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Generalized quasilinearization method for a

second order three point boundary-value

problem with nonlinear boundary conditions ∗

Bashir Ahmad, Rahmat Ali Khan, & Paul W. Eloe

Abstract

The generalized quasilinearization technique is applied to obtain a
monotone sequence of iterates converging uniformly and quadratically to
a solution of three point boundary value problem for second order differ-
ential equations with nonlinear boundary conditions. Also, we improve
the convergence of the sequence of iterates by establishing a convergence
of order k.

1 Introduction

The method of quasilinearization pioneered by Bellman and Kalaba [1] and
generalized by Lakshmikantham [8, 9] has been applied to a variety of problems
[2, 10, 11, 12, 13, 16].

Multipoint boundary value problems for second order differential equations
have also been receiving considerable attention recently. Kiguradze and Lom-
tatidze [7] and Lomtatidze [14, 15] have studied closely related problems. Gupta
et.al. [4, 5, 6] have studied problems related to three point boundary value
problems. More recently, Paul Eloe and Yang Gao [3] discussed the method of
quasilinearization for a three point boundary value problem. In this paper, we
develop the method of generalized quasilinearization for a three point boundary
value problem involving nonlinear boundary conditions and obtain a monotone
sequence of approximate solutions converging uniformly and quadratically to a
solution of the problem. Also, we have discussed the convergence of order k.
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Basic Results

Consider the three point boundary value problem with nonlinear boundary con-
ditions

x′′ = f(t, x(t)), t ∈ [0, 1] = J

x(0) = a, x(1) = g(x(
1
2

)),
(1.1)

where f ∈ C[J × R,R] and g : R → R is continuous. Let G(t, s) denote the
Green’s function for the conjugate or Dirichlet boundary value problem and is
given by

G(t, s) =

{
t(s− 1), 0 ≤ t < s ≤ 1
s(t− 1), 0 ≤ s < t ≤ 1.

We note that G(t, s) < 0 on (0, 1) × (0, 1). If x(t) is the solution of (1.1) and
(1.2), then

x(t) = a(1− t) + g(x(
1
2

))t+
∫ 1

0

G(t, s)f(s, x(s))ds. (1.2)

Let α, β ∈ C2[0, 1]. We say that α is a lower solution of the BVP (1.1), if

α′′ ≥ f(t, α), t ∈ [0, 1]

α(0) ≤ a, α(1) ≤ g(α(
1
2

)),

and β be an upper solution of the BVP (1.1), if

β′′ ≤ f(t, β), t ∈ [0, 1]

β(0) ≥ a, β(1) ≥ g(β(
1
2

)).

Now, we state the following theorems without proof [3].

Theorem 1.1 Assume that f is continuous with fx > 0 on [0, 1]× R and g is
continuous with 0 ≤ g′ < 1 on R. Let β and α be the upper and lower solutions
of the BVP (1.1) respectively. Then α(t) ≤ β(t), t ∈ [0, 1].

Theorem 1.2 (Method of upper and lower solutions) Assume that f is
continuous on [0, 1]×R and g is continuous on R satisfying 0 ≤ g′ < 1. Further,
we assume that there exists an upper solution β and a lower solution α of the
BVP (1.1) such that α(t) ≤ β(t), t ∈ [0, 1]. Then there exists a solution x of
the BVP (1.1) such that

α(t) ≤ x ≤ β(t), t ∈ [0, 1].
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2 Main Result

Theorem 2.1 (Generalized quasilinearization method)

(A1) f, fx are continuous on [0, 1] × R and fxx exists on [0, 1] × R. Further,
fx > 0 and fxx + φxx ≤ 0, where φ, φx are continuous on [0, 1] × R and
φxx ≤ 0.

(A2) g, g′ are continuous on R and g′′ exists and 0 ≤ g′ < 1, g′′(x) ≥ 0, x ∈ R.

(A3) α and β are lower and upper solutions of the BVP (1.1) respectively.

Then there exists a monotone sequence {wn} of solutions converging quadrati-
cally to the unique solution x of the BVP (1.1).

Proof. Define F : [0, 1]× R→ R as

F (t, x) = f(t, x) + φ(t, x).

Then, in view of (A1), we note that F , Fx are continuous on [0, 1]×R, and Fxx
exists such that

Fxx(t, x) ≤ 0. (2.1)

Using the mean value theorem and the assumptions (A1) and (A2), we obtain

f(t, x) ≤ F (t, y) + Fx(t, y)(x− y)− φ(t, x), (2.2)
g(x) ≥ g(y) + g′(y)(x− y), (2.3)

where x, y ∈ R such that x ≥ y and t ∈ [0, 1]. Here, we remark that (2.2) and
(2.3) are also valid independent of the requirement x ≥ y. Define the functions
∗
F (t, x, y) and h(x, y) as

∗
F (t, x, y) = F (t, y) + Fx(t, y)(x− y)− φ(t, x),

h(x, y) = g(y) + g′(y)(x− y).

We observe that
f(t, x) = min

y
F ∗(t, x, y). (2.4)

Further
∗
F x (t, x, y) =Fx(t, y)− φx(t, x) ≥ Fx(t, x)− φx(t, x)

=fx(t, x) > 0,
(2.5)

implies that
∗
F (t, x, y) is increasing in x for each fixed (t, y) ∈ [0, 1]×R. Similarly

g(x) = max
y

h(x, y), (2.6)

0 ≤ h′(x, y) < 1. (2.7)
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Now, set α = w0, and consider the three point BVP

x′′ =
∗
F (t, x(t), w0(t)), t ∈ [0, 1] = J

x(0) = a, x(1) = h(x(
1
2

), w0(
1
2

)).
(2.8)

Using (A3) together with (2.4) and (2.6), we have

w′′0 ≥ f(t, w0) =
∗
F (t, w0, w0), t ∈ [0, 1]

w0(0) ≤ a, w0(1) ≤ g(w0(
1
2

)) = h(w0(
1
2

), w0(
1
2

)),

and

β′′ ≤ f(t, β) ≤
∗
F (t, β, w0), t ∈ [0, 1]

β(0) ≥ a, β(1) ≥ g(β(
1
2

)) ≥ h(β(
1
2

), w0(
1
2

)),

which imply that w0 and β are lower and upper solutions of the BVP (2.8)
respectively. In view of (2.5) (2.7) and the fact that w0 and β are lower and
upper solutions of the BVP (2.8) respectively, it follows by Theorems 1.1 and
1.2 that there exists a unique solution w1 of the BVP (2.8) such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [0, 1].

Now, consider the BVP

x′′ =
∗
F (t, x(t), w1(t)), t ∈ [0, 1] = J

x(0) = a, x(1) = h(x(
1
2

), w1(
1
2

)).
(2.9)

Again, using (A3), (2.4) and (2.6), we find that w1 and β are lower and upper
solutions of (2.9) respectively, that is,

w′′1 =
∗
F (t, w1, w0) ≥

∗
F (t, w1, w1), t ∈ [0, 1]

w1(0) = a, w1(1) = h(w1(
1
2

), w0(
1
2

)) ≤ h(w1(
1
2

), w1(
1
2

)),

and

β′′ ≤ f(t, β) ≤
∗
F (t, β, w1), t ∈ [0, 1]

β(0) ≥ a, β(1) ≥ g(β(
1
2

)) ≥ h(β(
1
2

), w1(
1
2

)).

Hence, by Theorems 1.1 and 1.2, there exists a unique solution w2 of (2.9) such
that

w1(t) ≤ w2(t) ≤ β(t), t ∈ [0, 1].
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Continuing this process successively, we obtain a monotone sequence {wn} of
solutions satisfying

w0(t) ≤ w1(t) ≤ · · · ≤ wn(t) ≤ β(t), t ∈ [0, 1],

where each element wn of the sequence is a solution of the BVP

x′′ =
∗
F (t, x(t), wn−1(t)), t ∈ [0, 1] = J

x(0) = a, x(1) = h(x(
1
2

), wn−1(
1
2

)),

and

wn(t) = a(1− t) + h(wn(
1
2

), wn−1(
1
2

))t+
∫ 1

0

G(t, s)
∗
F (s, wn, wn−1)ds. (2.10)

Employing the fact that [0, 1] is compact and the monotone convergence is
pointwise, it follows that the convergence of the sequence is uniform. If x(t) is
the limit point of the sequence, then passing onto the limit n→∞, (2.10) gives

x(t) = a(1− t) + h(x(
1
2

), x(
1
2

))t+
∫ 1

0

G(t, s)
∗
F (s, x(s), x(s))ds

= a(1− t) + g(x(
1
2

))t+
∫ 1

0

G(t, s)f(s, x(s))ds.

Thus, x(t) is the solution of the BVP (1.1). Now, we show that the convergence
of the sequence is quadratic. For that, set

en(t) = x(t)− wn(t), t ∈ [0, 1].

Observe that

en(t) ≥ 0, en(0) = 0,

en(1) = g(x(
1
2

))− h(wn(
1
2

), wn−1(
1
2

)).

Using the mean value theorem repeatedly, (A1) and the nonincreasing property
of Fx, we have

e′′n+1(t) = x′′(t)− w′′n+1(t)
= f(t, x)− [F (t, wn) + Fx(t, wn)(wn+1 − wn)− φ(t, wn+1)]
= Fx(t, c1)(x− wn)− Fx(t, wn)(x− wn) + Fx(t, wn)(x− wn+1)
−φx(t, c2)(x− wn+1)

= (Fxx(t, c3)(c1 − wn)(x− wn) + (Fx(t, wn)− φx(t, c2))(x− wn+1)
≥ Fxx(t, c3)(x− wn)2 + (Fx(t, c2)− φx(t, c2))(x− wn+1)
= Fxx(t, c3)(en)2 + fx(t, c2)en+1

≥ Fxx(t, c2)(en)2 ≥ −M ‖ en ‖2,
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where M is a bound on Fxx(t, x) for t ∈ [0, 1], wn < c3 < c1 < x(t), wn+1 <
c2 < x(t), and || · || denotes the supremum norm on C[0, 1]. Thus, we have

en+1(t) = [g(x(
1
2

))− h(wn+1(
1
2

), wn(
1
2

))]t+
∫ 1

0

G(t, s)e′′n+1(s)ds

≤ [g(x(
1
2

))− g(wn(
1
2

))− g′(wn(
1
2

))(wn+1(
1
2

)− wn(
1
2

))]t

+
∫ 1

0

G(t, s)M‖en‖2ds

≤ [g′(co)(x(
1
2

)− wn(
1
2

))− g′(wn(
1
2

))(wn+1(
1
2

)− wn(
1
2

))]t

+M‖en‖2
∫ 1

0

|G(t, s)| ds

= [g′′(c1)(co − wn(
1
2

))(x(
1
2

)− wn(
1
2

)) + g′(wn(
1
2

))en+1]t

+M1‖en‖2

≤ [g′′(c1)e2
n(t) + g′(wn(

1
2

))en+1]t+M1 ‖ en ‖2,

where wn( 1
2 ) < c1 < co < x( 1

2 ). Taking the maximum over the interval [0, 1],
we get

‖en+1‖ ≤M2‖en‖2 + λ‖en+1‖+M1‖en‖2.

Solving algebraically, we get

‖en+1‖ ≤
M3

1− λ
‖en‖2,

where, |g′| ≤ λ < 1, M1 provides a bound on M
∫ 1

0
| G(t, s) | ds, M2 provides

a bound for |g′′| on [wn( 1
2 ), x( 1

2 )] and M3 = M1 + M2. This establishes the
quadratic convergence.

3 Rapid Convergence

Theorem 3.1 Assume that

(B1) ∂i

∂xi f(t, x) (i = 0, 1, 2, . . . k) are continuous on [0, 1]× R satisfying

∂i

∂xi
f(t, x) ≥ 0, (i = 0, 1, 2, . . . k − 1)

∂k

∂xk
(f(t, x) + φ(t, x)) ≤ 0,

where ∂i

∂xiφ(t, x) (i = 0, 1, 2, . . . k) are continuous and ∂k

∂xk
φ(t, x) < 0 for

some function φ(t, x).
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(B2) α, β ∈ C2[J,R] are lower and upper solutions of the BVP (1.1).

(B3) di

dxi g(x) (i = 0, 1, 2, . . . k) are continuous on R satisfying

0 ≤ di

dxi
g(x) <

M

(β − α)i−1
,

with 0 < M < 1
3 and dk

dxk
g(x) ≥ 0.

Then there exists a monotone sequence of solutions {wn} that converge to the
unique solution, x, of the BVP (1.1) with the order of convergence k ≥ 2.

Proof. Define F : [0, 1]× R→ R as

F (t, x) = f(t, x) + φ(t, x).

Using (B1), (B3) and the generalized mean value theorem, we obtain

f(t, x) ≤
k−1∑
i=0

∂i

∂xi
F (t, y)

(x− y)i

i!
− φ(t, x),

g(x) ≥
k−1∑
i=0

di

dxi
g(y)

(x− y)i

i!
.

Define
∗∗
F (t, x, y) =

k−1∑
i=0

∂i

∂xi
F (t, y)

(x− y)i

i!
− φ(t, x), (3.1)

and
∗
h (x, y) =

k−1∑
i=0

di

dxi
g(y)

(x− y)i

i!
. (3.2)

Observe that
∗∗
F (t, x, y) and

∗
h (x, y) are continuous and further

f(t, x) = min
y

∗∗
F (t, x, y), (3.3)

g(x) = max
y

∗
h (x, y). (3.4)

Using generalized mean value theorem, (3.1) can be written as

∗∗
F (t, x, y) =

k−1∑
i=0

∂i

∂xi
f(t, y)

(x− y)i

i!
− ∂k

∂xk
φ(t, ξ)

(x− y)k

k!
. (3.5)

Differentiating (3.5) and using (B1), we get

∗∗
F x (t, x, y) >

k−1∑
i=0

∂i

∂xi
f(t, y)

(x− y)i−1

(i− 1)!
≥ 0, (3.6)
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which implies that
∗∗
F (t, x, y) is increasing in x for each (t, y) ∈ [0, 1] × R.

Similarly, differentiation of (3.2), in view of (B3), yields

∗
h
′(x, y) =

k−1∑
i=0

di

dxi
g(y)

(x− y)i−1

(i− 1)!
.

Clearly
∗
h ′(x, y) ≥ 0 and

∗
h
′(x, y) =

k−1∑
i=0

di

dxi
g(y)

(x− y)i−1

(i− 1)!
≤
k−1∑
i=0

di

dxi
g(y)

(β − α)i−1

(i− 1)!

≤
k−1∑
i=0

M

(i− 1)!
< M(1 +

k−2∑
i=0

1
2k−1

) = M(3− 1
2k−3

)

< 3M < 1.

Now, set α = w0, and consider the linear BVP

x′′ =
∗∗
F (t, x(t), w0(t)), t ∈ [0, 1] = J

x(0) = a, x(1) =
∗
h (x(

1
2

), w0(
1
2

)).
(3.7)

Using (B2), (3.3) and (3.4), we find that

w′′0 ≥ f(t, w0) =
∗∗
F (t, w0, w0), t ∈ [0, 1]

w0(0) ≤ a, w0(1) ≤ g(w0(
1
2

)) =
∗
h (w0(

1
2

), w0(
1
2

)),

and

β′′ ≤ f(t, β) ≤
∗∗
F (t, β, w0), t ∈ [0, 1]

β(0) ≥ a, β(1) ≥ g(β(
1
2

)) ≥
∗
h (β(

1
2

), w0(
1
2

)),

imply that w0 and β are lower and upper solutions of the BVP (3.7) respectively.
It follows by Theorems 1.1 and 1.2 that there exists a unique solution w1 of the
BVP (3.7) such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [0, 1].

Continuing this process successively, we obtain a monotone sequence {wn} of
solutions satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ · · · ≤ wn(t) ≤ β(t), t ∈ [0, 1],

where each element wn of the sequence is a solution of the BVP

x′′ =
∗∗
F (t, x(t), wn−1(t)), t ∈ [0, 1] = J

x(0) = a, x(1) =
∗
h (x(

1
2

), wn−1(
1
2

)),



EJDE–2002/90 Bashir Ahmad, Rahmat Ali Khan, & Paul W. Eloe 9

and is given by

wn(t) = a(1− t)+
∗
h (wn(

1
2

), wn−1(
1
2

))t+
∫ 1

0

G(t, s)
∗∗
F (s, wn, wn−1)ds. (3.8)

Again, using the standard arguments employed in the last section, it follows
that

x(t) = a(1− t)+
∗
h (x(

1
2

), x(
1
2

))t+
∫ 1

0

G(t, s)
∗∗
F (s, x(s), x(s))ds

= a(1− t) + g(x(
1
2

))t+
∫ 1

0

G(t, s)f(s, x(s))ds.

Hence x(t) is the solution of the BVP (1.1). Now, we show that the convergence
of the sequence of iterates is of order k ≥ 2. For that, we set

en(t) = x(t)− wn(t), an(t) = wn+1(t)− wn(t), t ∈ [0, 1].

Note that en(t) ≥ 0, an(t) ≥ 0, en(t)− an(t) = en+1(t), and

en(0) = 0, en(1) = g(x(
1
2

))− h(wn(
1
2

), wn−1(
1
2

)).

Also, en(t) ≥ an(t) and hence by induction ekn(t) ≥ akn(t). Using the generalized
mean value theorem, we have

e′′n+1(t)
= x′′ − w′′n+1

=
[ k−1∑
i=0

∂i

∂xi
f(t, wn)

(x− wn)i

i!
+

∂k

∂xk
f(t, ξ)

(x− wn)k

k!

]
−
[ k−1∑
i=0

∂i

∂xi
f(t, wn)

(wn+1 − wn)i

i!
− ∂k

∂xk
φ(t, ξ)

(wn+1 − wn)k

k!

]
=

k−1∑
i=0

∂i

∂xi
f(t, wn)

(ein − ain)
i!

+
∂k

∂xk
f(t, ξ)

(en)k

k!
+

∂k

∂xk
φ(t, ξ)

(an)k

k!

≥
( k−1∑
i=0

∂i

∂xi
f(t, wn)

1
i!

k−1∑
i=0

ejna
i−1−j
n

)
en+1 + (

∂k

∂xk
f(t, ξ) +

∂k

∂xk
φ(t, ξ))

(en)k

k!

≥ ∂k

∂xk
F (t, ξ)

(en)k

k!
≥ −M‖en‖k, (3.9)
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where M is a bound on 1
k!

∂k

∂xk
F (t, ξ) for t ∈ [0, 1]. Thus, in view of (3.9), we

have

en+1(t)

=
(
g(x(

1
2

))− h(wn+1(
1
2

), wn(
1
2

))
)
t+
∫ 1

0

G(t, s)e′′n+1(t)ds

≤
(
g(x(

1
2

))− h(wn+1(
1
2

), wn(
1
2

))
)
t+M‖en‖k

∫ 1

0

|G(t, s)| ds

=
[ k−1∑
i=0

di

dxi
g(wn(

1
2

))
(x( 1

2 )− wn( 1
2 ))i

i!
+

dk

dxk
g(ξ(

1
2

))
(x( 1

2 )− wn( 1
2 ))k

k!

−
k−1∑
i=0

di

dxi
g(wn(

1
2

))
(wn+1( 1

2 )− wn( 1
2 ))i

i!

]
t+M1‖en‖k

=
[ k−1∑
i=0

di

dxi
g(wn(

1
2

))
(ein( 1

2 )− an( 1
2 ))i

i!
+

dk

dxk
g(ξ(

1
2

))
(en( 1

2 ))k

k!

]
t+M1‖en‖k

=
[ k−1∑
i=0

di

dxi
g(wn(

1
2

))
1
i!

k−1∑
i=0

ejn(
1
2

)ai−1−j
n (

1
2

))en+1(
1
2

)

+
dk

dxk
g(ξ(

1
2

))
(en( 1

2 ))k

k!

]
t+M1‖en‖k (3.10)

≤
[ k−1∑
i=1

M

(β − α)i−1

1
i!

i−1∑
j=0

ei−1−j
n (

1
2

)ajn(
1
2

)
]
en+1(

1
2

) +M2‖en‖k +M1‖en‖k.

Letting

Pn(t) =
k−1∑
i=1

M

(β − α)i−1

1
i!

i−1∑
j=0

ei−1−j
n (

1
2

)ajn(
1
2

),

we observe that

lim
n→∞

Pn(t) = lim
n→∞

k−1∑
i=1

M

(β − α)i−1

1
i!

i−1∑
j=0

ei−1−j
n (

1
2

)ajn(
1
2

) = M <
1
3
.

Therefore, we can choose λ < 1/3 and n0 ∈ N such that for n ≥ n0, we have
Pn(t) < λ and consequently (3.10) becomes

‖en+1‖ < λ‖en+1‖+M3‖en‖k.

Solving algebraically, we obtain

‖en+1‖ ≤
M3

1− λ
‖en‖k,

where M3 = M1+M2, M1 provides bound for M
∫ 1

0
|G(t, s)|ds, and M2 provides

bound for
dk

dxk
g(ξ(

1
2

))
1
k!
.
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