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On the Keldys-Fichera boundary-value problem

for degenerate quasilinear elliptic equations ∗

Zu-Chi Chen & Ben-Jin Xuan

Abstract

We prove existence and uniqueness theorems for the Keldys-Fichera
boundary-value problem using pseudo-monotone operators. The equation
studied here is quasilinear, elliptic, and its set of degenerate points may be
of non-zero measure. We also obtain comparison and maximum principles
for this problem.

1 Introduction

This article studies the Keldys-Fichera boundary-value problems (KFBVP) for
degenerate quasilinear elliptic equations. For linear elliptic equations with non-
negative characteristic form of second order, the KFBVP is well known and has
been summarized in detail by Oleinik and Radkevich [7]. However little infor-
mation is known about this problem for nonlinear equations. Ma and Yu [6]
discussed the KFBVP for the degenerate quasilinear elliptic equation

Lu = Di[aij(x, u)Dju+ bi(x)u]− c(x, u) = f(x), x ∈ Ω. (1.1)

In this article, the summation from 1 to n over repeated indices is under-
stood. They obtained an existence theorem by using the acute angle principle
for weakly continuous operators. In this paper we consider the more general
degenerate quasilinear elliptic equation

Qu = −Diai(x, u,Du) + a(x, u) = f(x), x ∈ Ω, (1.2)

in a bounded domain Ω ⊂ Rn, n ≥ 2, with piecewise C1-smooth boundary ∂Ω.
We also obtain existence results, different from [6], using the pseudo-monotone
operator method. Moreover, in this paper the set of degenerate points may be
of non-zero measure, which is different from [6]. Also, the comparison principle,
the maximum principle and a uniqueness theorem of the solution to the KFBVP
for (1.2) are discussed.
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The article is organized as follows. Section 2 formulates the existence the-
orem, the main result of this paper, and the preliminaries. Section 3 contains
the proof of the main result. In section 4, we prove the comparison principle,
the maximum principle and the uniqueness theorem.

2 Main Result

Let Ω be a bounded domain in Rn (n ≥ 2) with piecewise C1-boundary ∂Ω
and the Sobolev imbedding theorems are valid for this domain. Assume the
following hypotheses:

(A1) ai(x, z, p), i = 1, 2, . . . , n, satisfy Carathéodory conditions, i.e., they are
continuous in (z, p) ∈ R×Rn for x a.e. in Ω̄ and measurable in x ∈ Ω̄ for
every (z, p) ∈ R×Rn. Moreover, ai(x, z, p) and a(x, z) possess integrable
continuous derivatives in pi and z

(A2) ai(x, 0, 0) ∈W 1/m,m′(∂Ω) for m ≥ 2,

|ai(x, z, p)| ≤ c(|p|m−1 + |z|l/m
′
+ ϕ1(x)), ϕ1(x) ∈W 1/m,m′(∂Ω),

|a(x, z)| ≤ c(|z|l−1 + ϕ2(x)), ϕ2(x) ∈ Ll′(Ω),

for (x, z, p) ∈ Ω̄×R×Rn, where c > 0, 2 ≤ l < m̄ = m(n− 1)/(n−m) if
m < n and 2 ≤ l <∞ if m = n

(A3) There exist constants α > 0, β > 0 and a continuous function λ(x) ≥ 0
such that for all (x, z, p) ∈ Ω̄×R×Rn and any ξ ∈ Rn it holds that

α−1 ∂ai
∂pj

(x, 0, 0)ξiξj ≤
∂ai
∂pj

(x, z, p)ξiξj ≤ α
∂ai
∂pj

(x, 0, 0)ξiξj , (2.1)

β−1 ∂ai
∂z

(x, 0, 0)ξi ≤
∂ai
∂z

(x, z, p)ξi ≤ β
∂ai
∂z

(x, 0, 0)ξi, (2.2)

∂ai
∂pj

(x, 0, 0)ξiξj ≥ λ(x)|ξ|2; (2.3)

(A4) There exists a positive function ϕ3(x) ∈ L1(Ω) such that

ai(x, z, p)pi + a(x, z)z ≥ h(|p|)|p|m − ϕ3(x) (2.4)

for (x, z, p) ∈ Ω̄ × R × Rn, where h(t) with h(0) = 0 is a bounded, non-
decreasing and continuous function on [0,∞). Without loss of generality,
we assume that suph(t) > 1.

Remark 2.1 From (2.1) and (2.3) we know that (1.2) may degenerate at the
set {x | λ(x) = 0} which may have positive measure, while in [6] the set is of
zero measure.
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Remark 2.2 Condition (A2) shows the growth orders of ai(x, z, p) and a(x, z)
in |z|, |p| and |z| respectively which often used in [2, 3] and other related papers.
Condition (A3) is an extension of the one in [6]. Condition (A4) is a version of
the one in [1].

We divide ∂Ω into the parts of the Keldys-Fichera type as follows

Σ0 =
{
x ∈ ∂Ω :

∂ai
∂pj

(x, 0, 0)νiνj = 0
}
,

Σ1 =
{
x ∈ Σ0 :

∂ai
∂z

(x, 0, 0)νi ≤ 0
}
,

Σ2 = Σ0\Σ1, Σ3 = ∂Ω\Σ0,

(2.5)

where ~ν = (ν1, ν2, · · · , νn) is the unit outward normal to ∂Ω. For m ≥ 2, we
denote by W 1,m(Ω) the Sobolev space with the norm

‖u‖ = (‖u‖mm + ‖Du‖mm)1/m,

where ‖ · ‖m is the Lm(Ω) norm. For 2 ≤ m < n, we define that W̃ 1,m(Ω), the
subspace of W 1,m(Ω), is the closure of the set {u ∈ C1(Ω̄) : u = 0 on Σ3} in the
norm ‖u‖. Attaching the Keldys-Fichera boundary condition that u(x) = 0 on
Σ2 ∪ Σ3 to (1.2) we then get the Keldys-Fichera boundary-value problem

−Diai(x, u,Du) + a(x, u) = f(x), x ∈ Ω
u = 0, x ∈ Σ2 ∪ Σ3.

(2.6)

Definition 2.3 A weak solution of (2.6) is defined to be an element u ∈
W̃ 1,m(Ω) such that∫

Ω

[ai(x, u,Du)Div + a(x, u)v]dx−
∫

Σ1

ai(x, u, 0)νivds

=
∫

Σ2

ai(x, 0, 0)νivds+
∫

Ω

f(x)vdx, (2.7)

for any v ∈ C1(Ω̄) vanishing on Σ3.

Remark 2.4 One can find out that this definition is a proper counterpart of
the weak solution of the KFBVP for linear equations in [7].

Remark 2.5 (2.1) and (2.2) mean that in the definitions of Σ0 and Σ1 we can

replace
∂ai
∂pj

(x, 0, 0) and
∂ai
∂z

(x, 0, 0) by
∂ai
∂pj

(x, z, p) and
∂ai
∂z

(x, z, p) respectively.

Remark 2.6 Multiplying (2.6) by v ∈ C1(Ω̄) vanishing on Σ3 and then inte-
grating by parts, we can obtain (2.7). Hence, the classical solution of (2.6) must
be a weak solution.

Theorem 2.7 (Existence theorem) Assume that (A1)-(A4) hold and that
f(x) ∈W−1,m′(Ω). Then (2.6) has a weak solution in W̃ 1,m(Ω).
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3 Proof of Theorem 2.7

We confine ourselves to the case of m < n, and refer the reader to Remark 3.3
for the case of m ≥ n. For δ ∈ (0, 1] and i = 1, 2, · · · , n, define

aiδ(x, z, p) = ai(x, z, p) + δpi|pi|m−2 .

Lemma 3.1 For any δ ∈ (0, 1] the integral equation∫
Ω

[aiδ(x, u,Du)Div + a(x, u)v]dx−
∫

Σ1

ai(x, u, 0)νivds

=
∫

Ω

f(x)vdx+
∫

Σ2

ai(x, 0, 0)νivds,∀v ∈ W̃ 1,m(Ω) (3.1)

has a solution in W̃ 1,m(Ω). This solution is denoted , uδ.

Proof Denote

Bδ(u, v)

=
∫

Ω

[aiδ(x, u,Du)Div + a(x, u)v]dx−
∫

Σ1

ai(x, u, 0)νivds ∀v ∈ W̃ 1,m(Ω).

Then, by (A2), the Hölder’s inequality and the Sobolev imbedding theorem,
W 1,m(Ω) ↪→ Ll(Ω), we obtain∣∣∣ ∫

Ω

[aiδ(x, u,Du)Div + a(x, u)v]dx
∣∣∣

≤ c(‖Du‖m/m
′

m + ‖u‖l/m
′

l + n‖Du‖m/m
′

m + ‖ϕ1‖m′)‖v‖

+(‖u‖l/l
′

l + ‖ϕ2‖l′)‖v‖ (3.2)
≤ c‖v‖,

where c = c(‖u‖, ‖ϕ1‖m′ , ‖ϕ2‖l′ , l, l′,m,m′, n). Here and in the sequel, the
constant c may vary in the context, and if necessary we will then indicate its
dependence on other known quantities.

Because Σ1 and Σ2 are of C1, the trace imbedding W 1,m(Ω) ↪→ Lm̄(Σi), i =
1, 2, is valid (see Σ1 of Chapter 3 in [4]). Notice that l < m̄, m < m̄, so the
following integrals are well defined, and then by (A2) and the Hölder’s inequality,
it follows that∣∣∣ ∫

Σ1

ai(x, u, 0)νivds| ≤c
∫

Σ1

(|u|l/m
′
+ |ϕ1|)|v|ds

≤c(‖u‖l/m
′

Ll(Σ1)
+ ‖ϕ1‖m′)‖v‖Lm(Σ1) ≤ c‖v‖,

where c = c(‖u‖, ‖ϕ1‖m′ , l,m,m′, |Ω|), and the last inequality is based on the
trace imbedding theorem mentioned above. From (3.2) and (3.3) we then know
that there exists a continuous mapping B(u) : W̃ 1,m(Ω) → W−1,m′(Ω) such
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that (B(u), v) = Bδ(u, v). Hence, for solving (3.1) it is sufficient to find an
element, say uδ, in W̃ 1,m(Ω) such that

B(uδ) = F, (3.4)

where F defined by

(F, v) =
∫

Ω

f(x)vdx+
∫

Σ2

ai(x, 0, 0)νivds. ∀v ∈ W̃ 1,m(Ω).

It is obvious that F ∈W−1,m′ . In the following we employ the pseudo-monotone
operator method to solve (3.4). By (A2), it follows that

|aiδ(x, z, p)| ≤ (c+ nδ)
(
|p|m−1 + |z|l/m

′
+ ϕ1(x)

)
. (3.5)

Let ξ, ζ ∈ Rn, one can deduce, by (A3), that

[aiδ(x, z, ξ)− aiδ(x, z, ζ)](ξi − ζi)
= [ai(x, z, ξ)− ai(x, z, ζ)](ξi − ζi) + δ(ξi|ξi|m−2 − ζi|ζi|m−2)(ξi − ζi)

=
∫ 1

0

∂ai
∂pj

(x, z, ζ + t(ξ − ζ))(ξi − ζi)(ξj − ζj)dt (3.6)

+δ(ξi|ξi|m−2 − ζi|ζi|m−2)(ξi − ζi)
≥ δ(|ξi|m−1 − |ζ|m−1)(|ξi| − |ζi|) > 0, for ξ 6= ζ.

Using (A4), we have

aiδ(x, z, p)pi + a(x, z)z ≥ δ
n∑
i=1

|pi|m − ϕ3(x) ≥ δ2(1−m)n|p|m − ϕ3(x). (3.7)

Inequalities (3.5)-(3.7) show that the operator B in B(u) = F is pseudo-
monotone(see Theorem 1 in [1]). Moreover, B is coercive. In fact, by (3.7)
and the Poincaré inequality, we obtain∫

Ω

[aiδ(x, u,Du)Diu+ a(x, u)u]dx ≥ δ2(1−m)n

∫
Ω

|Du|mdx−
∫

Ω

ϕ3(x)dx

≥ c‖u‖m −
∫

Ω

ϕ3(x)dx,

for u ∈ W̃ 1,m(Ω), where c = c(m,n, |Ω|, δ). Hence,

(B(u), u)‖u‖−1 ≥ c‖u‖m−1 − ‖u‖−1

∫
Ω

ϕ3(x)dx→ +∞, as ‖u‖ → +∞,

which says that the pseudo-monotone operator B is coercive. Therefore, the
equation B(u) = F has a solution, say uδ, in W̃ 1,m(Ω). This completes the
proof of Lemma 3.1. �
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Let Aα(x, η, ξ), |α| ≤ m, be the functions defined in Ω × RN1 × RN2 and
satisfy the following conditions: they are continuous in (η, ξ) for a.e. x ∈ Ω
and measurable in x for every (η, ξ) ∈ RN1 × RN2 where N1 is the number of
multi-index α with |α| ≤ m− 1 and N2 is that of α with |α| = m. Moreover,

|Aα(x, η, ξ)| ≤ C(|η|p−1 + |ξ|p−1 + k(x)), k(x) ∈ Lp
′
(Ω), 1 < p <∞.

We recall the following lemma.

Lemma 3.2 (Lemma 2.1 of Chapter 2 in [5]) Assume that uµ → u with
u ∈Wm−1,p(Ω), and v ∈Wm,p(Ω). Then,

Aα(x, δuµ, Dmv)→ Aα(x, δu,Dmv) strongly in Lp
′
(Ω),

where Aα ∈ Lp
′
(Ω) and δu = {u,Du, · · · , Dm−1u}.

Proof of Theorem 2.7 First we estimate a uniform bound for uδ, 0 < δ ≤ 1.
Let uδ take the place of u and v in (3.1), then (3.1) reads∫

Ω

[aiδ(x, uδ, Duδ)Diuδ + a(x, uδ)uδ]dx−
∫

Σ1

ai(x, uδ, 0)νiuδds

=
∫

Ω

f(x)uδdx+
∫

Σ2

ai(x, 0, 0)νiuδds. (3.8)

By condition (A4), it follows that

aiδ(x, uδ, Duδ)Diuδ + a(x, uδ)uδ ≥ δ2(1−m)n|Duδ|m + h(|Duδ|)|Duδ|m − ϕ3(x),

and then combining this with (3.8) yields∫
Ω

h(|Duδ|)|Duδ|mdx ≤
∫

Ω

|Duδ|mdx+
∫

Ω

ϕ3(x)dx+
∫

Σ1

ai(x, uδ, 0)νiuδds

+
∫

Σ2

ai(x, 0, 0)νiuδds+
∫

Ω

f(x)uδdx. (3.9)

For the right-hand side of (3.9), we have the following estimates∣∣∣ ∫
Σ1

ai(x, uδ, 0)νiuδds
∣∣∣

≤ c

∫
Σ1

(|uδ|l/m
′
+ |ϕ1|)|uδ|ds by condition (A2)

≤ c(‖uδ‖l/m
′

Ll(Σ1)
+ ‖ϕ1‖m′)‖uδ‖Lm(Σ1) by Hölder’s inequality

≤ c(‖Duδ‖l/m
′

m + ‖ϕ1‖m′)‖Duδ‖m
by the trace imbedding and Poincaré inequality

≤ c(
1
m′

+
2
m

)‖Duδ‖mm +
1
m′
‖ϕ1‖m

′

m′

by Young’s inequality and Lm(Ω) ↪→ Ll(Ω)
≤ ε‖Duδ‖mm +M1. by Young’s inequality
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where M1 = M1(m,m′, n, |Ω|, ‖ϕ1‖m′ , ε) and ε > 0 is any real number. Simi-
larly,∣∣∣ ∫

Ω

|Duδ|mdx+
∫

Σ2

ai(x, 0, 0)νiuδds+
∫

Ω

f(x)uδdx
∣∣∣ ≤ ε‖uδ‖mm +M2,

where M2 = M2(‖f‖m′ , ‖ϕ1‖m′ ,m′, |Ω|, n, ε). Then, from (3.9) we get∫
Ω

h(|Duδ|)|Duδ|mdx ≤ 2ε‖Duδ‖mm +M, (3.10)

where M = M1 +M2 + ‖ϕ3‖L1(Ω). Let
Ω(δ∗) = {x ∈ Ω | h(|Duδ|) ≤ δ∗}, α(δ∗) = sup

h(η)≤δ∗
η, 0 < δ∗ ≤ 1.

Obviously, |Duδ| ≤ α(δ∗) when x ∈ Ω(δ∗), then∫
Ω(δ∗)

|Duδ|mdx ≤ αm(δ∗)|Ω|.

With the aid of (3.10), we have

δ∗
∫

Ω\Ω(δ∗)

|Duδ|mdx ≤ 2ε‖Duδ‖mm +M.

Therefore,

δ∗
∫

Ω

|Duδ|mdx ≤ 2ε‖Duδ‖mm + δ∗αm(δ∗)|Ω|+M.

Choosing δ∗ = 1, ε = 1/4 in above inequality yields ‖Duδ‖mm ≤ 2αm(1)|Ω|+2M .
Then, by Poincaré inequality, we finally obtain the uniform bound of {uδ} that

‖uδ‖ ≤ c, (3.11)

where c is independent of δ. Hence, there is a subsequence of {uδ}, denoted still
by {uδ}, converging weakly to an element u ∈ W̃ 1,m(Ω). Replacing u and v in
(3.1) by uδ and uδ − v respectively, then (3.1) reads∫

Ω

[aiδ(x, uδ, Duδ)Di(uδ−v)+a(x, uδ)(uδ−v)]dx−
∫

Σ1

ai(x, uδ, 0)νi(uδ−v)ds

=
∫

Ω

f(x)(uδ − v)dx+
∫

Σ2

ai(x, 0, 0)νi(uδ − v)ds.

Substituting (3.6) on the above equality yields∫
Ω

f(x)(uδ − v)dx+
∫

Σ1

ai(x, uδ, 0)νi(uδ − v)ds+
∫

Σ2

ai(x, 0, 0)νi(uδ − v)ds

−
∫

Ω

aiδ(x, uδ, Dv)Di(uδ − v)dx−
∫

Ω

a(x, uδ)(uδ − v)dx

≥ δ
∫

Ω

(|Diuδ|m−1 − |Div|m−1)(|Diuδ| − |Div|)dx. (3.12)

Next, we consider the convergence of the right hand side of (3.12) as δ → 0, in
three steps.
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step 1: Since uδ → u weakly in W̃ 1,m(Ω) and because of the trace imbedding
W 1,m(Ω) ↪→ Lm(Σ1), we can assume, choose a subsequence if necessary, that
uδ → u weakly in Lm(Σ1). Therefore, noticing (3.11), we have∫

Ω

f(x)(uδ − v)dx→
∫

Ω

f(x)(u− v)dx,∫
Σ2

aiδ(x, 0, 0)νi(uδ − v)ds→
∫

Σ2

ai(x, 0, 0)νi(u− v)ds.

step 2: ∫
Ω

aiδ(x, uδ, Dv)Di(uδ − v)dx

=
∫

Ω

[aiδ(x, uδ, Dv)− aiδ(x, u,Dv)]Di(uδ − v)dx

+
∫

Ω

aiδ(x, u,Dv)Di(uδ − v)dx = I1 + I2. (3.13)

Because W 1,m(Ω) ↪→ Lm(Ω) is compact, then uδ → u strongly in Lm(Ω). By
lemma 3.2 and (3.11) we know that aiδ(x, uδ, Dv) tends to ai(x, u,Dv) strongly
in Lm

′
(Ω). This and (3.11) show that

|I1| ≤ ‖aiδ(x, uδ, Dv)− aiδ(x, u,Dv)‖m′‖Di(uδ − v)‖m → 0,

then I1 → 0. It is obvious that I2 →
∫

Ω
ai(x, u,Dv)Di(u − v)dx since uδ → u

weakly in W̃ 1,m(Ω) and (3.11). Therefore, (3.13) yields∫
Ω

aiδ(x, uδ, Dv)Di(uδ − v)dx→
∫

Ω

ai(x, u,Dv)Di(u− v)dx.

For the integral∫
Ω

a(x, uδ)(uδ − v)dx =
∫

Ω

a(x, uδ)(uδ − u)dx+
∫

Ω

a(x, uδ)(u− v)dx = I3 + I4,

by the compact imbedding W 1,m(Ω) ↪→ Ll(Ω) it holds that uδ → u strongly in
Ll(Ω), then, noticing (3.11), we get

|I3| ≤ ‖a(x, uδ)‖l′‖uδ − u‖l ≤ (‖uδ‖l/l
′

l + ‖ϕ2‖l′)‖uδ − u‖l
≤ (‖uδ‖l/l

′

l + ‖ϕ2‖l′)‖uδ − u‖l ≤ c‖uδ − u‖l → 0. (3.14)

Because uδ → u strongly in Ll(Ω), then uδ → u almost everywhere in Ω.
On the other hand, we have already know that ‖a(x, uδ)‖l′ ≤ c, and hence
a(x, uδ)→ A(x) weakly in Ll

′
(Ω). Then, Based on Lemma 1.3 of Chapter 1 in

[5], we have A(x) = a(x, u), and hence∫
Ω

a(x, uδ)(u− v)dx→
∫

Ω

a(x, u)(u− v)dx.
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Combining this with (3.14) yields∫
Ω

a(x, uδ)(uδ − v)dx→
∫

Ω

a(x, u)(u− v)dx.

step 3: ∫
Σ1

ai(x, uδ, 0)νi(uδ − v)ds

=
∫

Σ1

ai(x, uδ, 0)νi(u− v)ds+
∫

Σ1

ai(x, uδ, 0)νi(uδ − u)ds. (3.15)

For the first integral in the above equation, based on the compact trace imbed-
ding W 1,m(Ω) ↪→ Lm(Σ1) and uδ → u weakly in W 1,m(Ω) we know that uδ → u
strongly in Lm(Σ1). Then, by Lemma 3.2 and noticing that ai(x, uδ, 0) ∈
Lm

′
(Σ1), it yields∫

Σ1

ai(x, uδ, 0)νi(u− v)ds→
∫

Σ1

ai(x, u, 0)νi(u− v)ds. (3.16)

Now, consider the second integral of (3.15). Because the trace imbedding
W 1,m(Ω) ↪→ Lm(Σ1) is compact, hence ‖uδ − u‖Lm(Σ1) → 0. Noticing that
ai(x, uδ, 0) ∈ Lm

′
(Σ1) and (3.11), using Hölder’s inequality and the compact

trace imbedding W 1,m(Ω) ↪→ Ll(Σ1), it holds that∣∣∣ ∫
Σ1

ai(x, uδ, 0)νi(uδ − u)ds
∣∣∣

≤ ‖ai(x, uδ, 0)‖Lm′ (Σ1)‖uδ − u‖Lm(Σ1)

≤ c(‖uδ‖l/m
′

Ll(Σ1)
+ ‖ϕ‖m′)‖uδ − u‖Lm(Σ1) (3.17)

≤ c(‖uδ‖l/m
′
+ ‖ϕ1‖m′)‖uδ − u‖Lm(Σ1) → 0.

Returning to (3.15), by (3.16) and (3.17), we have∫
Σ1

ai(x, uδ, 0)νi(uδ − v)ds→
∫

Σ1

ai(x, u, 0)νi(u− v)ds.

Now, let δ → 0 in (3.12), by 1), 2), 3) and (3.11), we obtain that

∫
Ω

[ai(x, u,Dv)Di(u− v) + a(x, u)(u− v)]dx−
∫

Σ1

ai(x, u, 0)νi(u− v)ds

≤
∫

Ω

f(x)(u− v)dx+
∫

Σ2

ai(x, 0, 0)νi(u− v)ds, ∀v ∈ W̃ 1,m(Ω) . (3.18)
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For any real number α > 0 and any ζ(x) ∈ W̃ 1,m(Ω), choosing v = u − αζ(x)
in (3.18) and then let α→ 0, it yields∫

Ω

[ai(x, u,Du)Diζ + a(x, u)ζ]dx−
∫

Σ1

ai(x, u, 0)νiζ(x)ds

≤
∫

Ω

f(x)ζdx+
∫

Σ2

ai(x, 0, 0)νiζds. (3.19)

The inverse inequality of (3.19) holds if α < 0. This completes the proof of
Theorem 2.7. �

Remark 3.3 If m > n or n = 2, Assumption (A2) is replaced by the following
assumption (A2) ′ which allows us to use the Sobolev imbedding W 1,m(Ω) to
bounded and continuous function space CB(ω) (see Chapter 7.7 in [2]). So the
proof is easier than that of case m < n.

(A2)’ |ai(x, z, p)| ≤ h1(z)(|p|m−1 + k1(x)), k1(x) ∈ Lm′(ω), for i = 1, 2, · · · , n.
|a(x, z)| ≤ h2(x)k2(x), k2(x) ∈ L1(ω), where hi(z)(i = 1, 2) is a continuous
function.

4 Comparison Principle and Uniqueness Theo-
rem

We first consider the linear operator

Lu = −Di(aij(x)Dju+ bi(x)u) + cu, x ∈ ω, (aij(x)) ≥ 0. (4.1)

Denote

Σ0 =
{
x ∈ ∂Ω : aij(x)νiνj = 0

}
,

Σ1 =
{
x ∈ Σ0 : bi(x)νi ≤ 0

}
,

Σ2 = Σ0 \ Σ1, Σ3 = ∂Ω \ Σ0,

C∗ =
{
ϕ ∈ C1(Ω̄) : ϕ ≥ 0, ϕ|Σ3 = 0

}
,

For u ∈ W̃ 1,m(Ω) and v ∈ C∗, let

(Lu, v) =
∫

Ω

[(aijDju+ biu)Div + cuv]dx−
∫

Σ1

biνiuvds, (4.2)

Definition 4.1 By a weak subsolution (supersolution) u ∈ W 1,m(Ω)(m ≥ 2)
of Lu = 0 in Ω, we mean that (Lu, v) ≥ 0 (≤ 0) holds for all ϕ ∈ C∗.

Lemma 4.2 (Maximum Principle) Suppose that the coefficients of L satisfy

aij , c ∈ C(Ω̄), bi ∈ C1(Ω̄), biνi
∣∣
Σ1
≤ 0, biνi

∣∣
Σ2
> 0,

Dib
i ≤ min{c, 2c}, Σ1 ∈ C1, Σ2 ∪ Σ3 6= ∅.

If the minimum of the weak subsolution of Lu = 0 is nonpositive (or the max-
imum of the weak supersolution is nonnegative), then it must be achieved on
Σ2 ∪ Σ3.
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Proof Suppose that u is a weak subsolution of Lu = 0, by definition 4.1, we
have ∫

Ω

[(aijDju+ biu)Div + cuv]dx−
∫

Σ1

biνiuvds ≥ 0, ∀v ∈ C∗. (4.3)

Let l = inf
Σ2∪Σ3

u ≤ 0,

w = (l − u)+ =

{
l − u, when u < l,

0 otherwise.

Then w belongs to the closure of C∗ in the norm of Sobolev space W 1,m(ω), so
we can choose w as a test function in (4.3) and obtain∫

Ω

[(aijDju+ biu)Diw + cuw] dx−
∫

Σ1

biνiuw ds ≥ 0, (4.4)

Noting that Σ1 ∈ C1 and W 1,m(Ω) can be imbedded into Lmn/(n−m)(Ω) ⊂
L2(Ω), the left hand side of (4.4) is well defined. Integrating the term biuDjw
in (4.4) by parts yields∫

Ω+

[−aijDiwDjw +
1
2

(Dib
i − 2c)w2 − (Dib

i − c)lw]dx

≥ −1
2

∫
Σ1

biνiw
2ds+

∫
Σ2

(
1
2
w2 − lw)biνi ds (4.5)

≥ −1
2

∫
Σ1

biνiw
2ds ≥ 0,

where Ω+ = {x ∈ Ω : u < l}. On the other hand, from the assumption of
Lemma 4.2, the integrand on Ω+ is negative which implies |Ω+| = 0, and hence

inf
Ω
u ≥ inf

Σ2∪Σ3
u.

For the case of weak supersolution, let u is a weak supersolution of Lu = 0,
replacing u by −u in the preceding arguments, we obtain

sup
Ω
u ≤ sup

Σ2∪Σ3

u.

Thus the proof of Lemma 4.2 is completed. �

Remark 4.3 Replacing Σ2 ∪ Σ3 by Σ3 in the proof of Lemma 4.2, we can
deduce that inf

Ω
u ≥ inf

Σ3
u and sup

Ω
u ≤ sup

Σ3

u for the subsolution and the super-

solution of Lu = 0 respectively. Hence for the weak solution of Lu = 0 with
u|Σ3 = 0, it must be that u|Σ2 = 0.
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Let u, v ∈ W̃ 1,m(Ω), we say that Qu ≤ Qv in the sense of distributions, if∫
Ω

[ai(x, u,Du)Diϕ+ a(x, u)ϕ]dx−
∫

Σ1

ai(x, u, 0)νiϕds

≤
∫

Ω

[ai(x, v,Dv)Diϕ+ a(x, v)ϕ]dx−
∫

Σ1

ai(x, v, 0)νiϕds

holds for any ϕ ∈ C∗. Denote ut(x) = tu + (1 − t)v(x), 0 ≤ t ≤ 1 and ait =
ai(x, ut, Dut) for i = 1, 2, · · · , n. at = ai(x, ut). Then, we have the following
comparison principle.

Theorem 4.4 (Comparison Principle) Suppose that ai(x, z, p) ∈ C1(Ω̄ ×
R×Rn)×C2(Ω×R×Rn), a(x, z) ∈ C1(Ω̄×R), νiDzait|Σ1 ≤ 0, νiDzait|Σ2 > 0,
Dxizait ≤ min{Dzat, 2Dzat} and (A3) hold. If u, v ∈ C1(Ω̄)∩W̃ 1,m(Ω) satisfy
Qu ≤ Qv in Ω and u ≤ v on Σ2 ∪ Σ3, then u ≤ v in Ω.

Proof By the condition Qu ≤ Qv, for any ϕ ∈ C∗, we have

0 ≥
∫ 1

0

dt

∫
Ω

{[DpjaitDj(u− v) +Dzait(u− v)]Diϕ+Dzat(u− v)]ϕ}dx

−
∫ 1

0

dt

∫
Σ1

Dzai(x, ut, 0)(u− v)νiϕds

=
∫

Ω

{[aijDj(u− v) + bi(u− v)]Diϕ+ c(u− v)ϕ}dx (4.6)

−
∫

Σ1

biνi(u− v)ϕds,

where aij =
∫ 1

0

Dpjaitdt, b
i =

∫ 1

0

Dzaitdt, c =
∫ 1

0

Dzatdt. Let w = u − v.

From (4.6), we have∫
Ω

[(aijDjw + biw)Diϕ+ cwϕ]dx−
∫

Σ1

biνiwϕds ≥ 0,

i.e., w is a supersolution of the liner equation

Lu = −Di(aij(x)Dju+ bi(x)u) + cu = 0.

From the assumptions of this theorem, the assumptions of Lemma 4.2 are all
satisfied, thus Lemma 4.2 implies that supω w ≤ supΣ2∪Σ3

w ≤ 0, hence u ≤ v
in ω which proves Theorem 4.4. �

Theorem 4.5 (Uniqueness Theorem) Suppose that the coefficients of Q sat-
isfy the conditions in Theorem 4.4, then the C1(Ω̄)∩ W̃ 1,m(Ω)-weak solution of
problem (2.6) is unique.
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Proof Suppose that u and v are two weak solutions of problem (2.6). By
Remark 4.3, it holds that u = v = 0 on Σ2 ∪ Σ3. Using Theorem 4.4, we find
that u ≤ v as well as v ≤ u, hence u = v in Ω. This completes the proof. �
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