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A note on a Liouville-type result for a system of

fourth-order equations in RN ∗

Ana Rute Domingos & Yuxia Guo

Abstract

We consider the fourth order system ∆2u = vα,∆2v = uβ in RN , for
N ≥ 5, with α ≥ 1, β ≥ 1, where ∆2 is the bilaplacian operator. For
1/(α + 1) + 1/(β + 1) > (N − 4)/N we prove the non-existence of non-
negative, radial, smooth solutions. For α, β ≤ (N + 4)/(N − 4) we show
the non-existence of non-negative smooth solutions.

1 Introduction

In this work we consider the fourth order nonlinear system

∆2u = vα

∆2v = uβ
(1.1)

in the whole space RN . We are interested in Liouville type results, i.e. we
want to determine for which positive real values of the exponents α and β is
(u, v) = (0, 0) the only non-negative solution (u, v) of the system. In here, the
solution is taken in the classical sense, i.e. u, v ∈ C4(RN ).

This type of problems were studied for the Laplacian operator. Mitidieri [7]
proved that if α, β > 1 and

1
α+ 1

+
1

β + 1
>
N − 2
N

, (1.2)

then the system
∆u+ vα = 0

∆v + uβ = 0
(1.3)

has no non-negative, radial, C2 solutions in RN . Souto in [10] showed that if

1
α+ 1

+
1

β + 1
>
N − 2
N − 1

, α, β > 0,
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then (1.3) has no positive solutions. A further result was given in a paper of
Figueiredo and Felmer [2]. The authors proved that if

0 < α, β ≤ N + 2
N − 2

, but not both equal to
N + 2
N − 2

then system (1.3) has no positive C2 solutions.
We point out that it is still an open problem to know whether (1.3) has no

non-negative solutions under assumption

N − 2
N − 1

≥ 1
α+ 1

+
1

β + 1
>
N − 2
N

and (α >
N + 2
N − 2

or β >
N + 2
N − 2

).

Similar questions remain unsolved in the case where the Laplacian operator in
(1.3) is replaced by other self–adjoint operators. For example, concerning the
single equation for the bilaplacian operator, Mitidieri [7] also proved that the
problem

∆2u = uα, ∆u ≤ 0, in RN

has no radial C4 positive solution, if 1 < α < (N + 4)/(N − 4). Using the
method of the moving planes, for the same range of α, Lin [6] showed that

∆2u = uα in RN , (1.4)

has no C4 positive solutions. Later on [11], Xu proved the same result using
instead the method of the moving spheres.

We recall that if N ≥ 5 and α = (N + 4)/(N − 4) then problem (1.4) has a
whole family of positive solutions explicitely given by

u(x) =
c1

(1 + c2|x|2)
N−4

2

,

where c1 and c2 are some appropriate positive constants.
A natural question that rises is to analyse the behaviour of system (1.1).

Here we show that the quoted results in [2, 7] for system (1.3) can be extended
to system (1.1). Precisely, we prove the following.

Theorem 1.1 If N ≥ 5, α, β ≥ 1, but not both equal to 1 are such that

1
α+ 1

+
1

β + 1
>
N − 4
N

, (1.5)

then system (1.1) has no radial non-negative solutions in C4(RN ).

Theorem 1.2 I) If 1 ≤ α, β ≤ N+4
N−4 but not both equal to 1 neither to N+4

N−4 ,
then the only non-negative C4 solution of system (1.1) in the whole of RN

is the trivial one: (u, v) = (0, 0).

II) If α = β = N+4
N−4 , then u and v are radially symmetric with respect to some

point of RN .
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Our proofs are strongly motivated by the works of Figueiredo and Felmer
[2], Lin [6], Xu [11] and Mitidieri [7]. Indeed, the proof of Theorem 1 presented
in section 2 uses an idea of Mitidieri, which relies on the application of a Rellich
type identity. Section 3 is devoted to the proof of the fact that if (u, v) is a
non-negative, C4 solution of (1.1) then u and v are super-harmonic; here we
extend the result in [6] for the single equation. This result plays a key role in
our work. In section 4 we apply the method of the moving planes in order to
prove Theorem 2. In our case, the main difficulty in applying the method stems
from the fact that the maximum principle cannot be applied directly to (u, v);
to overcome this, we follow an idea of Xu [11] for the single equation and apply
the moving planes method for both (−∆u,−∆v) and (u, v). Contrarily to [2]
we use no additional change of variables except for Kelvin transforms.

As far as we know this is the first work concerning Liouville type results for
a system involving the bilaplacian operator. However, some related questions
remain unsolved. For example, it is not clear for us whether Souto’s result for
system (1.3) can be extended to system (1.1).

2 General auxiliary facts

In this section we state some general results that will be useful in the sequel.

Lemma 2.1 Let u ∈ C2(RN \ {0}) be such that u < 0 and ∆u ≥ 0. Then, for
each ε > 0, one has

u(x) ≤M(ε) := max{u(y) : |y| = ε}, 0 < |x| ≤ ε.

The proof of this lemma is included in the proof of Lemma 1.1 of [2] and is
a consequence of the so called Hadamard Three Spheres Theorem ([8]).

Lemma 2.2 Suppose y = y(r) ≥ 0 satisfies

y′′ +
N − 1
r

y′ + φ(r) ≤ 0, r > 0,

with φ non-negative and non-increasing and y′ bounded for r near 0. Then, for
r > 0,

y′(r) ≤ 0, (2.1)
ry′(r) + (N − 2)y(r) ≥ 0, (2.2)

y(r) ≥ cr2φ(r), (2.3)

where c = c(N).

Proof. The proofs of (2.2) and (2.3) can be found in [7, Lemma 3.1] and in [9,
Lemma 2.7] (see also [11, Lemma 3.1]) respectively. It remains to prove (2.1).
Multiplying the inequality in the Lemma by rN−1 we get

(rN−1y′(r))′ ≤ −rN−1φ(r).
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Integrating from 0 to r we obtain

rN−1y′(r) ≤ −
∫ r

o

sN−1φ(s) ds ≤ 0.

�

3 Non existence of radial solutions. The super-
harmonic property of the solutions

In this section we prove that system (1.1) does not admit non-negative radial
solutions. For that matter we use the following result.

Theorem 3.1 If (u, v) is a C4(RN ), non-negative solution of system (1.1), with
α, β ≥ 1, but not both equal to 1, we have:

∆u ≤ 0 and ∆v ≤ 0.

This theorem is the most powerful tool of the present work. We postpone
its proof to section 3.

The proof of Theorem 1.1 stated in the Introduction makes use of the follow-
ing Rellich type identity in a smooth bounded domain Ω, obtained by Mitidieri
in [7]:

R2(u, v) = R1(∆u, v) +R1(u,∆v)−
∫
∂Ω

∆u∆v(x, n)dσ+N

∫
Ω

∆u∆v dx (3.1)

where

R2(u, v) =
∫

Ω

(∆2u(x,∇v) + ∆2v(x,∇u)) dx,

R1(u, v) =
∫
∂Ω

(
∂u

∂n
(x,∇v) +

∂v

∂n
(x,∇u)− (∇u,∇v)(x, n))dσ

+ (N − 2)
∫

Ω

(∇u,∇v)dx,

n is the outward unit normal to ∂Ω and (·, ·) is the inner product in RN .
In what follows, for a rotationally symmetric function,

∆ =
d2

dr2
+
N − 1
r

d

dr

and ′ will denote differentiation with respect to r.
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Lemma 3.2 Let (u, v) be a non-negative, radial, C4 solution of system (1.1).
Then for all r > 0 we have

(
N − 4

2
− N

α+ 1
)
∫ r

0

vα+1(s)sN−1 ds+ (
N − 4

2
− N

β + 1
)
∫ r

0

uβ+1(s)sN−1 ds

=− rN

α+ 1
vα+1(r)− rN

β + 1
uβ+1(r) + rN (∆u)′(r)v′(r) + rN (∆v)′(r)u′(r)

− N − 4
2

rN−1(∆u)′(r)v(r) +
N − 4

2
rN−1(∆v)′(r)u(r)

− rN (∆u)(r)(∆v)(r) +
N

2
rN−1(∆v)(r)u′(r) +

N

2
rN−1(∆u)(r)v′(r).

Proof. We obtain the desired identity by taking into account that u and v are
radial and after an integration by parts in (3.1), where we take Ω = Br(0). �

Lemma 3.3 Let (u, v) be a non-negative, radial, C4 solution of system (1.1).
Then there exists a positive constant C such that for all r > 0,

u(r) ≤ Cr−
4(α+1)
αβ−1 , v(r) ≤ Cr−

4(β+1)
αβ−1 , (3.2)

|∆u(r)| ≤ Cr−2− 4(α+1)
αβ−1 , |∆v(r)| ≤ Cr−2− 4(β+1)

αβ−1 (3.3)

|rN−1(∆v)′(r)u(r)|, |rN−1(∆v)(r)u′(r)|, |rN−1(∆u)′(r)v(r)|,
|rN−1(∆u)(r)v′(r)|, |rN (∆v)′(r)u′(r)|, |rN (∆u)′(r)v′(r)| (3.4)

≤ CrN−4− 4(α+β+2)
αβ−1 .

Proof. Since u and v are radial we can write

u′′(r) +
N − 1
r

u′(r) + w(r) = 0, w′′(r) +
N − 1
r

w′(r) + vα(r) = 0

v′′(r) +
N − 1
r

v′(r) + z(r) = 0, z′′(r) +
N − 1
r

z′(r) + uβ(r) = 0

u′(0) = w′(0) = v′(0) = z′(0) = 0,

where w := −∆u and z := −∆v. From now on we denote by c some positive
constant possibly different from place to place. By Theorem 3.1 w and z are
non–negative functions. Then by (2.3),

u(r) ≥ cr2w(r), w(r) ≥ cr2vα(r), v(r) ≥ cr2z(r), z(r) ≥ cr2uβ(r).

So
uβ(r) ≤ cr−2z(r) ≤ cr−4v(r) ≤ cr−4− 2

αw
1
α (r) ≤ cr−4− 4

αu
1
α (r),

which implies that u(r) ≤ cr−4 α+1
αβ−1 . Then w(r) ≤ cr−2− 4(α+1)

αβ−1 , v(r) ≤ cr−4 β+1
αβ−1

and finally we obtain z(r) ≤ cr−2− 4(β+1)
αβ−1 .
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From (2.1), we know that z′ ≤ 0. Also, rz′(r) + (N − 2)z(r) ≥ 0 (cf. (2.2)).
Multiplying this by rN−2u and using the estimates that we obtained before,
yields

|rN−1z′(r)u(r)| = −rN−1z′(r)u(r) ≤ (N − 2)rN−2z(r)u(r) ≤ crN−4− 4(α+β+2)
αβ−1 .

Now, multiplying by rN−1u′ the stated inequality and using the previous esti-
mate we get

rNz′(r)u′(r) ≤ crN−4− 4(α+β+2)
αβ−1 .

Again from (2.1), u′ ≤ 0, so that

|rNz′(r)u′(r)| ≤ crN−4− 4(α+β+2)
αβ−1 .

Using similar arguments we obtain the remaining estimates in the statement of
the lemma. �

Proof of Theorem 1.1. We multiply the first equation of system (1.1) by v
and integrate in Br(0), for r > 0. We obtain∫
Br(0)

vα+1 dx =
∫
Br(0)

∆2u v dx

= −
∫
Br(0)

(∇(∆u),∇v) dx+
∫
∂Br(0)

∂(∆u)
∂n

v dσ

=
∫
Br(0)

∆u∆v dx−
∫
∂Br(0)

∂v

∂n
∆u dσ +

∫
∂Br(0)

∂(∆u)
∂n

v dσ.

Then∫ r

0

vα+1(s)sN−1 ds =∫ r

0

(∆u)(s)(∆v)(s)sN−1 ds−∆u(r)v′(r)rN−1 + (∆u)′(r)v(r)rN−1.

Similarly,∫ r

0

uβ+1(s)sN−1 ds

=
∫ r

0

(∆v)(s)(∆u)(s)sN−1 ds− (∆v)(r)u′(r)rN−1 + (∆v)′(r)u(r)rN−1.

So ∫ r

0

vα+1(s)sN−1 ds

=
∫ r

0

uβ+1(s)sN−1 ds+ (∆v)(r)u′(r)rN−1 − (∆v)′(r)u(r)rN−1

−∆u(r)v′(r)rN−1 + (∆u)′(r)v(r)rN−1.
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Now, we observe that the assumption (1.5) can be written as

(α+ 1)(β + 1)
αβ − 1

>
N

4
.

Thus from the estimates (3.2)-(3.4) we see that the boundary terms in (3.5) and
also in the identity of Lemma 3.2 all have zero limits as r → +∞. Using (3.5)
in Lemma 3.2 and those facts we conclude that

(N − 4− N

α+ 1
− N

β + 1
)
∫ r

0

uβ+1(s)sN−1 ds = o(1) (r → +∞).

Passing to the limit we obtain u = 0 and, as a consequence, also v = 0. �

4 Proof of Theorem 3.1

Let (u, v) be a non-negative solution of system (1.1). We define w and z as
follows:

w(x) := −∆u(x) and z(x) := −∆v(x), (4.1)

for x ∈ RN . We can write system (1.1) as a system of four second order equations

∆u+ w = 0
∆w + vα = 0
∆v + z = 0

∆z + uβ = 0.

(4.2)

Let ū be the spherical average of u, i.e.

ū(r) :=
1

ωNNrN−1

∫
∂Br(0)

u dσ,

where ωN denotes the measure of the unit sphere in RN . Similarly we define
v̄, w̄, z̄ the spherical averages of v, w, z respectively. From (4.2) and the Hölder
inequality, it is easy to see that

∆ū+ w̄ = 0 (4.3)
∆w̄ + v̄α ≤ 0 (4.4)
∆v̄ + z̄ = 0 (4.5)

∆z̄ + ūβ ≤ 0, (4.6)

where ∆f = f ′′ + N−1
r f ′, f ′ = df

dr , for f = ū, w̄, v̄, z̄.

In order to prove Theorem 3.1 we begin with some auxiliary lemmas.
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Lemma 4.1 Let N ≥ 2. Consider p, q > 0 such that pq 6= 1 and let (lk) be the
sequence defined by l0 = 2 and

lk+1 = p(qlk + 4) + 4, k ≥ 0.

Then

i) lk = 2(pq)k + 4(p+ 1)((pq)k − 1)/(pq − 1),

ii) (pqlk + 4p+N)(pqlk + 4p+ 2)(pqlk + 4p+N + 2)(pqlk + 4p+ 4) ≤ (N +
2 + 2pq + 4p)4(k+1), for k = 0, 1, 2, . . .

iii) If pq > 1 then lk → +∞.

Lemma 4.2 Let p, q > 0 be such that pq 6= 1. Suppose b0 = 0 and define the
sequence (bk) inductively by

bk+1 = pqbk + 4p(k + 1) + 4(k + 1), for k ≥ 0.

Then

bk = 4(p+ 1)
[ (pq)k+1 − (k + 1)pq + k

(pq − 1)2

]
for all non-negative integers k.

Lemma 4.3 Let p, q > 0 be such that pq 6= 1. Suppose n0 = 0 and define the
sequence (nk) inductively by nk+1 = pqnk + p. Then

nk = p
(pq)k − 1
pq − 1

for all non-negative integers k.

The three lemmas above can be proved by induction.

Lemma 4.4 Let N ≥ 2. Consider p, q > 0 such that pq > 1, let (bk), (lk) and
(nk) be the sequences defined in the previous lemmas, c0 a positive constant and
z0 be a non-negative constant. Define the sequence as follows: r0 = 0 and

rk =
(z02qnk−1+1(N + 2 + 2pq + 4p)qbk−1(N + qlk−1)(2 + qlk−1)

cp
k−1qk

0

) 1
qlk−1+2

for k ≥ 1. Then there exists a positive number a such that limk→∞ rk = a.

Proof. We can write rk = z
1

qlk−1+2

0 ·1rk ·2rk ·3rk ·4rk where

1rk := 2
qnk−1+1
qlk−1+2 , 2rk := (N + 2 + 2pq + 4p)

qbk−1
qlk−1+2 ,

3rk := [(N + qlk−1)(2 + qlk−1)]
1

qlk−1+2 , 4rk := c
− pk−1qk

qlk−1+2

0 .
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We have
qnk−1 + 1
qlk−1 + 2

→ p

2pq + 4p+ 2
,

and
qbk−1

qlk−1 + 2
→ 2pq(p+ 1)

(pq − 1)2 + 2(p+ 1)(pq − 1)
.

From this we deduce that both 1rk and 2rk converge. Concerning the third
sequence,

lim 3rk = lim[(N + qlk−1)(2 + qlk−1)]
1

qlk−1+2 = 1.

Finally, pk−1qk

qlk−1+2 →
(pq−1)

2(pq−1)+4(p+1) yields

lim 4rk := c
− (pq−1)

2(pq−1)+4(p+1)
0 .

Since lk → +∞, z
1

qlk−1+2

0 → 1 and we are done. �

Proof of Theorem 3.1 According to (4.1), we want to prove that w ≥ 0
and z ≥ 0. Suppose by contradiction that there exists x0 such that w(x0) < 0.
Without loss of generality suppose that x0 = 0. Multiplying (4.4) by rN−1, we
get

rN−1w̄rr + (N − 1)rN−2w̄r ≤ −rN−1v̄α ≤ 0,

hence
(rN−1w̄r)r ≤ 0.

By integrating the last inequality, we obtain w̄r ≤ 0. Then w̄ is non-increasing
and we have

w̄(r) ≤ w̄(0) < 0, for all r > 0,

since, from the definition, w̄(0) = w(0). So, from (4.3),

∆ū = −w̄(r) ≥ −w̄(0).

If we multiply the last inequality by rN−1 and integrate twice, we get

ū(r) ≥ cr2, for all r > 0, (4.7)

where c := −w̄(0)/(2N) > 0. Without loss of generality, we can assume that
c < 1. Next we prove by induction that

ū(r) ≥ c(αβ)k

2nk(N + 2 + 2αβ + 4α)bk
rlk , for all r > rk, (4.8)

where lk, bk, nk and rk are defined in Lemmas 4.1, 4.2, 4.3 and 4.4 with p = α,
q = β, z0 := z̄(0) if z̄(0) > 0 and z0 := 0 otherwise and c0 := c.
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We have (4.8) for k = 0 by (4.7), since l0 = 2, b0 = 0, n0 = 0 and r0 = 0.
Assume that (4.8) is true for some k. From (4.6),

∆z̄ ≤ − cα
kβk+1

2βnk(N + 2 + 2αβ + 4α)βbk
rβlk .

If we multiply both sides by rN−1 and integrate twice, we obtain

z̄(r) ≤ − cα
kβk+1

2βnk(N + 2 + 2αβ + 4α)βbk(βlk +N)(βlk + 2)
rβlk+2 + z̄(0).

Then, for all

r ≥
(
z02βnk+1(N + 2 + 2αβ + 4α)βbk(βlk +N)(βlk + 2)

cαkβk+1

) 1
βlk+2

we have

z̄(r) ≤ − cα
kβk+1

2βnk+1(N + 2 + 2αβ + 4α)βbk(βlk +N)(βlk + 2)
rβlk+2.

From (4.5) we get

∆v̄ ≥ cα
kβk+1

2βnk+1(N + 2 + 2αβ + 4α)βbk(βlk +N)(βlk + 2)
rβlk+2.

After multiplying the last inequality by rN−1 and integrating twice we obtain

v̄(r) ≥ cα
kβk+1

2βnk+1Dk
rβlk+4 + v̄(0) ≥ cα

kβk+1

2βnk+1Dk
rβlk+4,

where

Dk := (N + 2 + 2αβ + 4α)βbk(βlk +N)(βlk + 2)(βlk +N + 2)(βlk + 4).

From (4.4) we have

∆w̄ ≤ − c(αβ)k+1

2αβnk+αDα
k

rαβlk+4α.

Once more, multiplying both sides of the above inequality and integrating twice,
we obtain, since w̄(0) < 0,

w̄(r) ≤ − c(αβ)k+1

2αβnk+αDα
k (αβlk + 4α+N)(αβlk + 4α+ 2)

rαβlk+4α+2.

At last, from (4.3) we have

∆ū ≥ c(αβ)k+1

2αβnk+αDα
k (αβlk + 4α+N)(αβlk + 4α+ 2)

rαβlk+4α+2.
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Using the same procedure that we used before, we get

ū(r) ≥ c(αβ)k+1

2αβnk+αDα
kEk

rαβlk+4α+4 + ū(0) ≥ c(αβ)k+1

2αβnk+αDα
kEk

rαβlk+4α+4

where

Ek := (αβlk + 4α+N)(αβlk + 4α+ 2)(αβlk + 4α+N + 2)(αβlk + 4α+ 4).

Taking into account that α ≥ 1,

Dk ≤(N + 2 + 2αβ + 4α)βbk(αβlk + 4α+N)(αβlk + 4α+ 2)
× (αβlk + 4α+N + 2)(αβlk + 4α+ 4).

Thus, from Lemma 4.1 ii),

ū(r) ≥ c(αβ)k+1

2αβnk+α(N + 2 + 2αβ + 4α)αβbk+4α(k+1)+4(k+1)
rαβlk+4α+4.

According to the definition of (lk), (bk) and (nk) we have (4.8) for k + 1.
Now, fix k0 such that rk < 2 lim rk, for all k ≥ k0. Take A > 1 such that

2A(N + 2 + 2αβ + 4α)
4(α+1)
αβ−1 > 2 lim rk.

Taking r = 2c−1A(N + 2 + 2αβ + 4α)
4(α+1)
αβ−1 in (4.8), for all k ≥ k0 we get

ū(r) ≥ c(αβ)k−lk2lk−nkAlk(N + 2 + 2αβ + 4α)
4(α+1)
αβ−1 lk−bk .

The right hand member of the inequality goes to infinity, when k → +∞, since

lk − nk =
2(αβ)k+1 + (3α+ 2)(αβ)k − (3α+ 4)

αβ − 1
→ +∞,

(αβ)k − lk → −∞

and also since 4(α+1)
αβ−1 lk − bk equals

4(α+ 1)(αβ)k+1

(αβ − 1)2
[1 +

4α+ 2
αβ

+
k + 1
(αβ)k

− 4α+ 4 + k

(αβ)k+1
]→ +∞.

This is a contradiction, since ū(r) is a constant. Thus w ≥ 0, as claimed.
The case when there exists y0 such that z(y0) < 0 can be treated in a similar

way, and this concludes the proof of Theorem 3.1. �

For later purposes we prove the following results.

Lemma 4.5 Let 1 ≤ α, β ≤ N+4
N−4 be such that αβ 6= 1.

1) There exists a sequence (Ri) such that R3
i w̄
′(Ri)→ 0 as Ri → +∞.

2) There exists a sequence (R̃i) such that R̃3
i z̄
′(R̃i)→ 0 as R̃i → +∞.
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Proof. From Theorem 3.1, w and z are non-negative functions. Similarly to
Lemma 3.3, (2.3) allows to deduce the existence of a positive constant c such
that

w̄(r) ≤ cr−2−4 α+1
βα−1 , z̄(r) ≤ cr−2−4 β+1

βα−1 . (4.9)

We prove 1). The proof of 2) is similar thanks to the second inequality in (4.9).
Suppose by contradiction that there exist δ0 > 0 and r0 > 0 such that for

all R > r0 we have −R3w̄′(R) ≥ δ0 > 0. Then

δ0(R− r0) ≤ −
∫ R

r0

s3w̄′(s)ds

= −R3w̄(R) + r3
0w̄(r0) + 3

∫ R

r0

s2w̄(s)ds

< 3
∫ R

r0

s2w̄(s)ds+ C ≤ 3c
∫ R

r0

s−4 α+1
βα−1 ds+ C.

In case 4 α+1
βα−1 = 1 (which is only possible if N = 5 or N = 6), we get

δ0(R− r0) < 3c(logR− log r0) + C.

Dividing both sides of this inequality by R1/2 and passing to the limit as R →
+∞ we get a contradiction. Assume now 4 α+1

βα−1 6= 1. Then

δ0(R− r0) < c
βα− 1

α(β − 4)− 5
(R

α(β−4)−5
βα−1 − r

α(β−4)−5
βα−1

0 ) + C.

Dividing both sides of the previous inequality by R
2
3 , we get

δ0(R
1
3−r0R

− 2
3 ) ≤ C βα− 1

α(β − 4)− 5
(R

α(β−12)−13
3βα−3 −r

α(β−4)−5
βα−1

0 R−
2
3 )+CR−

2
3 . (4.10)

Since β ≤ 9 for N ≥ 5, again we obtain a contradiction, thus proving the lemma.
�

Lemma 4.6 Let (u, v) be a non-negative C4(RN ) solution of system (1.1), with
1 ≤ α, β ≤ N+4

N−4 and αβ 6= 1. Then

|x|4−Nvα(x) and |x|4−Nuβ(x) ∈ L1(RN \B1(0)).

For the proof of this lemma we proceed as in [11, Proposition 3.5], thanks to
Lemma 4.5.

5 Proof of Theorem 1.2

Let (u, v) be a C4(RN ) non-negative, nontrivial solution of system (1.1). By
Theorem 3.1 and the maximum principle, we have

u(x) > 0 and v(x) > 0 in RN . (5.1)
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So (u, v) is a positive solution of system (1.1). We introduce their Kelvin trans-
forms

u∗(x) = |x|4−Nu(
x

|x|2
), v∗(x) = |x|4−Nv(

x

|x|2
),

for x ∈ RN \ {0}. Then

∆u∗(x) = |x|−N∆u(
x

|x|2
)− 4
|x|N−2

(∇u(
x

|x|2
),

x

|x|2
)− 2(N − 4)|x|2−Nu(

x

|x|2
)

and at infinity,

∆u∗(x) = −2(N − 4)|x|2−Nu0 −
N∑
j=1

aj
|x|N

xj +O(
1
|x|N

),

where u0 = u(0), ai = ∂u
∂xi

(0). Consequently, for large |x|, ∆u∗(x) < 0. Simi-
larly to ∆v∗. Without loss of generality, we assume that

∆u∗(x) ≤ 0 and ∆v∗(x) ≤ 0, ∀x ∈ RN \B1(0). (5.2)

In order to prove that ∆u∗(x) and ∆v∗(x) are non-positive in B1(0) \ {0}, we
begin with an auxiliary lemma.

Lemma 5.1 Let f ∈ C2(B1(0) \ {0}) be such that f = 0 on ∂B1(0) and∫
B1(0)

f∆ϕdx ≥ 0, (5.3)

for all ϕ ∈ C2(B1(0)) ∩ C1(B1(0)) such that ϕ = 0 on ∂B1(0) and ϕ ≥ 0 in
B1(0). Then f ≤ 0 in B1(0) \ {0}.

Proof. Suppose by contradiction that f > 0 over some ball B ⊂ B1(0) \ {0}.
Fix any nonzero, non-negative function ψ ∈ D(B) and denote by ψ̃ its extension
by zero. Consider ϕ ∈ C2(B1(0)) ∩ C1(B1(0)), ϕ ≥ 0, such that −∆ϕ = ψ̃ in
B1(0), ϕ = 0 on ∂B1(0). By the maximum principle, ϕ ≥ 0. Then

0 <
∫
B

ψf dx =
∫
B1(0)

ψ̃f dx = −
∫
B1(0)

f∆ϕdx.

This contradicts (5.3). �

The argument for the proof of the next lemma was partially taken from [6].
Since we could not find a precise reference for the complete proof, we present
here a proof pointed to us by Prof. J.Q. Liu, to whom we acknowledge.

Lemma 5.2 Let (u, v) be a C4(RN ) positive solution of system (1.1). Then
(u∗, v∗) satisfies

∆2u∗ = |x|α(N−4)−(N+4)(v∗)α

∆2v∗ = |x|β(N−4)−(N+4)(u∗)β
(5.4)

in RN \ {0}. Moreover

∆u∗(x) < 0 and ∆v∗(x) < 0, (5.5)

for all x ∈ RN \ {0}.
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Proof. An easy computation allows us to establish (5.4). From (5.2) we are
led to prove the second conclusion in B1(0)\{0}. Let w ∈ C2(B1(0))∩C1(B1(0))
be such that ∆w = 0 in B1(0), w = ∆u∗ on ∂B1(0). By the maximum principle,
w ≤ 0 in B1(0). Let ϕ ∈ C2(B1(0)) ∩ C1(B1(0)) be such that ϕ = 0 on ∂B1(0)
and ϕ ≥ 0 in B1(0) and, for each ε > 0, let ηε ∈ D(RN ) be such that for
i = 1, 2, 3, 4,

ηε(x) = 1 for |x| ≥ 2ε, ηε(x) = 0 for |x| ≤ ε, |Diηε| ≤ cε−i,

where c is a positive constant independent of ε. From now on we denote Bs =
Bs(0), for s = R, 2ε, ε. Multiplying the first equation of (5.4) by ϕηε, we get∫

B1

ϕηε|x|α(N−4)−(N+4)(v∗)α(x) dx =
∫
B1

ϕηε∆2u∗ dx

=
∫
B1

ϕηε∆(∆u∗ − w) dx.

After two integrations by parts in the last integral and observing that both ϕηε
and (∆u∗ − w) vanish on the boundary of B1(0), we obtain∫

B1

ϕηε|x|α(N−4)−(N+4)(v∗)α(x) dx

=
∫
B1

{ηε∆ϕ+ 2(∇ϕ,∇ηε) + ϕ∆ηε}(∆u∗ − w) dx. (5.6)

Let ψ = 2(∇ϕ,∇ηε) +ϕ∆ηε. So ψ = 0 for |x| ≤ ε and |x| ≥ 2ε. Then, for small
ε, ∫

B1

ψ∆u∗ dx =
∫
B1

u∗∆ψ dx =
∫
B2ε\Bε

u∗∆ψ dx

=
∫
B2ε\Bε

|x|
β(N−4)−(N+4)

β u∗(x)|x|
(N+4)−β(N−4)

β ∆ψ dx

≤
(∫

B2ε\Bε
|x|β(N−4)−(N+4)(u∗)β(x) dx

)1/β

×
(∫

B2ε\Bε
|x|

(N+4)−β(N−4)
β−1 |∆ψ|

β
β−1 dx

)(β−1)/β

.

On the other hand,∫
B1

|x|β(N−4)−(N+4)(u∗)β(x)dx =
∫
B1

|x|−(N+4)uβ(
x

|x|2
)dx

=
∫
RN\B1

|y|−(N+4)uβ(y)dy.

Thus, from Lemma 4.6 there exists a constant c such that

|
∫
B2ε\Bε

ψ∆u∗ dx| ≤ c
(∫

B2ε\Bε
|x|

(N+4)−β(N−4)
β−1 |∆ψ|

β
β−1 dx

)(β−1)/β

.
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Since |∆ψ| ≤ cε−4 for ε small, we get

|
∫
B2ε\Bε

ψ∆u∗ dx| ≤ cε4/β → 0 as ε→ 0.

Then, passing to the limit in (5.6) yields∫
B1

∆ϕ(∆u∗ − w) dx =
∫
B1

ϕ|x|α(N−4)−(N+4)(v∗)α(x) dx > 0.

From Lemma 5.1 we conclude that ∆u∗ ≤ w ≤ 0 in B1(0)\{0}. Since ∆2u∗ > 0,
by the maximum principle we must have ∆u∗ < 0 in RN \{0}. One can proceed
similarly with ∆v∗. �

We now apply the moving planes method. We start by considering planes
parallel to x1 = 0, coming from −∞. From now on, for x ∈ RN we write
x = (x1, x

′) where x′ := (x2, · · · , xN ) ∈ RN−1. For each λ we define

Σλ := {x := (x1, x
′) ∈ RN : x1 < λ}, Tλ := ∂Σλ.

For x = (x1, x
′) ∈ Σλ, let xλ := (2λ−x1, x

′) be the reflected point with respect
to Tλ. We also consider

eλ := (2λ, 0) and Σ̃λ := Σλ \ {eλ}.

Finally, for x ∈ Σ̃λ we define Uλ(x) = u∗(xλ)−u∗(x) and Vλ(x) = v∗(xλ)−v∗(x).
In what follows we take λ ≤ 0. Using the invariance of the Laplacian under

a reflection together with the mean value theorem and the fact that |xλ| ≤ |x|,
it follows from (5.4) that

∆2Uλ ≥ c(x, λ)Vλ(x)

∆2Vλ ≥ ĉ(x, λ)Uλ(x),
(5.7)

for x ∈ Σ̃λ, where c(x;λ) = α|x|α(N−4)−(N+4)(ψ(x, λ))α−1, with ψ(x;λ) a real
number between v∗(xλ) and v∗(x), and similarly

ĉ(x;λ) = β|x|β(N−4)−(N+4)(ψ̂(x, λ))β−1,

with ψ̂(x;λ) a real number between u∗(xλ) and u∗(x). From (5.1) we conclude
that both c(x;λ) and ĉ(x;λ) are positive.

Our next goal is to see that we can start the process of the moving planes.
For that matter we begin with some auxiliary facts.

Definition. Let m ∈ N. We say that a C2 function in a neighborhood of
infinity f has a harmonic asymptotic expansion at infinity if:

f(x) =
1
|x|m

(a0 +
m+2∑
i=1

aixi
|x|2

) +O(
1

|x|m+2
),

fxi(x) = −ma0
xi
|x|m+2

+O(
1

|x|m+2
),

fxi,xj (x) = O(
1

|x|m+2
)

(5.8)
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where ai ∈ R, for i = 0, . . . ,m+ 2.

We observe that both u∗ and v∗ have harmonic asymptotic expansions at
infinity, with m = N − 4 and a0 > 0. Also (−∆u∗) and (−∆v∗) have harmonic
asymptotic expansions at infinity with m = N − 2 and a0 > 0.

Lemma 5.3 Let f be a function in a neighborhood of infinity satisfying the
asymptotic expansion (5.8), with a0 > 0. Then there exist constants λ̃1 < 0,
R1 > 0 such that, if λ ≤ λ̃1, then

f(x) < f(xλ) for x1 < λ, x 6∈ BR1(eλ).

Lemma 5.4 Let f be a C2 positive solution of −∆f = F (x) in |x| > R,
where f has a harmonic asymptotic expansion (5.8) at infinity, with a0 > 0.
Suppose that, for some negative λ0 and for every (x1, x

′) with x1 < λ0,

f(x1, x
′) < f(2λ0 − x1, x

′) and F (x1, x
′) ≤ F (2λ0 − x1, x

′).

Then there exist ε > 0, S > R such that

(i) fx1(x1, x
′) > 0 in |x1 − λ0| < ε, |x| > S,

(ii) f(x1, x
′) < f(2λ− x1, x

′) in x1 < λ0 − 1
2ε < λ, |x| > S,

for all x ∈ Σλ, λ ≥ λ1 with |λ1 − λ0| < c0ε, where c0 is a positive number
depending on λ0 and f .

We refer the reader to [1, Lemmas 2.3 and 2.4] for the proof.

Proposition 5.5 There exists λ1 < 0 such that if λ ≤ λ1 then ∆Uλ(x) < 0,
∆Vλ(x) < 0, Uλ(x) > 0 and Vλ(x) > 0 in Σ̃λ.

Proof. From Lemma 5.3, there exists λ̃1 < 0 and R1 > 0 such that ∆Uλ(x) <
0, ∆Vλ(x) < 0, Uλ(x) > 0 and Vλ(x) > 0 in Σ̃λ \BR1(eλ), for all λ ≤ λ̃1.

By Lemma 5.2, ∆u∗(x) < 0 in RN \ {0}. Since

∆(∆u∗)(x) = |x|α(N−4)−(N+4)(v∗)α(x) > 0,

Lemma 2.1 allows us to conclude that

∆u∗(x) ≤M(R1) := max{∆u∗(y) : |y| = R1}, ∀x : 0 < |x| < R1.

If x ∈ BR1(eλ) \ (eλ) then |x − eλ| = |xλ| < R1. So, for x ∈ BR1(eλ) \ (eλ)
we have ∆u∗(xλ) ≤ M(R1). From the fact that ∆u∗(x) → 0 as |x| → +∞, we
conclude that there exists R2 > 0 such that ∆u∗(x) > M(R1)/2, for |x| > R2.
Let λ̄1 := min{−R1,−R2}. Then, for all λ < λ̄1,

∆Uλ(x) = ∆u∗(xλ)−∆u∗(x) < M(R1)− M(R1)
2

< 0,
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for x ∈ BR1(eλ) \ (eλ). Similarly, let λ̄2, λ̄3, λ̄4 < 0 be such that

∆Vλ(x) = ∆v∗(xλ)−∆v∗(x) < M ′(R1)−M ′(R1)/2 < 0, for x ∈ BR1(eλ)

for all λ < λ̄2,

Uλ(x) = u∗(xλ)− u∗(x) > m(R1)−m(R1)/2 > 0

for x ∈ BR1(eλ) and all λ < λ̄3,

Vλ(x) = v∗(xλ)− v∗(x) > m′(R1)−m′(R1)/2 > 0

for x ∈ BR1(eλ) and all λ < λ̄4, where

M ′(R1) := max{∆v∗(y) : |y| = R1}, m(R1) := min{u∗(y) : |y| = R1},
m′(R1) := min{v∗(y) : |y| = R1}.

By choosing λ1 = min{λ̄1, λ̄2, λ̄3, λ̄4, λ̃1} we get the conclusion. �

Let λ0 := sup{λ < 0 : ∆Uλ(x) < 0, ∆Vλ(x) < 0, Uλ(x) > 0, and Vλ(x) >
0 in Σ̃λ}.

Remark. By continuity, we have ∆Uλ0(x) ≤ 0, ∆Vλ0(x) ≤ 0, Uλ0(x) ≥ 0 and
Vλ0(x) ≥ 0 in Σ̃λ0 .

Lemma 5.6 Uλ0 ≡ 0 if and only if Vλ0 ≡ 0.

Proof. If Uλ0 6≡ 0 and Vλ0 ≡ 0, by (5.7) we have ĉ(x, λ0)Uλ0(x) ≤ 0. Since
ĉ(x, λ0) > 0, then Uλ0 ≤ 0. Since also Uλ0 > 0, this is a contradiction. �

Proposition 5.7 If λ0 < 0 then Uλ0 ≡ 0 and Vλ0 ≡ 0.

Proof. Suppose by contradiction that the conclusion of the proposition is not
true. By Lemma 5.6 we conclude that Uλ0 6≡ 0 and Vλ0 6≡ 0. Since

∆Uλ0 ≤ 0 in Σ̃λ0

Uλ0 ≥ 0, Uλ0 6≡ 0 in Σ̃λ0

Uλ0 = 0 on Tλ0

and since Uλ0(x) → 0 when |x| → ∞, by the maximum principle we have that
Uλ0(x) > 0 in Σ̃λ0 . By the same arguments we can prove that Vλ0(x) > 0 in Σ̃λ0 .
Then

∆2Uλ0 ≥ c(x, λ0)Vλ0 > 0 in Σ̃λ0 (5.9)

and, as a consequence,

∆2Uλ0 > 0 in Σ̃λ0

∆Uλ0 ≤ 0 in Σ̃λ0

∆Uλ0 = 0 on Tλ0 .
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Since ∆Uλ0(x) → 0 when |x| → 0, by the maximum principle we must have
∆Uλ0(x) < 0 in Σ̃λ0 . Using the Hopf maximum principle we obtain that

∂∆Uλ0

∂ν
(x) > 0 on Tλ0 ,

where ν is the outward unit normal to Σ̃λ0 . We will prove that this is impossible.
From the definition of λ0, there exists a sequence of real numbers λn ↘ λ0

and a sequence of points in Σ̃λn where ∆Uλn or ∆Vλn is positive or Uλn or Vλn
is negative.

If ∆Uλn(x) > 0 for some x ∈ Σ̃λn , then

c1 := sup
Σ̃λn

∆Uλn > 0.

We shall see that this supreme is attained. Let

c2 := max
∂Bλ0

2
(eλ0 )

∆Uλ0 < 0.

With 0 < r < λ0/2, we define g(x) = ∆Uλ0(x)+c2(|x−eλ0 |2−NrN−2−1), for x ∈
Bλ0/2(eλ0) \Br(eλ0). It is easy to see that g(x) ≤ 0 in ∂(Bλ0/2(eλ0) \Br(eλ0)).
Then we have

∆g = ∆2Uλ0 > 0 in Bλ0/2(eλ0) \Br(eλ0)
g ≤ 0 on ∂(Bλ0/2(eλ0) \Br(eλ0)).

By the maximum principle, g(x) ≤ 0 for all x ∈ Bλ0/2(eλ0) \Br(eλ0). Since r is
arbitrary, we conclude that

∆Uλ0(x) ≤ c2 < 0 in Ḃλ0/2(eλ0),

where Ḃs(eλ0) denotes the punctured ball Bs(eλ0) \ {eλ0}, for s > 0. By conti-
nuity, we have

∆Uλn(x) ≤ c2
2
< 0 in Ḃλ0/4(eλn),

for large n. As ∆Uλn(x)→ 0 when |x| → +∞, there exists rn such that, for all
|x| ≥ rn, ∆Uλn(x) < c1/2. Thus

sup
Σ̃λn

∆Uλn = sup
{

∆Uλn(x) : x ∈ (Σ̃λn \Bλ0/4(eλn)) ∩Brn(0)
}
.

Then there exists a sequence (xn) ⊂ (Σ̃λn \Bλ0/4(eλn)) ∩Brn(0) such that

sup
Σ̃λn

∆Uλn = ∆Uλn(xn) > 0.

Hence
∇(∆Uλn)(xn) = 0 and ∆(∆Uλn)(xn) ≤ 0. (5.10)
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It follows from Lemma 5.3 that (xn) is bounded. Thus, up to a subsequence,

xn → x0 with x0 ∈ Σ̃λ0 . Passing (5.10) to the limit we obtain

∇(∆Uλ0)(x0) = 0 and ∆(∆Uλ0)(x0) ≤ 0. (5.11)

Thus from (5.9) and (5.11) we conclude that x0 ∈ Tλ0 . Since

0 <
∂∆Uλ0

∂ν
(x0) =

∂∆Uλ0

∂x1
(x0) = 0,

we have a contradiction.
The case when ∆Vλn takes positive values and the cases when Uλn and Vλn

take negative values are proved similarly. �

Proof of Theorem 1.2 completed. I) In applying the moving planes method,
we must consider two cases.

(a) If λ0 < 0, by Proposition 5.7 we have Uλ0 ≡ 0 and Vλ0 ≡ 0, so u∗(x) and
v∗(x) are symmetric with respect to the plane Tλ0 . Since the bilaplacian
is invariant for dilations, from (5.4) we get a contradiction. So u = v = 0
in RN .

(b) If λ0 = 0 then U0(x) ≥ 0 and V0(x) ≥ 0 in Σ̃0, i.e.

u(−x1, x
′) ≥ u(x1, x

′) and v(−x1, x
′) ≥ v(x1, x

′) for x1 ≤ 0. (5.12)

Defining ū(x1, x
′) := u(−x1, x) and v̄(x1, x

′) := v(−x1, x), we have

∆2ū = v̄α

∆2v̄ = ūβ

in RN . By performing the latter procedure, we deduce the existence of a
corresponding value λ̄0 ≤ 0. If λ̄0 < 0 then ū = v̄ = 0 and consequently
u = v = 0. If λ̄0 = 0 then

ū(−x1, x
′) ≥ ū(x1, x

′) and v̄(−x1, x
′) ≥ v̄(x1, x

′) for x1 ≤ 0.

By (5.12) we conclude that u and v are radially symmetric with respect
to the origin.

We can perform the Kelvin transform with respect to any point, thus u and v
are radially symmetric with respect to any point. This implies that u and v are
constant functions. From system (1.1), we get u = v = 0.
II) We proceed like Figueiredo and Felmer in [2]. �
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