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Existence of global solutions to reaction-diffusion

systems with nonhomogeneous boundary

conditions via a Lyapunov functional ∗

Said Kouachi

Abstract

Most publications on reaction-diffusion systems ofm components (m ≥
2) impose m inequalities to the reaction terms, to prove existence of global
solutions (see Martin and Pierre [10 ] and Hollis [4]). The purpose of this
paper is to prove existence of a global solution using only one inequality
in the case of 3 component systems. Our technique is based on the con-
struction of polynomial functionals (according to solutions of the reaction-
diffusion equations) which give, using the well known regularizing effect,
the global existence. This result generalizes those obtained recently by
Kouachi [6] and independently by Malham and Xin [9].

1 Introduction

We consider the reaction-diffusion system

∂tu− a∆u = f(u, v, w) in R+ × Ω, (1.1)

∂tv − b∆v = g(u, v, w) in R+ × Ω, (1.2)

∂tw − c∆w = h(u, v, w) in R+ × Ω, (1.3)

with the boundary conditions

λ1u+ (1− λ1)∂ηu = β1,

λ2v + (1− λ2)∂ηv = β2,

λ3w + (1− λ3)∂ηw = β3,

on R+ × ∂Ω (1.4)

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x) in Ω. (1.5)

The boundary conditions are specified as follows:
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2 Existence of global solutions EJDE–2002/88

(i) For nonhomogeneous Robin boundary conditions, we use 0 < λ1, λ2,
λ3 < 1, β1 ≥ 0, β2 and β3 ≥ 0.

(ii) For homogeneous Neumann boundary conditions, we use λi = βi = 0,
i = 1, 2, 3.

(iii) For homogeneous Dirichlet boundary conditions, we use 1− λi = βi = 0,
i = 1, 2, 3.

(iv) For a mixture of homogeneous Dirichlet with nonhomogeneous Robin
boundary conditions, we use 1 − λi = βi = 0, i = 1, or 2 or 3 and
0 < λj < 1, βj ≥ 0, j = 1, 2, 3, with i 6= j.

Here Ω is an open bounded domain in RN with smooth boundary ∂Ω, ∂η denotes
the outward normal derivative on ∂Ω, a, b and c are positive constants, 0 ≤
λ1, λ2, λ3 ≤ 1 and β1, β2 and β3 ≥ 0 are in C1(∂Ω; R.

The initial data are assumed to be nonnegative. The functions f , g and h
are continuously differentiable on R3

+ satisfying f(0, v, w) ≥ 0, g(u, 0, w) ≥ 0
and h(u, v, 0) ≥ 0 for all u, v, w ≥ 0 which imply, via the maximum principle
(see Smoller [14]), the positivity of the solution on its interval of existence. We
suppose that the functions f , g and h are of polynomial growth and satisfy

Df(u, v, w) + Eg(u, v, w) + h(u, v, w) ≤ C1(u+ v + w + 1), (1.6)

for all u, v, w ≥ 0 and all constants D ≥ D and E ≥ E, where D and E are
positive constants.

Morgan [11] generalized the results of Hollis, Martin and Pierre [4] to estab-
lish global existence for solutions of m-components systems (m ≥ 2) with the
boundary conditions (1.4), where

0 < λ1, λ2, λ3 < 1 or λ1 = λ2 = λ3 = 1, β1, β2, β3 ≥ 0, (1.7)

or
λ1 = λ2 = λ3 = β1 = β2 = β3 = 0, (1.8)

and where again the reaction terms are polynomially bounded and satisfy, in
the case of our system, the conditions

a11f(u, v, w) ≤ c11u+ c12v + c13w + d1,

(a21f + a22g)(u, v, w) ≤ c21u+ c22v + c23w + d2,

(a31f + a32g + a33h)(u, v, w) ≤ c31u+ c32v + c33w + d3,

(1.9)

for all u, v, w ≥ 0 where aij , cij and di, 1 ≤ i, j ≤ 3 are positive reals. Martin
and Pierre [4 ] and Hollis [3] extended the results, under the same conditions,
to the boundary conditions (1.4) where in (1.7), they took

0 ≤ λ1, λ2, λ3 ≤ 1, β1, β2, β3 ≥ 0, (1.10)
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but they imposed conditions of the form (1.9), at the same time, to the reaction
terms whose corresponding components of the solution satisfy Neumann bound-
ary conditions and to the others which satisfy Dirichlet boundary conditions.
In other terms they imposed to the reaction terms to satisfy m inequalities. For
example if 1 − λ3 = β3 = 0, they took in (1.9) a31 = a32 = 0. In this paper
we show the global existence of a unique solution to problem (1.1)-(1.5) with-
out using the first and the second conditions in (1.9), but only under the last
one which is (1.6) and without distinguishing between the components of the
solution which satisfy the one or the other type of boundary conditions; for this
purpose, we use Lyapunov technique (see Kirane and Kouachi[5], Kouachi[6]
and Kouachi and Youkana[7]).

2 Preliminary observations

The usual norms in spaces Lp(Ω),L∞(Ω) and C(Ω) are denoted respectively by

‖u‖pp =
1
|Ω|

∫
Ω

|u(x)|pdx, (2.1)

‖u‖∞ = max
x∈Ω
|u(x)|. (2.2)

It is well known that to prove global existence of solutions to (1.1)-(1.5) (see
Henry [2], pp. 35-62), it suffices to derive a uniform estimate of ‖f(u, v, w)‖p,
‖g(u, v, w)‖pand ‖h(u, v, w)‖pon [0, Tmax[ in the space Lp(Ω) for some p > N/2.
Our aim is to construct polynomial Lyapunov functionals allowing us to obtain
Lp−bounds on u, v and w that lead to global existence.

Since the functions f, g and h are continuously differentiable on R3
+, then for

any initial data in C(Ω), it is easy to check directly their Lipschitz continuity
on bounded subsets of the domain of a fractional power of the operator−a∆ 0 0

0 −b∆ 0
0 0 −c∆

 (2.3)

Under these assumptions, the following local existence result is well known (see
Friedman [1] and Pazy [12]).

Proposition 2.1 The system (1.1)-(1.5) admits a unique, classical solution
(u, v, w) on (0, Tmax[×Ω. If Tmax <∞ then

lim
t↗Tmax

{‖u(t, .)‖∞ + ‖v(t, .)‖∞ + ‖w(t, .)‖∞} =∞, (2.4)

where Tmax(‖u0‖∞, ‖v0‖∞, ‖w0‖∞) denotes the eventual blow-up time.
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3 Results

Put A =
√

( b+c2 )2

bc , B =
√

( a+c
2 )2

ac and C =
√

( a+b
2 )2

ab . Let θ and σ be two positive
constants such that

(σ2 −A2)(θ2 −B2)− (C −AB)2 > 0 and θ > C, (3.1)

and let

θq = θq
2

and σp = σp
2
, for q = 1, . . . , p and p = 1, . . . , n, (3.2)

where n is a positive integer. The main result of the paper reads as follows.

Theorem 3.1 Suppose that the functions f , g and h are of polynomial growth
and satisfy condition (1.6) for some positive constants D and E sufficiently
large. Let (u(t, .), v(t, .), w(t, .)) be a solution of (1.1)-(1.5) and let

L(t) =
∫

Ω

Hn(u(t, x), v(t, x), w(t, x))dx, (3.3)

where

Hn(u, v, w) =
n∑
p=0

p∑
q=0

CpnC
q
pθqσpu

qvp−qwn−p. (3.4)

Then the functional L is uniformly bounded on the interval [0, Tmax].

Corollary 3.2 Under the hypotheses of theorem 3.1 all solutions of (1.1)-(1.5)
with positive bounded initial data are global.

Proposition 3.3 If β1 = β2 = β3 = C1 = 0, then under the hypotheses of
theorem 3.1 all solutions of (1.1)-(1.5) with positive bounded initial data are
global and uniformly bounded on Ω.

4 Proofs

For the proof of theorem 3.1, we need some preparatory Lemmata.

Lemma 4.1 Let Hn be the homogeneous polynomial defined by (3.4). Then

∂uHn = n
n−1∑
p=0

p∑
q=0

Cpn−1C
q
pθq+1σp+1u

qvp−qw(n−1)−p, (4.1)

∂vHn = n
n−1∑
p=0

p∑
q=0

Cpn−1C
q
pθqσp+1u

qvp−qw(n−1)−p, (4.2)

∂wHn = n
n−1∑
p=0

p∑
q=0

Cpn−1C
q
pθqσpu

qvp−qw(n−1)−p. (4.3)
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Proof. Differentiating Hn with respect to u yields

∂uHn =
∑

p = 0n
p∑
q=0

qCpnC
q
pθqσpu

q−1vp−qwn−p.

Using the fact that

qCqp = pCq−1
p−1 and pCpn = nCp−1

n−1, (4.4)

for q = 1, . . . , p and p = 1, . . . , n, we get

∂uHn = n
n∑
p=1

p∑
q=1

Cp−1
n−1C

q−1
p−1θqσpu

q−1vp−qwn−p,

while changing in the sums the indexes q − 1 by q and p − 1 by p, we deduce
(4.1). For the formula (4.2), differentiating Hn with respect to v gives

∂vHn =
n∑
p=1

p−1∑
q=0

(p− q)CpnCqpθqσpuqvp−q−1wn−p.

Taking account of

Cqp = Cp−qp , q = 1, . . . , p and p = 1, . . . , n, (4.5)

using (4.4) and changing the index p− 1 by p, we get (4.2).
Finally, we have

∂wHn =
n∑
p=0

p∑
q=0

(n− p)CpnCqpθqσpuqvp−qwn−p−1 .

Since (n− p)Cpn = (n− p)Cn−pn = nCn−p−1
n−1 = nCpn−1, then we get (4.3).

Lemma 4.2 The second partial derivatives of Hn are given by

∂u2Hn = n(n− 1)
n−2∑
p=0

p∑
q=0

Cpn−2C
q
pθq+2σp+2u

qvp−qw(n−2)−p, (4.6)

∂uvHn = n(n− 1)
n−2∑
p=0

p∑
q=0

Cpn−2C
q
pθq+1σp+2u

qvp−qw(n−2)−p, (4.7)

∂uwHn = n(n− 1)
n−2∑
p=0

p∑
q=0

Cpn−2C
q
pθq+1σp+1u

qvp−qw(n−2)−p, (4.8)

∂v2Hn = n(n− 1)
n−2∑
p=0

p∑
q=0

Cpn−2C
q
pθqσp+2u

qvp−qw(n−2)−p, (4.9)
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∂vwHn = n(n− 1)
n−2∑
p=0

p∑
q=0

Cpn−2C
q
pθqσp+1u

qvp−qw(n−2)−p, (4.10)

∂w2Hn = n(n− 1)
n−2∑
p=0

p∑
q=0

Cpn−2C
q
pθqσpu

qvp−qw(n−2)−p. (4.11)

Proof. Differentiating ∂uHn, given by the formula (4.1), with respect to u
yields

∂u2Hn = n
n−1∑
p=0

p∑
q=0

qCpn−1C
q
pθq+1σp+1u

q−1vp−qw(n−1)−p .

Using (4.4) we get (4.6)

∂uvHn = ∂v(∂uHn) = n
n−1∑
p=0

p∑
q=o

∑
(p− q)Cpn−1C

q
pθq+1σp+1u

qvp−q−1w(n−1)−p .

Applying (4.5) and then (4.4) we get (4.7).

∂uwHn = ∂w(∂uHn) = n
n−1∑
p=0

p∑
q=0

((n−1)−p)Cpn−1C
q
pθq+1σp+1u

qvp−q−1wn−2−p .

Applying successively (4.5), (4.4) and (4.5) a second time we deduce (4.8).

∂v2Hn = n
n−1∑
p=0

p∑
q=0

(p− q)Cpn−1C
q
pθqσ(p+1)u

qvp−q−1w(n−1)−p .

An application of (4.5) and then (4.4) yields (4.9).

∂vwHn = ∂v(∂wHn) = n
n−1∑
p=0

p∑
q=0

(p− q)Cpn−1C
q
pθqσpu

qvp−q−1w(n−1)−p .

One applies (4.5) and then (4.4), (4.10) yields. Finally we get (4.11), by dif-
ferentiating ∂wHn with respect to w and applying successively (4.5), (4.4) and
(4.5) a second time. �

Proof of Theorem 3.1. Differentiating L with respect to t yields

L′(t) =
∫

Ω

[
∂uHn

∂u

∂t
+ ∂vHn

∂v

∂t
+ ∂wHn

∂w

∂t

]
dx

=
∫

Ω

(a∂uHn∆u+ b∂vHn∆v + c∂wHn∆w)dx

+
∫

Ω

(f∂uHn + g∂vHn + h∂wHn)dx

=I + J .
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Using Green’s formula and applying Lemma 4.1 we get I = I1 + I2, where

I1 =
∫
∂Ω

(a∂uHn∂ηu+ b∂vHn∂ηv + c∂wHn∂ηw) dx,

I2 = −n(n− 1)
∫

Ω

n−2∑
p=0

p∑
q=0

Cpn−2C
q
p [(Apqz).z] dx, (4.12)

where

Apq =

 aθq+2σp+2 (a+b
2 )θq+1σp+2 (a+c

2 )θq+1σp+1

(a+b
2 )θq+1σp+2 bθqσp+2 ( b+c2 )θqσp+1

(a+c
2 )θq+1σp+1 ( b+c2 )θqσp+1 cθqσp

 (4.13)

for q = 1, . . . , p, p = 1, . . . , n− 2, and z = (∇u,∇v,∇w)t.
We prove that there exists a positive constant C2 independent of t ∈ [0, Tmax[

such that
I1 ≤ C2 for all t ∈ [0, Tmax[ (4.14)

and that
I2 ≤ 0 (4.15)

for several boundary conditions.
(i) If 0 < λ1, λ2, λ3 < 1, using the boundary conditions (1.4) we get

I1 =
∫
∂Ω

(a∂uHn(γ1 − α1u) + b∂vHn(γ2 − α2v) + c∂wHn(γ3 − α3w))dx,

where αi = λi/(1 − λi) and γi = βi/(1 − λi), i = 1, 2, 3. Since H(u, v, w) =
a∂uHn(γ1 − α1u) + b∂vHn(γ2 − α2v) + c∂wHn(γ3 − α3w) = Pn−1(u, v, w) −
Qn(u, v, w), where Pn−1 and Qn are polynomials with positive coefficients and
respective degrees n and n− 1 and since the solution is positive, then

lim sup
(|u|+|v|+|w|)→+∞

H(u, v, w) = −∞, (4.16)

which prove that H is uniformly bounded on R3
+ and consequently (4.12).

(ii) If λ1 = λ2 = λ3 = 0, then I1 = 0 on [0, Tmax[.
(iii) The case of homogeneous Dirichlet conditions is trivial, since in this case
the positivity of the solution on [0, Tmax[×Ω implies ∂ηu ≤ 0, ∂ηv ≤ 0 and
∂ηw ≤ 0 on [0, Tmax[×∂Ω. Consequently one gets again (4.12) with C2 = 0.
(iv) If one or two of the components of the solution satisfy homogeneous
Dirichlet boundary conditions and the other (others) satisfies the nonhomo-
geneous Robin conditions; for example u = 0, λ2v + (1 − λ2)∂ηv = β2 and
λ3w + (1 − λ3)∂ηw = β3 on [0, Tmax[×∂Ω with 0 < λ2, λ3 < 1 and β2, β3 ≥ 0.
Then, following the same reasoning as above we get

lim sup
(|v|+|w|)→+∞

H(0, v, w) = −∞, (4.17)
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and then (4.12).
Now we prove (4.15). The quadratic forms (with respect to ∇u, ∇v and ∇w)

associated with the matrices Apq, q = 1, . . . , p and p = 1, . . . , n− 2 are positive
since their main determinants ∆1, ∆2 and ∆3 are too according to Sylvister
criterium. To see this, we have
1. ∆1 = aθq+2σp+2 > 0, for q = 1, . . . , p and p = 1, . . . , n− 2,
2.

∆2 =

∣∣∣∣∣ aθq+2σp+2 (a+b
2 )θq+1σp+2

(a+b
2 )θq+1σp+2 bθqσp+2

∣∣∣∣∣
=ab((θq+2σp+2)( θqσ(p+2))− (Cθq+1σp+2)2)

=abσ2
p+2(

θqθq+2

θ2
q+1

− C2)θ2
q+1 = abσ2

p+2(θ2 − C2)θ2
q+1,

for q = 1, . . . , p and p = 1, . . . , n− 2. Using (3.1), we get ∆2 > 0.
3.

cθqσp∆3 =cθqσp

∣∣∣∣∣∣∣
aθq+2σp+2 (a+b

2 )θq+1σp+2 (a+c
2 )θq+1σp+1

(a+b
2 )θq+1σp+2 bθqσp+2 ( b+c2 )θqσp+1

(a+c
2 )θq+1σp+1 ( b+c2 )θqσp+1 cθqσp

∣∣∣∣∣∣∣
=− (c(

a+ b

2
)− (

a+ c

2
)(
b+ c

2
))2(θqσ(p+2)θq+1σp)2

+ abc2(σpσp+2 −A2σ2
p+1)(θqθq+2 −B2θ2

q+1)θ2
qσ

2
p

=
[
(
σpσp+2

σ2
p+1

−A2)(
θqθq+2

θ2
q+1

−B2)− (C −AB)2
]
σ2

(p+1)θ
2
q+1

=
[
(σ2 −A2)(θ2 −B2)− (C −AB)2

]
σ2

(p+1)θ
2
q+1 > 0 ,

for q = 1, . . . , p and p = 1, . . . , n− 2. Using again (3.1), we get ∆3 > 0. Conse-
quently we have (4.15). Substituting the expressions of the partial derivatives
given by lemma 4.1 in the second integral, yields

J =
∫

Ω

[
n
n−1∑
p=0

p∑
q=0

Cpn−1C
q
pu

qvp−qw(n−1)−p
](
θq+1σp+1f + θqσp+1g + θqσph

)
dx

=
∫

Ω

[
n
n−1∑
p=0

p∑
q=0

Cpn−1C
q
pu

qvp−qw(n−1)−p
](θq+1

θq

σp+1

σp
f +

σp+1

σp
g + h

)
θqσpdx.

Using condition (1.6), we deduce

J ≤ C3

∫
Ω

n−1∑
p=0

p∑
q=0

Cpn−1C
q
pu

qvp−qw(n−1)−p [(u+ v + 1)] dx.

Applying Holder’s inequality to the integrals∫
Ω

uqvp−qw(n−1)−p [(u+ v + 1)] dx, q = 1, . . . , p and p = 1, . . . , n− 1,
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and following the same reasoning as in [7], one gets that there exist positive con-
stants C4 and C5 such that the functional L satisfies the differential inequality

L′(t) ≤ C4L(t) + C5L
(n−1)/n(t),

which can be written
nZ ′ ≤ C4Z + C5,

if Z = L1/n. A simple integration of the later inequality gives the uniform
bound of the functional L on the interval [0, T ∗]; this ends the proof of the
theorem.

Proof of corollary 3.2. The proof is an immediate consequence of theorem
3.1, the preliminary observations and the inequality∫

Ω

(u(t, x) + v(t, x) + w(t, x))ndx ≤ C6L(t) on [0, T ∗[, (4.18)

for some n > N/2.

Proof of proposition 3.3. In this case the functional L is of Lyapunov and
then gives

L(t) ≤ L(0) on [0, T ∗[.

Using (4.18), we get the uniform boundedness of the solution on [0, T ∗[×Ω.

5 Applications

In this section we apply corollary 3.2 and proposition 3.3 to some particular
biochemical and chemical reaction models. Throughout this section we assume
that all reactions take place in a bounded domain Ω with smooth boundary ∂Ω.

Let us begin with the general three-component reaction

lU + qV
h
�
k
rW, (5.1)

which leads to the reaction diffusion system

∂u

∂t
− a∆u = −hulvq + kwr in R+ × Ω, (5.2)

∂v

∂t
− b∆v = −hulvq + kwr in R+ × Ω, (5.3)

∂w

∂t
-c∆w = hulvq − kwr in R+ × Ω, (5.4)

with boundary conditions (1.4) and positive initial data in L∞(Ω), where h, k,
l, q, and r are positive constants such that r ≤ 1 or l + q ≤ 1. The special case
l = q = r = 1 has been studied by Rothe [13] under homogeneous Neumann
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boundary conditions where he showed that Tmax = ∞ if N ≤ 5. Morgan [11]
generalized the results of Rothe for every integer N ≥ 1 and when all the com-
ponents satisfy the same boundary conditions (Neumann or Dirichlet). Hollis
[3] completed the work of Morgan and established global existence if w satis-
fies the same type of boundary conditions as either u or v. But if boundary
conditions of different types are imposed on u and v, global existence follows
regardless of the type of boundary condition that is imposed on w. Recently
we have proved, in [6], global existence of solutions to system (5.2)-(5.4), un-
der homogeneous Neumann boundary conditions, by studying the two coupled
systems (5.2)-(5.4) and (5.3)-(5.4) when r ≤ 1 or l + q ≤ 1. However we have

Proposition 5.1 Solutions of (5.2)-(5.4) with nonnegative uniformly bounded
initial data and nonhomogeneous boundary conditions (1.4) are positive and
exist globally for every positive constants l, q and r such that r ≤ 1 or l+ q ≤ 1.

Proof. Conditions (1.6) is trivial when r ≤ 1 by choosing D +E � 1. In the
case l+ q ≤ 1, it is also satisfied by studying the system in the order (5.4)-(5.3)-
(5.2), choosing E + 1 � D and by applying the Young inequality to the term
ulvq (see [7] for more of details). Then corollary 3.2 implies that all components
of the solution are in L∞(0, T ∗;Ln(Ω)) for all n ≥ 1. Since the reaction terms
are of polynomial growth, then Tmax = +∞. Another example, is as follows:

∂u1

∂t
− d1∆u1 = −k1u1u2 + k2u3 − k3u1u4 + k4u5, (5.5)

∂u2

∂t
− d2∆u2 = −k1u1u2 + k2u3, (5.6)

∂u3

∂t
− d3∆u3 = k1Au1u2B − k2u3, (5.7)

∂u4

∂t
− d4∆u4 = −k3u1u4 + k4u5, (5.8)

∂u5

∂t
− d5∆u5 = k3u1u4 − k4u5. (5.9)

Hollis [3] established global existence provided that: (1) u3 satisfies the same
type of boundary conditions as either u1 or u2, and (2) u5 satisfies the same
type of boundary condition as either u1 or u4. Our generalization is summarized
as

Proposition 5.2 Solutions of (5.5)-(5.9) with nonnegative uniformly bounded
initial data and boundary conditions (1.4) exist globally.

Proof. Condition (1.6) is satisfied for the three component system (5.5)-(5.7)-
(5.9) while choosing u3 � u4 � 1. Then corollary 3.2 implies that u1, u3 and
u5 are in L∞(0, T ∗;Ln(Ω)) for all n ≥ 1. So, global existence of u3 and u4

is a trivial consequence of the maximum principle (see J. Smoller [14]) applied
successively to equations (5.6) and (5.8). �
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Finally we illustrate our results with the system

∂u

∂t
− a∆u = −uαvβ − uγwρ + µ1v + µ2w, (5.10)

∂v

∂t
− b∆v = −uαvβ + uγwρ, (5.11)

∂w

∂t
− c∆w = uαvβ + uγwρ , (5.12)

where α, β, γ, ρ ≥ 1 and µ1, µ2 ≥ 0. S. L. Hollis [3] established global existence
provided that either: (1) µ1 = 0 and u satisfies the same type of boundary
conditions as w, or else (2) µ2 = 0, ρ = 1, and u satisfies the same type of
boundary conditions as v.

It is trivial to verify that condition (1.6) is satisfied for system (5.10)-(5.12)
by choosing D + 1 � E � 1. the result of corollary 3.2 applied to this system
is summarized in the following proposition

Proposition 5.3 Solutions of (5.5)-(5.9) with nonnegative uniformly bounded
initial data and boundary conditions (1.4) exist for all t > 0 and all constants
α, β, γ, ρ ≥ 1, µ1, µ2 ≥ 0.

If β1 = β2 = β3 = µ1 = µ2 = 0, then proposition 3.3 applied to (5.5)-(5.9)
permits us to give the following result.

Corollary 5.4 All solutions of (5.5)-(5.9) with positive initial data in L∞(Ω)
are global and uniformly bounded on [0,+∞[×Ω provided that β1 = β2 = β3 =
µ1 = µ2 = 0.

Another example, is

∂u

∂t
− a∆u = −a11u

r1 + a12v
r2 + a13w

r3 − c11u+ c12v + c13w + d1 in R+ × Ω,

(5.13)
∂v

∂t
− b∆v = a21u

r1 − a22v
r2 + a23w

r3 + c21u− c22v + c23w + d2 in R+ × Ω,

(5.14)
∂v

∂t
− c∆w = a31u

r1 + a32v
r2 − a33w

r3 + c31u+ c32v − c33w + d3 in R+ × Ω,

(5.15)

where ri > 1, aij , cij , di are positive for 1 ≤ i ≤ j ≤ 3. It is clear that conditions
of the form (1.9) are not satisfied and then techniques used by Hollis [3] are
not applicable here, nevertheless the method of invariant regions (see Smoller
[14]) can give the global existence of positive solutions under some complicated
conditions on the constants aij , cij and di, 1 ≤ i ≤ j ≤ 3. However our
technique is applicable and if

A =

−a11 a12 a13

a21 −a22 a23

a31 a32 −a33

 , (5.16)
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then we have the following statement.

Proposition 5.5 Suppose that for some k = {1, 2, 3}, the cofactor of −akk
is strictly positive, then solutions of (5.13)-(5.15) with nonnegative uniformly
bounded initial data and boundary conditions (1.4) are positive and exist for all
t > 0 for positive reals aij , cij and di, 1 ≤ i ≤ j ≤ 3, provided that (1) rk ≤ 1
or (2) ri > 1, 1 ≤ i ≤ 3 and detA < 0 or (3) ri > 1, 1 ≤ i ≤ 3 and akk is
sufficiently large.

Proof. Take for example k = 3
(1) Suppose that a11a22 − a12a21 > 0 and r3 ≤ 1, then (1.6) is satisfied if there
exists D and E sufficiently large such that

−a11D + a21E + a31 ≤ 0 and a12D − a22E + a32 ≤ 0. (5.17)

The study of these two inequalities implies (1.6) if we choose D and E satisfying

D ≥ a21a32 + a31a22

a11a22 − a12a21
and E ≥ a11a32 + a12a31

a11a22 − a12a21
. (5.18)

(2) Now, suppose that ri > 1, 1 ≤ i ≤ 3 and a33 is sufficiently large, then (1.6)
is satisfied if there exists D and E sufficiently large such that (5.17) is too and

a13D + a23E−a33 ≤ 0. (5.19)

But if we develop the determinant of A with regard to the third column, then
detA < 0 is equivalent to

−a33(a11a22−a12a21)+a13(a21a32+a31a22)−a23(−a11a32−a12a31) < 0, (5.20)

and this inequality is equivalent to

a13(
a21a32 + a31a22

a11a22 − a12a21
) + a23(

a11a32 + a12a31

a11a22 − a12a21
) < a33. (5.21)

Then we can choose D and E such that (5.18) and (5.19) are satisfied. Conse-
quently we get (1.6).
(3) This case is trivial by using (5.18) and (5.21).
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