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On the Keldys-Fichera boundary-value problem
for degenerate quasilinear elliptic equations *

Zu-Chi Chen & Ben-Jin Xuan

Abstract

We prove existence and uniqueness theorems for the Keldys-Fichera
boundary-value problem using pseudo-monotone operators. The equation
studied here is quasilinear, elliptic, and its set of degenerate points may be
of non-zero measure. We also obtain comparison and maximum principles
for this problem.

1 Introduction

This article studies the Keldys-Fichera boundary-value problems (KFBVP) for
degenerate quasilinear elliptic equations. For linear elliptic equations with non-
negative characteristic form of second order, the KFBVP is well known and has
been summarized in detail by Oleinik and Radkevich [7]. However little infor-
mation is known about this problem for nonlinear equations. Ma and Yu [6]
discussed the KFBVP for the degenerate quasilinear elliptic equation

Lu = D;la;j(xz, uw)Dju + bi(x)u] — c(z,u) = f(z), z €. (1.1)

In this article, the summation from 1 to n over repeated indices is under-
stood. They obtained an existence theorem by using the acute angle principle
for weakly continuous operators. In this paper we consider the more general
degenerate quasilinear elliptic equation

Qu = —D;a;(x,u, Du) + a(z,u) = f(x), z=€Q, (1.2)

in a bounded domain Q C R", n > 2, with piecewise C'-smooth boundary 0.
We also obtain existence results, different from [6], using the pseudo-monotone
operator method. Moreover, in this paper the set of degenerate points may be
of non-zero measure, which is different from [6]. Also, the comparison principle,
the maximum principle and a uniqueness theorem of the solution to the KFBVP
for (1.2) are discussed.
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The article is organized as follows. Section 2 formulates the existence the-
orem, the main result of this paper, and the preliminaries. Section 3 contains
the proof of the main result. In section 4, we prove the comparison principle,
the maximum principle and the uniqueness theorem.

2 Main Result

Let Q be a bounded domain in R™ (n > 2) with piecewise Cl-boundary 99
and the Sobolev imbedding theorems are valid for this domain. Assume the
following hypotheses:

(A1) ai(x,z,p), i = 1,2,...,n, satisfy Carathéodory conditions, i.e., they are
continuous in (z,p) € R x R™ for x a.e. in () and measurable in x € Q for
every (z,p) € Rx R™. Moreover, a;(z, z,p) and a(z, z) possess integrable
continuous derivatives in p; and z

(A2) a;(z,0,0) € WYmm'(5Q) for m > 2,
lai(@, 2,p)] < c(lp|™ "+ [2/™ + pi(2), pi(z) € W™ (9Q),
la(z, 2)] < ez + po(a)),  w2(z) € Ly(Q),

for (z,2,p) € A x Rx R*, where ¢ > 0,2 <l <m=m(n—1)/(n—m) if
m<nand2<IlI<ooifm=n

(A3) There exist constants a > 0, # > 0 and a continuous function A(x) > 0
such that for all (z,z,p) € Q& x R x R™ and any £ € R™ it holds that

da; Oai Oa;
Oéil(r“)zj‘ (2,0,0)&&; < %(zwzap)ﬁiﬁj < O‘azj (x,0,0)&¢;, (2.1)
Oa; da; da;
B 51 @,0,006 < Sh(@ 2 p)6 < A5 (@,0,006,  (22)
ggwnﬁm@zxmm% (23)

(A4) There exists a positive function ¢3(x) € L'() such that

ai(z, 2, p)pi + a(z, z)z = h([p])|p[™ — ¢s() (2.4)

for (z,2,p) € Q x R x R™, where h(t) with h(0) = 0 is a bounded, non-
decreasing and continuous function on [0, c0). Without loss of generality,
we assume that sup h(t) > 1.

Remark 2.1 From (2.1) and (2.3) we know that (1.2) may degenerate at the
set { | A(z) = 0} which may have positive measure, while in [6] the set is of
Zero measure.
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Remark 2.2 Condition (A2) shows the growth orders of a;(z, z,p) and a(z, z)
in |z, [p| and |z| respectively which often used in [2, 3] and other related papers.
Condition (A3) is an extension of the one in [6]. Condition (A4) is a version of
the one in [1].

We divide 0f) into the parts of the Keldys-Fichera type as follows

EO:{xeaﬁzgai

(l’, O, O)I/il/j = O},

da; 2.
Si={z¢€ »0 . (‘;z (z,0,0)r; <0}, (2:5)
Yo =20, U5 =00\x°
where U = (v1,v9,- -+ ,v,) is the unit outward normal to 9. For m > 2, we

denote by W1™(Q) the Sobolev space with the norm
lull = (lull: + 1 Dul) ™,

where || - || is the L™(€2) norm. For 2 < m < n, we define that W1 (1), the
subspace of W1 (Q), is the closure of the set {u € C1(Q) : u = 0 on X3} in the
norm |lu||. Attaching the Keldys-Fichera boundary condition that u(z) = 0 on
Yo U35 to (1.2) we then get the Keldys-Fichera boundary-value problem

—Dja;(x,u, Du) + a(z,u) = f(z), =€

(2.6)
u=0, x€XyU2Xs.

Definition 2.3 A weak solution of (2.6) is defined to be an element u €
Whm(Q) such that

/[ai(x,u,Du)Div+a(x,u)v]da: —/ a;(z,u, 0)vvds
Q D31

:/ ai(x,070)1/ivds+/f(x)vdx, (2.7)
b Q

for any v € C*(Q) vanishing on X3.

Remark 2.4 One can find out that this definition is a proper counterpart of
the weak solution of the KFBVP for linear equations in [7].

Remark 2.5 (2.1) and (2.2) mean that in the definitions of 3° and ¥; we can
1 %(x 0,0) and %(z 0,0)b %(x z,p) and %(x z, p) respectivel
rep ace ap] M az el y 8pj ) 7p az ) 5p p Y'
Remark 2.6 Multiplying (2.6) by v € C'!(Q) vanishing on Y3 and then inte-
grating by parts, we can obtain (2.7). Hence, the classical solution of (2.6) must

be a weak solution.

Theorem 2.7 (Existence theorem) Assume that (A1)-(A4) hold and that
f(z) e W=Lm'(Q). Then (2.6) has a weak solution in W™ (Q).
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3 Proof of Theorem 2.7

We confine ourselves to the case of m < n, and refer the reader to Remark 3.3
for the case of m >n. For § € (0, 1] and i =1,2,--- ,n, define

m—2

ais(z,z,p) = ai(z, z,p) + 5p;|pi

Lemma 3.1 For any § € (0, 1] the integral equation

/[ai(;(m,u,Du)Div + a(z,u)v]de —/ a;(z,u,0)v;vds
Q P

= / f(z)vdz +/ ai(z,0,0)vvds, Yo € WH™(Q) (3.1)
Q P2
has a solution in W™ (Q). This solution is denoted , us.

Proof Denote
Bs(u,v)

= /[aig(x,u,Du)Div—I—a(x,u)v}dx—/ ai(z,u,0)vuds Yo e WH™(Q).
Q P
Then, by (A2), the Holder’s inequality and the Sobolev imbedding theorem,
Whm(Q) — LY(Q), we obtain

’/[ai(g(a:,u, Du)D;v Jra(;v,u)v]dx’
Q

mm’ lm' mm'
< (| D™+ (lully™ + nl Dul2 ™ 4 ol |0])
L
F(lully’” + Nzl o] (3.2)
< ol

where ¢ = c(||ull, |e1llm, l@2llir, 1,1, m,m’,n). Here and in the sequel, the
constant ¢ may vary in the context, and if necessary we will then indicate its
dependence on other known quantities.

Because 1 and X5 are of C1, the trace imbedding W™ (Q) — L™(%;),i =
1,2, is valid (see ¥; of Chapter 3 in [4]). Notice that [ < m, m < m, so the
following integrals are well defined, and then by (A2) and the Holder’s inequality,
it follows that

| [ astow0as| <e [ (ul™ 4 o1 lolas
21 Z1

I/m’
<c(l[ull s, + el olzm sy < el

where ¢ = ¢(||u|l, |¢1llm, I, m,m,|Q]), and the last inequality is based on the
trace imbedding theorem mentioned above. From (3.2) and (3.3) we then know
that there exists a continuous mapping B(u) : WH™(Q) — W™ (Q) such
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that (B(u),v) = Bs(u,v). Hence, for solving (3.1) it is sufficient to find an

element, say ugs, in W1 ™(£2) such that
B(us) = F, (3.4)

where F' defined by
(F,v) = / f(z)vdx +/ ai(z,0,0)vvds. Yo € WH™(Q).
Q s

It is obvious that F € W~1™"_ In the following we employ the pseudo-monotone
operator method to solve (3.4). By (A2), it follows that

Jais(@, 2, p)| < (c+nd) (Il + [2[/™ + 1 (2)). (3.5)
Let &, ¢ € R™, one can deduce, by (A3), that

[am(l’, 275) - aié(xa 274)](51 - Cz)
= [ai(#,2,8) — ai(z,2,O)(& — G) + 6(&1&GI™ > = GIGI™ ) (& — )

1 .
| Gt e = )&~ Ol G (3.

+0(&|&|™ 2 = GIGI™ ) (& - G)
> (&I = 1™ (&) = 1G] > 0, for & # ¢

Using (A4), we have

ais(,2,p)pi + a(r,2)2 2 6 Y |pil™ — ps(x) = 620" p| ™ — py(x).  (3.7)
1=1

Inequalities (3.5)-(3.7) show that the operator B in B(u) = F is pseudo-
monotone(see Theorem 1 in [1]). Moreover, B is coercive. In fact, by (3.7)
and the Poincaré inequality, we obtain

/[aig(x,u,Du)Diu—|—a(x,u)u]d:v > 52(1_’”)"/ |Du|mdx—/<p3(x)dx
Q Q Q

Y

clul™ = [ pa(w)ds,
Q
for u € WH™(Q), where ¢ = ¢(m,n, ||, ). Hence,
(B(w),w)llul =" > eflul ™" = IIUHA/Q%(QC)dw — F00, as |ul| = +oo,

which says that the pseudo-monotone operator B is coercive. Therefore, the
equation B(u) = F has a solution, say ugs, in W™ (). This completes the
proof of Lemma 3.1. O
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Let Ay (z,n,€), |a| < m, be the functions defined in Q x RM x RNz and
satisfy the following conditions: they are continuous in (n,¢) for a.e. = € Q
and measurable in z for every (n,&) € RM x RN2 where N; is the number of
multi-index o with |o| < m — 1 and Ny is that of @ with |a| = m. Moreover,

|Aa(@,m,€)] < C(InPP~" + |6~ + k()), k(x) € LY (2),1 < p < 0.
We recall the following lemma.

Lemma 3.2 (Lemma 2.1 of Chapter 2 in [5]) Assume that u, — u with
uw€ Wm=LP(Q), and v € W™P(Q). Then,

Aoz, 0uy, D™v) — Ay (x, 6u, D™v) strongly in g (Q),
where A, € LY (Q) and du = {u, Du,--- , D™ 'u}.

Proof of Theorem 2.7 First we estimate a uniform bound for us,0 < § < 1.
Let us take the place of v and v in (3.1), then (3.1) reads

/[ai[;(x,U5,DU5)Diu5 + a(x, us)ugs|dx —/ a;(z, us, 0)vusds
Q 31

:/f(x)U5dx+/ ai(z,0,0)vusds.  (3.8)
Q PP

By condition (A4), it follows that
ais(x, us, Dus)Dijus + a(x, us)us > 52(1_’”)"\Du5\m + h(|Dus|)|Dus|™ — ¢3(x),

and then combining this with (3.8) yields
/ h(|Dus|)|Dus|"dz < / | Dus|™dx +/ w3 (z)dz —|—/ a;(z, us, 0)vusds
Q Q Q PN
+/ a;(z,0,0)vusds +/ f(z)usdz. (3.9)
I Q
For the right-hand side of (3.9), we have the following estimates

‘/ ai(m,ug,O)Viu(;ds‘
3

< c/ (|u¢s\l/m/ + |p1])|us|ds by condition (A2)
P

l/m’ " 5 . .
< c(||u5|\L/,(Zl) + lle1llme)|usl|Lm(s,y by Hélder’s inequality
< e(||1Dus ™ + el )1 Dus]ln
by the trace imbedding and Poincaré inequality
1 2 1 /
< ol— 4+ I\ Dusll™ + =1l |I™
< el 2)Dusl + el
by Young’s inequality and L™(Q) — L'(Q)
< ¢||Dusll; + M. by Young’s inequality
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where My = Miy(m,m’,n,|Q|,||¢1]|m,€) and € > 0 is any real number. Simi-
larly,

‘ |Dug|™dx + /
Q 3o

where My = Mo (|| flm, |21 llmrs ™/, |2, n,€). Then, from (3.9) we get

a;(x,0,0)vusds + f(x)u(sdac‘ < ellus|lm + Ma,
Q

/ h(|Dus|) | Dus|™dz: < 2| Dus||™ + M, (3.10)
Q

where M = M1 + M2 + ||SD3HL1(Q) Let
Q%) ={z € Q| h(|Dus|) < 6*}, a(6*)= sup 7, 0 <" <1.
h(n)<é*
Obviously, |Dus| < a(6*) when x € (§*), then

/ |Dugs|™dx < @™ (6%)|Q].
Q(6*)
With the aid of (3.10), we have
5*/ |Dugs|™dzx < 2¢||Dusl|im + M.
Q\Q(5%)
Therefore,
5*/ | Dus|™dz < 26| Dug|[™ + %™ (5)[Q] + M.
Q

Choosing 6* = 1, € = 1/4 in above inequality yields || Dus |7t < 2a™(1)|Q]+2M.
Then, by Poincaré inequality, we finally obtain the uniform bound of {us} that
lus| < ¢, (3.11)

where c is independent of §. Hence, there is a subsequence of {us}, denoted still
by {us}, converging weakly to an element u € W1 ™(Q). Replacing u and v in
(3.1) by us and us — v respectively, then (3.1) reads

/[ai(;(x,ug,Du(s)Di(u(;—v)—l—a(x,w)(w—v)]dm—/ a;(z,us,0)v;(us—v)ds
Q 3

= /Qf(w)(u(; —v)dx + /22 ai(x,0,0)v;(us — v)ds.

Substituting (3.6) on the above equality yields

f(@)(us — v)dx + / a;(z,us, 0)v;(us —v)ds + / a;(x,0,0)v;(us — v)ds
Q P

Yo

— /Q a;s(x, us, Dv)D;(us — v)dx — /Qa(ac,u(;)(u(; —v)dz

> 5/(|Diu(;|m’1 DoY) (| Dyus| — | Dsvl)de. (3.12)
Q

Next, we consider the convergence of the right hand side of (3.12) as § — 0, in
three steps.
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step 1: Since us — u weakly in Wl’m(Q) and because of the trace imbedding
Whm(Q) — L™(%;), we can assume, choose a subsequence if necessary, that
us — u weakly in L™(X;). Therefore, noticing (3.11), we have

/Qf(x)(ua ~v)dz — /Qf(x)(u ~ v)da,

/ ais(x,0,0)v;(us — v)ds — a;(z,0,0)v;(u — v)ds.
22 E2

step 2:
/Qaig(;v,u57 Dv)D;(us — v)dx
= /Q[ai(;(x,w, Dv) — a;5(x, u, Dv)|D;(us — v)dx
+/Qai5(x,u, Dv)D;(us —v)dx = I + Is. (3.13)

Because WH™(Q) — L™(§) is compact, then us — u strongly in L™(Q2). By
lemma 3.2 and (3.11) we know that a;s5(x, us, Dv) tends to a;(z,u, Dv) strongly
in L™ (). This and (3.11) show that

11| < llais(, us, Dv) = ais(x, u, Do) [ || Di(us — 0)[[m — 0,

then I; — 0. It is obvious that Iy — fQ ai(z,u, Dv)D;(u — v)dz since us — u
weakly in W1 () and (3.11). Therefore, (3.13) yields

/ ais(z,us, Dv)D;(us — v)der — / a;(z,u, Dv)D;(u — v)dx.
Q Q
For the integral

/Qa(x, ug)(us —v)dx = /Qa(x, ug)(us — u)dz +/ a(z,us)(u—v)dx = I3+ Iy,

Q

by the compact imbedding W™ (Q) — L!() it holds that us — u strongly in
L'(€2), then, noticing (3.11), we get

L
] < laz,us)llellus —ull < (luslly" + lloalle)lus — ull
Iy
< (lusly" + Nzl lus — ulli < eljus —ully — 0. (3.14)

Because us — u strongly in L!(Q), then us — wu almost everywhere in ).
On the other hand, we have already know that ||a(z,us)||y < ¢, and hence
a(z,us) — A(z) weakly in LY (Q). Then, Based on Lemma 1.3 of Chapter 1 in
[5], we have A(x) = a(x,u), and hence

/Qa(x, ug)(u — v)dz — /Q oz, u) (u — v)dz.
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Combining this with (3.14) yields

/Qa(x, ug) (g — v)dz — /Qa(x, ) — v)da.

step 3:

/ a;(z,us,0)v;(us —v)ds
P

= / ai(x,u(;,O)l/i(u—v)ds—i—/ a;(z,us, 0)v;(us — u)ds. (3.15)
¥

¥

For the first integral in the above equation, based on the compact trace imbed-
ding WH™(Q) — L™ (%) and us — u weakly in W1 (Q) we know that us — u
strongly in L™(X;). Then, by Lemma 3.2 and noticing that a;(x,us,0) €
L™ (%), it yields

/ a;(x,us, 0)v;(u — v)ds — a;(z,u,0)v;(u — v)ds. (3.16)
1 P

Now, consider the second integral of (3.15). Because the trace imbedding
Whm(Q) — L™(3) is compact, hence [[us — ul pm(s,) — 0. Noticing that
ai(z,us,0) € L™ (2;) and (3.11), using Holder’s inequality and the compact
trace imbedding W™ (Q) «— L'(¥;), it holds that

‘/ ai(z,us, 0)v;(us — u)ds
¥

< ||ai(CU,U670)||Lm/(21)““6_U|L"”(El)
1/m’
< ellluslm, + Il llus — ullzmes,) (3.17)

< cllusl™ + lpallm)llus — ullpm(z1y — 0.

Returning to (3.15), by (3.16) and (3.17), we have

/ a;(z, us, 0)v;(us — v)ds — a;(z,u,0)v;(u — v)ds.
21 E1

Now, let § — 0 in (3.12), by 1), 2), 8) and (3.11), we obtain that

/ [ai(z,u, Dv)D;(u — v) + a(x,u)(u — v)]dr — / ai(z,u,0)v;(u —v)ds
Q

¥

< | f(@)(u—v)dx+ / ai(z,0,0)v;(u —v)ds, YveWhH™(Q). (3.18)
Q o
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For any real number o > 0 and any ((z) € W™ (Q), choosing v = u — a((z)
in (3.18) and then let o — 0, it yields

/[ai(:c,u,Du)DiC—i—a(x,u)(]dx —/ a;(z,u,0)v;((x)ds
Q

P
< / f(z)(dz —|—/ a;(z,0,0)v;¢ds. (3.19)
Q 32
The inverse inequality of (3.19) holds if @ < 0. This completes the proof of
Theorem 2.7. g

Remark 3.3 If m > n or n = 2, Assumption (A2) is replaced by the following
assumption (A2) ’ which allows us to use the Sobolev imbedding W™ (Q) to
bounded and continuous function space Cp(w) (see Chapter 7.7 in [2]). So the
proof is easier than that of case m < n.

(A2)" Jas(o,2,p)| < ha(2)(pI™" + ki (@), k(@) € L™ (@), for i = 1,2, .
la(x, 2)| < ha(z)ka(x), ka(z) € LY (w), where h;(2)(i = 1,2) is a continuous
function.

4 Comparison Principle and Uniqueness Theo-
rem

We first consider the linear operator
Lu = —D;(a"(z)Dju + b'(x)u) + cu, z€w, (a’(z))>0. (4.1)
Denote
20 = {z € 9Q: a”(2)vv; = 0},
21 = {z e’ : b (2)r; <0},
S, =30\ %1, ¥3=00\%
C*={peCl () :¢20,¢s, =0},
For u € WH™(Q) and v € C*, let
(Lu, v) = /Q[(aiiju + b'u) Dy 4 cuv]dr — . biv;uvds, (4.2)
1

Definition 4.1 By a weak subsolution (supersolution) u € W1 ™(Q)(m > 2)
of Lu =0 in Q, we mean that (Lu, v) > 0 (< 0) holds for all ¢ € C*.

Lemma 4.2 (Maximum Principle) Suppose that the coefficients of L satisfy
aleeC@), ¥echQ), buly, <0, b,
D;b* < min{e, 2¢}, X, €C, XU N5 #0.

>0,
2

If the minimum of the weak subsolution of Lu = 0 is nonpositive (or the maz-
imum of the weak supersolution is nonnegative), then it must be achieved on
3o U 3.
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Proof Suppose that u is a weak subsolution of Lu = 0, by definition 4.1, we
have

/[(aiiju + b'u) Dyv + cuv)de — / biviuvds >0, Vv € C*. (4.3)
Q D3]

Let I = inf u <0,
3oUX3

w=(l —u)t = | —u, whenu <l
0 otherwise.

Then w belongs to the closure of C* in the norm of Sobolev space W™ (w), so
we can choose w as a test function in (4.3) and obtain

/ [(a¥ Dju + b'u) Diw + cuw] dx — / biv;uwds > 0, (4.4)
Q D1

Noting that ¥; € C' and W™ (Q) can be imbedded into L™/ (»=™)(Q) C

L*(Q), the left hand side of (4.4) is well defined. Integrating the term b‘uD;w
in (4.4) by parts yields

3 1 _ ,
/ [—a” D;wDjw + §(D¢bz —2c)w? — (D;b* — ¢)lw)dx
Q4

1 - 1 X
> ——/ b’Vinds—i—/ (zw? — lw)b'y; ds (4.5)
2 Js, 5, 2

1 .
> ——/ biv;wids > 0,
2 /s,

where Q = {z € Q : u < I}. On the other hand, from the assumption of
Lemma 4.2, the integrand on  is negative which implies |24 | = 0, and hence

infu> inf w.

Q YoUXs3
For the case of weak supersolution, let u is a weak supersolution of Lu = 0,
replacing v by —u in the preceding arguments, we obtain

supu < sup u.
Q 3oUX3

Thus the proof of Lemma 4.2 is completed. O

Remark 4.3 Replacing Y5 UY3 by %3 in the proof of Lemma 4.2, we can

deduce that igf u > iélf u and supu < sup u for the subsolution and the super-
3 Q )N
solution of Lu = 0 respectively. Hence for the weak solution of Lu = 0 with

u|s, = 0, it must be that uly, = 0.
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Let u, v € Wh™(Q), we say that Qu < Qu in the sense of distributions, if

/[ai(a:,u,Du)DigaJra(:z:,u)go}dos—/ ai(z,u,0)v;pds
Q P

< [ lasto.0. DoDio + alw0)plds ~ [ aile, . 0pmpds
Q P
holds for any ¢ € C*. Denote ui(z) = tu+ (1 — t)v(x),0 <t <1 and a; =
ai(xz, ugy, Dug) for i =1,2,--- ,n. a; = a;(x,us). Then, we have the following
comparison principle.

Theorem 4.4 (Comparison Principle) Suppose that a;(z,z,p) € C(Q x
RxR")xC?(QAx RxR"), a(x,z) € CLQXR), v;D.ai|s, <0, v;D,ails, >0,
D,,.a; <min{D.a:, 2D,a:} and (A3) hold. If u,v € Cl(Q)ﬁVVLm(Q) satisfy
Qu<Quin Q and u < v on Yo UX3, then u < v in .

Proof By the condition Qu < Qu, for any ¢ € C*, we have

o
Vv

/ dt / {[Dp;aitDj(u —v) + D.ag(u —v)|Dip + D.at(u —v)]p}de
0 o

1
/ dt [ D.a;(z,u,0)(u— v)v;pds
0 DN

/Q{[aiij (u —v) + b*(u — v)| D + c(u — v)p}dx (4.6)

- / bivi(u —v)pds,
D]

1 1 1
where a* :/ D, a;dt, bt :/ D.a;dt, c :/ D,a;dt. Let w = u — v.
0 0 0
From (4.6), we have
/ [(a" Djw + b'w)Dip + cwypldr — / blvweds > 0,
Q P

i.e., w is a supersolution of the liner equation
Lu = —D;(a” (z)Dju + b (z)u) + cu = 0.

From the assumptions of this theorem, the assumptions of Lemma 4.2 are all
satisfied, thus Lemma 4.2 implies that sup, w < supy, y, w < 0, hence u < v
in w which proves Theorem 4.4. O

Theorem 4.5 (Uniqueness Theorem) Suppose that the coefficients of Q sat-
isfy the conditions in Theorem 4.4, then the C1(Q) N W1 ™(Q)-weak solution of
problem (2.6) is unique.
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Proof Suppose that u and v are two weak solutions of problem (2.6). By
Remark 4.3, it holds that v = v = 0 on Y5 U X3. Using Theorem 4.4, we find

that u < v as well as v < u, hence u = v in 2. This completes the proof. O
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