Generalized quasilinearization method for a second order three point boundary-value problem with nonlinear boundary conditions *

Bashir Ahmad, Rahmat Ali Khan, \& Paul W. Eloe

Abstract

The generalized quasilinearization technique is applied to obtain a monotone sequence of iterates converging uniformly and quadratically to a solution of three point boundary value problem for second order differential equations with nonlinear boundary conditions. Also, we improve the convergence of the sequence of iterates by establishing a convergence of order k.

1 Introduction

The method of quasilinearization pioneered by Bellman and Kalaba [1] and generalized by Lakshmikantham $[8,9]$ has been applied to a variety of problems $[2,10,11,12,13,16]$.

Multipoint boundary value problems for second order differential equations have also been receiving considerable attention recently. Kiguradze and Lomtatidze [7] and Lomtatidze $[14,15]$ have studied closely related problems. Gupta et.al. $[4,5,6]$ have studied problems related to three point boundary value problems. More recently, Paul Eloe and Yang Gao [3] discussed the method of quasilinearization for a three point boundary value problem. In this paper, we develop the method of generalized quasilinearization for a three point boundary value problem involving nonlinear boundary conditions and obtain a monotone sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Also, we have discussed the convergence of order k.

[^0]
Basic Results

Consider the three point boundary value problem with nonlinear boundary conditions

$$
\begin{gather*}
x^{\prime \prime}=f(t, x(t)), \quad t \in[0,1]=J \\
x(0)=a, \quad x(1)=g\left(x\left(\frac{1}{2}\right)\right) \tag{1.1}
\end{gather*}
$$

where $f \in C[J \times \mathbb{R}, \mathbb{R}]$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Let $G(t, s)$ denote the Green's function for the conjugate or Dirichlet boundary value problem and is given by

$$
G(t, s)= \begin{cases}t(s-1), & 0 \leq t<s \leq 1 \\ s(t-1), & 0 \leq s<t \leq 1\end{cases}
$$

We note that $G(t, s)<0$ on $(0,1) \times(0,1)$. If $x(t)$ is the solution of (1.1) and (1.2), then

$$
\begin{equation*}
x(t)=a(1-t)+g\left(x\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) f(s, x(s)) d s \tag{1.2}
\end{equation*}
$$

Let $\alpha, \beta \in C^{2}[0,1]$. We say that α is a lower solution of the BVP (1.1), if

$$
\begin{gathered}
\alpha^{\prime \prime} \geq f(t, \alpha), \quad t \in[0,1] \\
\alpha(0) \leq a, \quad \alpha(1) \leq g\left(\alpha\left(\frac{1}{2}\right)\right),
\end{gathered}
$$

and β be an upper solution of the BVP (1.1), if

$$
\begin{gathered}
\beta^{\prime \prime} \leq f(t, \beta), \quad t \in[0,1] \\
\beta(0) \geq a, \quad \beta(1) \geq g\left(\beta\left(\frac{1}{2}\right)\right) .
\end{gathered}
$$

Now, we state the following theorems without proof [3].

Theorem 1.1 Assume that f is continuous with $f_{x}>0$ on $[0,1] \times \mathbb{R}$ and g is continuous with $0 \leq g^{\prime}<1$ on \mathbb{R}. Let β and α be the upper and lower solutions of the $B V P(1.1)$ respectively. Then $\alpha(t) \leq \beta(t), t \in[0,1]$.

Theorem 1.2 (Method of upper and lower solutions) Assume that f is continuous on $[0,1] \times \mathbb{R}$ and g is continuous on \mathbb{R} satisfying $0 \leq g^{\prime}<1$. Further, we assume that there exists an upper solution β and a lower solution α of the $B V P$ (1.1) such that $\alpha(t) \leq \beta(t), t \in[0,1]$. Then there exists a solution x of the BVP (1.1) such that

$$
\alpha(t) \leq x \leq \beta(t), \quad t \in[0,1] .
$$

2 Main Result

Theorem 2.1 (Generalized quasilinearization method)

$\left(A_{1}\right) f, f_{x}$ are continuous on $[0,1] \times \mathbb{R}$ and $f_{x x}$ exists on $[0,1] \times \mathbb{R}$. Further, $f_{x}>0$ and $f_{x x}+\phi_{x x} \leq 0$, where ϕ, ϕ_{x} are continuous on $[0,1] \times \mathbb{R}$ and $\phi_{x x} \leq 0$.
$\left(A_{2}\right) g, g^{\prime}$ are continuous on \mathbb{R} and $g^{\prime \prime}$ exists and $0 \leq g^{\prime}<1, g^{\prime \prime}(x) \geq 0, x \in \mathbb{R}$.
$\left(A_{3}\right) \alpha$ and β are lower and upper solutions of the $B V P$ (1.1) respectively.
Then there exists a monotone sequence $\left\{w_{n}\right\}$ of solutions converging quadratically to the unique solution x of the $B V P(1.1)$.

Proof. Define $F:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ as

$$
F(t, x)=f(t, x)+\phi(t, x) .
$$

Then, in view of $\left(A_{1}\right)$, we note that F, F_{x} are continuous on $[0,1] \times \mathbb{R}$, and $F_{x x}$ exists such that

$$
\begin{equation*}
F_{x x}(t, x) \leq 0 . \tag{2.1}
\end{equation*}
$$

Using the mean value theorem and the assumptions $\left(A_{1}\right)$ and $\left(A_{2}\right)$, we obtain

$$
\begin{gather*}
f(t, x) \leq F(t, y)+F_{x}(t, y)(x-y)-\phi(t, x) \tag{2.2}\\
g(x) \geq g(y)+g^{\prime}(y)(x-y) \tag{2.3}
\end{gather*}
$$

where $x, y \in \mathbb{R}$ such that $x \geq y$ and $t \in[0,1]$. Here, we remark that (2.2) and (2.3) are also valid independent of the requirement $x \geq y$. Define the functions $\stackrel{*}{F}(t, x, y)$ and $h(x, y)$ as

$$
\begin{gathered}
\stackrel{*}{F}(t, x, y)=F(t, y)+F_{x}(t, y)(x-y)-\phi(t, x), \\
h(x, y)=g(y)+g^{\prime}(y)(x-y)
\end{gathered}
$$

We observe that

$$
\begin{equation*}
f(t, x)=\min _{y} F^{*}(t, x, y) \tag{2.4}
\end{equation*}
$$

Further

$$
\begin{align*}
\stackrel{*}{F}_{x}(t, x, y) & =F_{x}(t, y)-\phi_{x}(t, x) \geq F_{x}(t, x)-\phi_{x}(t, x) \tag{2.5}\\
& =f_{x}(t, x)>0
\end{align*}
$$

implies that $\stackrel{*}{F}(t, x, y)$ is increasing in x for each fixed $(t, y) \in[0,1] \times \mathbb{R}$. Similarly

$$
\begin{gather*}
g(x)=\max _{y} h(x, y) \tag{2.6}\\
0 \leq h^{\prime}(x, y)<1 \tag{2.7}
\end{gather*}
$$

Now, set $\alpha=w_{0}$, and consider the three point BVP

$$
\begin{gather*}
x^{\prime \prime}=\stackrel{*}{F}\left(t, x(t), w_{0}(t)\right), \quad t \in[0,1]=J \\
x(0)=a, \quad x(1)=h\left(x\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right) . \tag{2.8}
\end{gather*}
$$

Using $\left(A_{3}\right)$ together with (2.4) and (2.6), we have

$$
\begin{aligned}
w_{0}^{\prime \prime} \geq f\left(t, w_{0}\right) & =\stackrel{*}{F}\left(t, w_{0}, w_{0}\right), \quad t \in[0,1] \\
w_{0}(0) \leq a, \quad w_{0}(1) & \leq g\left(w_{0}\left(\frac{1}{2}\right)\right)=h\left(w_{0}\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\beta^{\prime \prime} \leq f(t, \beta) & \leq \stackrel{*}{F}\left(t, \beta, w_{0}\right), \quad t \in[0,1] \\
\beta(0) \geq a, \quad \beta(1) & \geq g\left(\beta\left(\frac{1}{2}\right)\right) \geq h\left(\beta\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right),
\end{aligned}
$$

which imply that w_{0} and β are lower and upper solutions of the BVP (2.8) respectively. In view of (2.5) (2.7) and the fact that w_{0} and β are lower and upper solutions of the BVP (2.8) respectively, it follows by Theorems 1.1 and 1.2 that there exists a unique solution w_{1} of the BVP (2.8) such that

$$
w_{0}(t) \leq w_{1}(t) \leq \beta(t), \quad t \in[0,1] .
$$

Now, consider the BVP

$$
\begin{gather*}
x^{\prime \prime}=\stackrel{*}{F}\left(t, x(t), w_{1}(t)\right), \quad t \in[0,1]=J \\
x(0)=a, \quad x(1)=h\left(x\left(\frac{1}{2}\right), w_{1}\left(\frac{1}{2}\right)\right) . \tag{2.9}
\end{gather*}
$$

Again, using $\left(A_{3}\right),(2.4)$ and (2.6), we find that w_{1} and β are lower and upper solutions of (2.9) respectively, that is,

$$
\begin{gathered}
w_{1}^{\prime \prime}=\stackrel{*}{F}\left(t, w_{1}, w_{0}\right) \geq \stackrel{*}{F}\left(t, w_{1}, w_{1}\right), \quad t \in[0,1] \\
w_{1}(0)=a, \quad w_{1}(1)=h\left(w_{1}\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right) \leq h\left(w_{1}\left(\frac{1}{2}\right), w_{1}\left(\frac{1}{2}\right)\right),
\end{gathered}
$$

and

$$
\begin{aligned}
\beta^{\prime \prime} \leq f(t, \beta) & \leq \stackrel{*}{F}\left(t, \beta, w_{1}\right), \quad t \in[0,1] \\
\beta(0) \geq a, \quad \beta(1) & \geq g\left(\beta\left(\frac{1}{2}\right)\right) \geq h\left(\beta\left(\frac{1}{2}\right), w_{1}\left(\frac{1}{2}\right)\right) .
\end{aligned}
$$

Hence, by Theorems 1.1 and 1.2, there exists a unique solution w_{2} of (2.9) such that

$$
w_{1}(t) \leq w_{2}(t) \leq \beta(t), \quad t \in[0,1] .
$$

Continuing this process successively, we obtain a monotone sequence $\left\{w_{n}\right\}$ of solutions satisfying

$$
w_{0}(t) \leq w_{1}(t) \leq \cdots \leq w_{n}(t) \leq \beta(t), \quad t \in[0,1]
$$

where each element w_{n} of the sequence is a solution of the BVP

$$
\begin{gathered}
x^{\prime \prime}=\stackrel{*}{F}\left(t, x(t), w_{n-1}(t)\right), \quad t \in[0,1]=J \\
x(0)=a, \quad x(1)=h\left(x\left(\frac{1}{2}\right), w_{n-1}\left(\frac{1}{2}\right)\right),
\end{gathered}
$$

and

$$
\begin{equation*}
w_{n}(t)=a(1-t)+h\left(w_{n}\left(\frac{1}{2}\right), w_{n-1}\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) \stackrel{*}{F}\left(s, w_{n}, w_{n-1}\right) d s \tag{2.10}
\end{equation*}
$$

Employing the fact that $[0,1]$ is compact and the monotone convergence is pointwise, it follows that the convergence of the sequence is uniform. If $x(t)$ is the limit point of the sequence, then passing onto the limit $n \rightarrow \infty,(2.10)$ gives

$$
\begin{aligned}
x(t) & =a(1-t)+h\left(x\left(\frac{1}{2}\right), x\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) \stackrel{*}{F}(s, x(s), x(s)) d s \\
& =a(1-t)+g\left(x\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) f(s, x(s)) d s
\end{aligned}
$$

Thus, $x(t)$ is the solution of the BVP (1.1). Now, we show that the convergence of the sequence is quadratic. For that, set

$$
e_{n}(t)=x(t)-w_{n}(t), \quad t \in[0,1] .
$$

Observe that

$$
\begin{gathered}
e_{n}(t) \geq 0, \quad e_{n}(0)=0 \\
e_{n}(1)=g\left(x\left(\frac{1}{2}\right)\right)-h\left(w_{n}\left(\frac{1}{2}\right), w_{n-1}\left(\frac{1}{2}\right)\right) .
\end{gathered}
$$

Using the mean value theorem repeatedly, $\left(A_{1}\right)$ and the nonincreasing property of F_{x}, we have

$$
\begin{aligned}
e_{n+1}^{\prime \prime}(t)= & x^{\prime \prime}(t)-w_{n+1}^{\prime \prime}(t) \\
= & f(t, x)-\left[F\left(t, w_{n}\right)+F_{x}\left(t, w_{n}\right)\left(w_{n+1}-w_{n}\right)-\phi\left(t, w_{n+1}\right)\right] \\
= & F_{x}\left(t, c_{1}\right)\left(x-w_{n}\right)-F_{x}\left(t, w_{n}\right)\left(x-w_{n}\right)+F_{x}\left(t, w_{n}\right)\left(x-w_{n+1}\right) \\
& -\phi_{x}\left(t, c_{2}\right)\left(x-w_{n+1}\right) \\
= & \left(F_{x x}\left(t, c_{3}\right)\left(c_{1}-w_{n}\right)\left(x-w_{n}\right)+\left(F_{x}\left(t, w_{n}\right)-\phi_{x}\left(t, c_{2}\right)\right)\left(x-w_{n+1}\right)\right. \\
\geq & F_{x x}\left(t, c_{3}\right)\left(x-w_{n}\right)^{2}+\left(F_{x}\left(t, c_{2}\right)-\phi_{x}\left(t, c_{2}\right)\right)\left(x-w_{n+1}\right) \\
= & F_{x x}\left(t, c_{3}\right)\left(e_{n}\right)^{2}+f_{x}\left(t, c_{2}\right) e_{n+1} \\
\geq & F_{x x}\left(t, c_{2}\right)\left(e_{n}\right)^{2} \geq-M\left\|e_{n}\right\|^{2},
\end{aligned}
$$

where M is a bound on $F_{x x}(t, x)$ for $t \in[0,1], w_{n}<c_{3}<c_{1}<x(t), w_{n+1}<$ $c_{2}<x(t)$, and $\|\cdot\|$ denotes the supremum norm on $C[0,1]$. Thus, we have

$$
\begin{aligned}
e_{n+1}(t)= & {\left[g\left(x\left(\frac{1}{2}\right)\right)-h\left(w_{n+1}\left(\frac{1}{2}\right), w_{n}\left(\frac{1}{2}\right)\right)\right] t+\int_{0}^{1} G(t, s) e_{n+1}^{\prime \prime}(s) d s } \\
\leq & {\left[g\left(x\left(\frac{1}{2}\right)\right)-g\left(w_{n}\left(\frac{1}{2}\right)\right)-g^{\prime}\left(w_{n}\left(\frac{1}{2}\right)\right)\left(w_{n+1}\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)\right] t } \\
& +\int_{0}^{1} G(t, s) M\left\|e_{n}\right\|^{2} d s \\
\leq & {\left[g^{\prime}\left(c_{o}\right)\left(x\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)-g^{\prime}\left(w_{n}\left(\frac{1}{2}\right)\right)\left(w_{n+1}\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)\right] t } \\
& +M\left\|e_{n}\right\|^{2} \int_{0}^{1}|G(t, s)| d s \\
= & {\left[g^{\prime \prime}\left(c_{1}\right)\left(c_{o}-w_{n}\left(\frac{1}{2}\right)\right)\left(x\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)+g^{\prime}\left(w_{n}\left(\frac{1}{2}\right)\right) e_{n+1}\right] t } \\
& +M_{1}\left\|e_{n}\right\|^{2} \\
\leq & {\left[g^{\prime \prime}\left(c_{1}\right) e_{n}^{2}(t)+g^{\prime}\left(w_{n}\left(\frac{1}{2}\right)\right) e_{n+1}\right] t+M_{1}\left\|e_{n}\right\|^{2}, }
\end{aligned}
$$

where $w_{n}\left(\frac{1}{2}\right)<c_{1}<c_{o}<x\left(\frac{1}{2}\right)$. Taking the maximum over the interval $[0,1]$, we get

$$
\left\|e_{n+1}\right\| \leq M_{2}\left\|e_{n}\right\|^{2}+\lambda\left\|e_{n+1}\right\|+M_{1}\left\|e_{n}\right\|^{2}
$$

Solving algebraically, we get

$$
\left\|e_{n+1}\right\| \leq \frac{M_{3}}{1-\lambda}\left\|e_{n}\right\|^{2}
$$

where, $\left|g^{\prime}\right| \leq \lambda<1, M_{1}$ provides a bound on $M \int_{0}^{1}|G(t, s)| d s, M_{2}$ provides a bound for $\left|g^{\prime \prime}\right|$ on $\left[w_{n}\left(\frac{1}{2}\right), x\left(\frac{1}{2}\right)\right]$ and $M_{3}=M_{1}+M_{2}$. This establishes the quadratic convergence.

3 Rapid Convergence

Theorem 3.1 Assume that
$\left(B_{1}\right) \frac{\partial^{i}}{\partial x^{i}} f(t, x)(i=0,1,2, \ldots k)$ are continuous on $[0,1] \times \mathbb{R}$ satisfying

$$
\begin{gathered}
\frac{\partial^{i}}{\partial x^{i}} f(t, x) \geq 0, \quad(i=0,1,2, \ldots k-1) \\
\frac{\partial^{k}}{\partial x^{k}}(f(t, x)+\phi(t, x)) \leq 0
\end{gathered}
$$

where $\frac{\partial^{i}}{\partial x^{i}} \phi(t, x)(i=0,1,2, \ldots k)$ are continuous and $\frac{\partial^{k}}{\partial x^{k}} \phi(t, x)<0$ for some function $\phi(t, x)$.
$\left(B_{2}\right) \alpha, \beta \in C^{2}[J, \mathbb{R}]$ are lower and upper solutions of the BVP (1.1).
$\left(B_{3}\right) \frac{d^{i}}{d x^{i}} g(x)(i=0,1,2, \ldots k)$ are continuous on \mathbb{R} satisfying

$$
0 \leq \frac{d^{i}}{d x^{i}} g(x)<\frac{M}{(\beta-\alpha)^{i-1}}
$$

with $0<M<\frac{1}{3}$ and $\frac{d^{k}}{d x^{k}} g(x) \geq 0$.
Then there exists a monotone sequence of solutions $\left\{w_{n}\right\}$ that converge to the unique solution, x, of the $B V P(1.1)$ with the order of convergence $k \geq 2$.

Proof. Define $F:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ as

$$
F(t, x)=f(t, x)+\phi(t, x)
$$

Using $\left(B_{1}\right),\left(B_{3}\right)$ and the generalized mean value theorem, we obtain

$$
\begin{gathered}
f(t, x) \leq \sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} F(t, y) \frac{(x-y)^{i}}{i!}-\phi(t, x), \\
g(x) \geq \sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g(y) \frac{(x-y)^{i}}{i!}
\end{gathered}
$$

Define

$$
\begin{equation*}
\stackrel{* *}{F}(t, x, y)=\sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} F(t, y) \frac{(x-y)^{i}}{i!}-\phi(t, x) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{*}{h}(x, y)=\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g(y) \frac{(x-y)^{i}}{i!} \tag{3.2}
\end{equation*}
$$

Observe that $\stackrel{* *}{F}(t, x, y)$ and $\stackrel{*}{h}(x, y)$ are continuous and further

$$
\begin{align*}
f(t, x) & =\min _{y} \stackrel{* *}{F}(t, x, y) \tag{3.3}\\
g(x) & =\max _{y} \stackrel{*}{h}(x, y) \tag{3.4}
\end{align*}
$$

Using generalized mean value theorem, (3.1) can be written as

$$
\begin{equation*}
\stackrel{* *}{F}(t, x, y)=\sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} f(t, y) \frac{(x-y)^{i}}{i!}-\frac{\partial^{k}}{\partial x^{k}} \phi(t, \xi) \frac{(x-y)^{k}}{k!} \tag{3.5}
\end{equation*}
$$

Differentiating (3.5) and using $\left(B_{1}\right)$, we get

$$
\begin{equation*}
\stackrel{* *}{F}_{x}(t, x, y)>\sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} f(t, y) \frac{(x-y)^{i-1}}{(i-1)!} \geq 0 \tag{3.6}
\end{equation*}
$$

which implies that $\stackrel{* *}{F}(t, x, y)$ is increasing in x for each $(t, y) \in[0,1] \times \mathbb{R}$. Similarly, differentiation of (3.2), in view of $\left(B_{3}\right)$, yields

$$
\stackrel{*}{h}^{\prime}(x, y)=\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g(y) \frac{(x-y)^{i-1}}{(i-1)!} .
$$

Clearly ${ }^{*}{ }^{\prime}(x, y) \geq 0$ and

$$
\begin{aligned}
\stackrel{*}{h}^{\prime}(x, y) & =\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g(y) \frac{(x-y)^{i-1}}{(i-1)!} \leq \sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g(y) \frac{(\beta-\alpha)^{i-1}}{(i-1)!} \\
& \leq \sum_{i=0}^{k-1} \frac{M}{(i-1)!}<M\left(1+\sum_{i=0}^{k-2} \frac{1}{2^{k-1}}\right)=M\left(3-\frac{1}{2^{k-3}}\right) \\
& <3 M<1 .
\end{aligned}
$$

Now, set $\alpha=w_{0}$, and consider the linear BVP

$$
\begin{gather*}
x^{\prime \prime}=\stackrel{* *}{F}\left(t, x(t), w_{0}(t)\right), \quad t \in[0,1]=J \\
x(0)=a, \quad x(1)=\stackrel{*}{h}\left(x\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right) . \tag{3.7}
\end{gather*}
$$

Using $\left(B_{2}\right),(3.3)$ and (3.4), we find that

$$
\begin{aligned}
w_{0}^{\prime \prime} \geq f\left(t, w_{0}\right) & =\stackrel{* *}{F}\left(t, w_{0}, w_{0}\right), \quad t \in[0,1] \\
w_{0}(0) \leq a, \quad w_{0}(1) & \leq g\left(w_{0}\left(\frac{1}{2}\right)\right)=\stackrel{*}{h}\left(w_{0}\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \beta^{\prime \prime} \leq f(t, \beta) \leq \stackrel{* *}{F}\left(t, \beta, w_{0}\right), \quad t \in[0,1] \\
& \beta(0) \geq a, \quad \beta(1) \geq g\left(\beta\left(\frac{1}{2}\right)\right) \geq{ }_{h}^{*}\left(\beta\left(\frac{1}{2}\right), w_{0}\left(\frac{1}{2}\right)\right),
\end{aligned}
$$

imply that w_{0} and β are lower and upper solutions of the BVP (3.7) respectively. It follows by Theorems 1.1 and 1.2 that there exists a unique solution w_{1} of the BVP (3.7) such that

$$
w_{0}(t) \leq w_{1}(t) \leq \beta(t), \quad t \in[0,1]
$$

Continuing this process successively, we obtain a monotone sequence $\left\{w_{n}\right\}$ of solutions satisfying

$$
w_{0}(t) \leq w_{1}(t) \leq w_{2}(t) \leq \cdots \leq w_{n}(t) \leq \beta(t), \quad t \in[0,1],
$$

where each element w_{n} of the sequence is a solution of the BVP

$$
\begin{gathered}
x^{\prime \prime}=\stackrel{* *}{F}\left(t, x(t), w_{n-1}(t)\right), \quad t \in[0,1]=J \\
x(0)=a, \quad x(1)=\stackrel{*}{h}\left(x\left(\frac{1}{2}\right), w_{n-1}\left(\frac{1}{2}\right)\right),
\end{gathered}
$$

and is given by

$$
\begin{equation*}
w_{n}(t)=a(1-t)+\stackrel{*}{h}\left(w_{n}\left(\frac{1}{2}\right), w_{n-1}\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) \stackrel{* *}{F}\left(s, w_{n}, w_{n-1}\right) d s \tag{3.8}
\end{equation*}
$$

Again, using the standard arguments employed in the last section, it follows that

$$
\begin{aligned}
x(t) & =a(1-t)+\stackrel{*}{h}\left(x\left(\frac{1}{2}\right), x\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) \stackrel{* *}{F}(s, x(s), x(s)) d s \\
& =a(1-t)+g\left(x\left(\frac{1}{2}\right)\right) t+\int_{0}^{1} G(t, s) f(s, x(s)) d s .
\end{aligned}
$$

Hence $x(t)$ is the solution of the BVP (1.1). Now, we show that the convergence of the sequence of iterates is of order $k \geq 2$. For that, we set

$$
e_{n}(t)=x(t)-w_{n}(t), \quad a_{n}(t)=w_{n+1}(t)-w_{n}(t), \quad t \in[0,1] .
$$

Note that $e_{n}(t) \geq 0, a_{n}(t) \geq 0, e_{n}(t)-a_{n}(t)=e_{n+1}(t)$, and

$$
e_{n}(0)=0, \quad e_{n}(1)=g\left(x\left(\frac{1}{2}\right)\right)-h\left(w_{n}\left(\frac{1}{2}\right), w_{n-1}\left(\frac{1}{2}\right)\right)
$$

Also, $e_{n}(t) \geq a_{n}(t)$ and hence by induction $e_{n}^{k}(t) \geq a_{n}^{k}(t)$. Using the generalized mean value theorem, we have

$$
\begin{align*}
& e_{n+1}^{\prime \prime}(t) \\
&= x^{\prime \prime}-w_{n+1}^{\prime \prime} \\
&= {\left[\sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} f\left(t, w_{n}\right) \frac{\left(x-w_{n}\right)^{i}}{i!}+\frac{\partial^{k}}{\partial x^{k}} f(t, \xi) \frac{\left(x-w_{n}\right)^{k}}{k!}\right] } \\
&-\left[\sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} f\left(t, w_{n}\right) \frac{\left(w_{n+1}-w_{n}\right)^{i}}{i!}-\frac{\partial^{k}}{\partial x^{k}} \phi(t, \xi) \frac{\left(w_{n+1}-w_{n}\right)^{k}}{k!}\right] \\
&= \sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} f\left(t, w_{n}\right) \frac{\left(e_{n}^{i}-a_{n}^{i}\right)}{i!}+\frac{\partial^{k}}{\partial x^{k}} f(t, \xi) \frac{\left(e_{n}\right)^{k}}{k!}+\frac{\partial^{k}}{\partial x^{k}} \phi(t, \xi) \frac{\left(a_{n}\right)^{k}}{k!} \\
& \geq\left(\sum_{i=0}^{k-1} \frac{\partial^{i}}{\partial x^{i}} f\left(t, w_{n}\right) \frac{1}{i!} \sum_{i=0}^{k-1} e_{n}^{j} a_{n}^{i-1-j}\right) e_{n+1}+\left(\frac{\partial^{k}}{\partial x^{k}} f(t, \xi)+\frac{\partial^{k}}{\partial x^{k}} \phi(t, \xi)\right) \frac{\left(e_{n}\right)^{k}}{k!} \\
& \geq \frac{\partial^{k}}{\partial x^{k}} F(t, \xi) \frac{\left(e_{n}\right)^{k}}{k!} \geq-M\left\|e_{n}\right\|^{k}, \tag{3.9}
\end{align*}
$$

where M is a bound on $\frac{1}{k!} \frac{\partial^{k}}{\partial x^{k}} F(t, \xi)$ for $t \in[0,1]$. Thus, in view of (3.9), we have

$$
\begin{align*}
& e_{n+1}(t) \\
&=\left(g\left(x\left(\frac{1}{2}\right)\right)-h\left(w_{n+1}\left(\frac{1}{2}\right), w_{n}\left(\frac{1}{2}\right)\right)\right) t+\int_{0}^{1} G(t, s) e_{n+1}^{\prime \prime}(t) d s \\
& \leq\left(g\left(x\left(\frac{1}{2}\right)\right)-h\left(w_{n+1}\left(\frac{1}{2}\right), w_{n}\left(\frac{1}{2}\right)\right)\right) t+M\left\|e_{n}\right\|^{k} \int_{0}^{1}|G(t, s)| d s \\
&= {\left[\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g\left(w_{n}\left(\frac{1}{2}\right)\right) \frac{\left(x\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)^{i}}{i!}+\frac{d^{k}}{d x^{k}} g\left(\xi\left(\frac{1}{2}\right)\right) \frac{\left(x\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)^{k}}{k!}\right.} \\
&\left.-\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g\left(w_{n}\left(\frac{1}{2}\right)\right) \frac{\left(w_{n+1}\left(\frac{1}{2}\right)-w_{n}\left(\frac{1}{2}\right)\right)^{i}}{i!}\right] t+M_{1}\left\|e_{n}\right\|^{k} \\
&= {\left[\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g\left(w_{n}\left(\frac{1}{2}\right)\right) \frac{\left(e_{n}^{i}\left(\frac{1}{2}\right)-a_{n}\left(\frac{1}{2}\right)\right)^{i}}{i!}+\frac{d^{k}}{d x^{k}} g\left(\xi\left(\frac{1}{2}\right)\right) \frac{\left(e_{n}\left(\frac{1}{2}\right)\right)^{k}}{k!}\right] t+M_{1}\left\|e_{n}\right\|^{k} } \\
&= {\left[\sum_{i=0}^{k-1} \frac{d^{i}}{d x^{i}} g\left(w_{n}\left(\frac{1}{2}\right)\right) \frac{1}{i!} \sum_{i=0}^{k-1} e_{n}^{j}\left(\frac{1}{2}\right) a_{n}^{i-1-j}\left(\frac{1}{2}\right)\right) e_{n+1}\left(\frac{1}{2}\right) } \\
&\left.+\frac{d^{k}}{d x^{k}} g\left(\xi\left(\frac{1}{2}\right)\right) \frac{\left(e_{n}\left(\frac{1}{2}\right)\right)^{k}}{k!}\right] t+M_{1}\left\|e_{n}\right\|^{k} \tag{3.10}\\
& \leq {\left[\sum_{i=1}^{k-1} \frac{M}{(\beta-\alpha)^{i-1}} \frac{1}{i!} \sum_{j=0}^{i-1} e_{n}^{i-1-j}\left(\frac{1}{2}\right) a_{n}^{j}\left(\frac{1}{2}\right)\right] e_{n+1}\left(\frac{1}{2}\right)+M_{2}\left\|e_{n}\right\|^{k}+M_{1}\left\|e_{n}\right\|^{k} . }
\end{align*}
$$

Letting

$$
P_{n}(t)=\sum_{i=1}^{k-1} \frac{M}{(\beta-\alpha)^{i-1}} \frac{1}{i!} \sum_{j=0}^{i-1} e_{n}^{i-1-j}\left(\frac{1}{2}\right) a_{n}^{j}\left(\frac{1}{2}\right)
$$

we observe that

$$
\lim _{n \rightarrow \infty} P_{n}(t)=\lim _{n \rightarrow \infty} \sum_{i=1}^{k-1} \frac{M}{(\beta-\alpha)^{i-1}} \frac{1}{i!} \sum_{j=0}^{i-1} e_{n}^{i-1-j}\left(\frac{1}{2}\right) a_{n}^{j}\left(\frac{1}{2}\right)=M<\frac{1}{3}
$$

Therefore, we can choose $\lambda<1 / 3$ and $n_{0} \in N$ such that for $n \geq n_{0}$, we have $P_{n}(t)<\lambda$ and consequently (3.10) becomes

$$
\left\|e_{n+1}\right\|<\lambda\left\|e_{n+1}\right\|+M_{3}\left\|e_{n}\right\|^{k}
$$

Solving algebraically, we obtain

$$
\left\|e_{n+1}\right\| \leq \frac{M_{3}}{1-\lambda}\left\|e_{n}\right\|^{k}
$$

where $M_{3}=M_{1}+M_{2}, M_{1}$ provides bound for $M \int_{0}^{1}|G(t, s)| d s$, and M_{2} provides bound for

$$
\frac{d^{k}}{d x^{k}} g\left(\xi\left(\frac{1}{2}\right)\right) \frac{1}{k!}
$$

References

[1] R. Bellman and R. Kalaba, Quasilinearisation and Nonlinear Boundary Value Problems, American Elsevier, New York, 1965.
[2] Alberto Cabada, Juan J. Nieto and Rafael Pita-da-Veiga, A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem, Dynamics of Continuous, Discrete and Impulsive Systems, 4(1998) 23-30.
[3] Paul Eloe and Yang Gao, The method of quasilinearization and a threepoint boundary value problem, J. Korean Math. Soc., 39(2002), No. 2, 319-330.
[4] Chaitan P. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, J.Math. Anal. Appl., 168 (1992) 540-551.
[5] Chaitan P. Gupta, A second order m-point boundary value problem at resonance, Nonlinear Analysis, 24(1995) 1483-1489.
[6] Chaitan P. Gupta and Sergei Trofimchuck, A priori estimates for the existence of a solution for a multi-point boundary value problem, J.Inequal. Appl., 5(2000) 351-365.
[7] I. T. Kiguradze and A. G. Lomtatidze, In certain boundary value problems for second order linear ordinary differential equations with singularities, J.Math. Anal. Appl., 101 (1984) 325-347.
[8] V. Lakshmikantham, An extension of the method of quasilinearisation, J. Optim. Theory Appl.,82(1994) 315-321.
[9] V. Lakshmikantham, Further improvement of generalized quasilinearization, Nonlinear Analysis, 27(1996) 315-321.
[10] V. Lakshmikantham, S. Leela and F. A. McRae, Improved generalized quasilinearization method, Nonlinear Analysis, 24(1995) 1627-1637.
[11] V. Lakshmikantham and N. Shahzad, Further generalization of generalized quasilinearization method, J. Appl. Math. Stoch. Anal., 7(1994) 545-552.
[12] V. Lakshmikantham, N. Shahzad, and J. J. Nieto, Method of generalized quasilinearization for periodic boundary value problems, Nonlinear Analysis, 27(1996) 143-151.
[13] V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Boston, 1998.
[14] A. G. Lomtatidze, On the problem of solvability of singular boundary value problems for second order ordinary differential equations, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 22(1987) 135-149, 235-236.
[15] A. G. Lomtatidze, On a nonlocal boundary value problem for second order ordinary differential equations, J.Math. Anal. Appl., 193 (1995) 889-908.
[16] J. J. Neito, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc., 125(1997) 2599-2604.

Bashir Ahmad
Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
e-mail:bashir_qau@yahoo.com
Rahmat Ali Khan
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
e-mail:rahmat_alipk@yahoo.com
Paul W. Eloe
Department of Mathematics, University of Dayton,
Dayton, OH 45469-2316, USA
e-mail: Paul.Eloe@notes.udayton.edu

[^0]: *Mathematics Subject Classifications: 34B10, 34B15.
 Key words: Generalized quasilinearization, boundary value problem, nonlinear boundary conditions, quadratic and rapid convergence. (C)2002 Southwest Texas State University.

 Submitted March 14, 2002. Published October 22, 2002.

