equation is
solvable if

v(0, x2, x3;x0
1, x2, x3) 6= 0, 0 ≤ x2 ≤ x0

2, 0 ≤ x3 ≤ x0
3.

Further, according to the fourth condition of (2.2) for the Riemann function we
have

[vx1x1 − (a1,1,1v)x1 + a0,1,1v](x1, x2, x3;x0
1, x2, x3) = 0,

0 ≤ x1 ≤ x0
1, 0 ≤ x2 ≤ x0

2, 0 ≤ x3 ≤ x0
3.
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Consider the last expression as an ordinary differential equation with respect to x1,
for fixed x2 and x3, and rewrite it as

vx1x1(x1, x2, x3;x0
1, x2, x3)− a1,1,1(x1, x2, x3)vx1(x1, x2, x3;x0

1, x2, x3)

+ [a0,1,1(x1, x2, x3)− a1,1,1
x1

(x1, x2, x3)]v(x1, x2, x3;x0
1, x2, x3) = 0. (3.3)

Now, if we assume (1.7) holds, then the solution of (3.3) is monotonous. Taking
into account that due to the last differential relations of (2.2)

v(x0
1, x2, x3;x0

1, x2, x3) = 0, vx1(x0
1, x2, x3;x0

1, x2, x3) = 1

we have
v(0, x2, x3;x0

1, x2, x3) 6= 0, 0 ≤ x2 ≤ x0
2, 0 ≤ x3 ≤ x0

3.

Further, assuming (1.7) holds, (3.2) is uniquely solvable with regard to the function
τ(x2, x3). Replacing the last condition of (1.5) by ux1(0, x2, x3) = τ(x2, x3) we come
to the problem (1.1), (1.2), (1.3) which solution will satisfy conditions (1.5). This
proves the Theorem (1.3).
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