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An ε-regularity result for generalized harmonic

maps into spheres ∗

Roger Moser

Abstract

For m,n ≥ 2 and 1 < p < 2, we prove that a map u ∈ W 1,p
loc (Ω, Sn−1)

from an open domain Ω ⊂ Rm into the unit (n− 1)-sphere, which solves
a generalized version of the harmonic map equation, is smooth, provided
that 2 − p and [u]BMO(Ω) are both sufficiently small. This extends a
result of Almeida [1]. The proof is based on an inverse Hölder inequality
technique.

1 Introduction

For integers m,n ≥ 2, let Ω ⊂ R
m be an open domain, and let Sn−1 ⊂ R

n

denote the (n− 1)-dimensional unit sphere. Define the space

H1(Ω,Sn−1) = {v ∈ H1(Ω,Rn) : |v| = 1 almost everywhere},

and consider the functional

E(u) =
1
2

∫
Ω

|∇u|2 dx, u ∈ H1(Ω,Sn−1).

A map u ∈ H1(Ω,Sn−1) is called a weakly harmonic map, if it is a critical point
of E, i. e.

d

dt

∣∣∣
t=0

E
( u+ tφ

|u+ tφ|
)

= 0

for all φ ∈ C∞0 (Ω,Rn). The Euler-Lagrange equation for this variational prob-
lem is

∆u+ |∇u|2u = 0 in Ω (1.1)

(in the distributions sense). Denote by ∧ the exterior product ∧ : Rn × Rn →
Λ2R

n, then (1.1) is equivalent to

div(u ∧∇u) = 0 in Ω. (1.2)
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This form of the equation provides a natural extension of the notion of weakly
harmonic maps into spheres. Whereas we need a map in H1

loc(Ω,Sn−1) to make
any sense of (1.1), the equation (1.2) only requires

u ∈W 1,1
loc (Ω,Sn−1) = {v ∈W 1,1

loc (Ω,Rn) : |v| = 1 almost everywhere}.

A map in this space satisfying (1.2) is called a generalized harmonic map.
For m = 2, it was proven by Hélein [8, 9], that any weakly harmonic map

is smooth (also for more general target manifolds than spheres). For higher
dimensions, this is no longer true. Indeed Rivière [13] constructed a weakly
harmonic map in three dimensions which is discontinuous everywhere. But
there exists an ε-regularity result, due to Evans [4] (and to Bethuel [2] for more
general targets), which can be stated as follows.

Theorem 1.1 There exists a number ε > 0, depending only on m and n, such
that any weakly harmonic map u ∈ H1(Ω,Sn−1) with the property [u]BMO(Ω) ≤ ε
is smooth in Ω.

Here we use the notation

[u]BMO(Ω) = sup
Br(x0)⊂Ω

−
∫
Br(x0)

|u− ūBr(x0)| dx, (1.3)

where Br(x0) denotes the ball in Rm with centre x0 and radius r, and

ūBr(x0) = −
∫
Br(x0)

u dx =
1

|Br(x0)|

∫
Br(x0)

u dx.

Together with the well-known monotonicity formula for so-called stationary
weakly harmonic maps, e. g. weakly harmonic maps which satisfy d

dt |t=0E(u(x+
tψ(x))) = 0 for all ψ ∈ C∞0 (Ω,Rm) (see Price [12]), one concludes that weakly
harmonic maps with this property are smooth away from a closed singular set
of vanishing (m− 2)-dimensional Hausdorff measure.

Generalized harmonic maps on the other hand may have singularities even
in two dimensions. A typical example is the map u(x) = x/|x| in R2. For
m = 2 and for any p ∈ [1, 2), Almeida [1] even constructed generalized harmonic
maps in W 1,p(Ω,S1) which are nowhere continuous. Nevertheless, there is an
ε-regularity result for generalized harmonic maps in two dimensions, due to
Almeida [1]. (Another proof was given by Ge [6].)

Theorem 1.2 For m = 2, there exists ε > 0, depending only on n, such that
any weakly harmonic map u ∈W 1,1

loc (Ω,Sn−1) with the property ‖∇u‖L2,∞(Ω) ≤ ε
is smooth in Ω.

Here ‖ · ‖L2,∞(Ω) is the norm of the Lorentz space L2,∞(Ω,Rm×n). (For a
definition and properties of Lorentz spaces, see e. g. [14], Chapter V.)
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2 Results

The aim of this note is to extend and improve this result. We replace the
smallness in the L2,∞-norm by a weaker condition (reminding of Theorem 1.1),
and we prove the result for all dimensions. More precisely, we have the following
theorem.

Theorem 2.1 There exist p < 2 and ε > 0, depending only on m and n,
such that any generalized harmonic map u ∈ W 1,p

loc (Ω,Sn−1) with the property
[u]BMO(Ω) ≤ ε is in C∞(Ω,Sn−1).

To prove this theorem, it suffices to show that under these conditions, the
generalized harmonic map u is in H1

loc(Ω,Sn−1). Higher regularity is then im-
plied by Theorem 1.1 (provided that ε is chosen accordingly). For this first step
on the other hand, we can also admit a non-vanishing right hand side in (1.2).

Theorem 2.2 For any q > 2, there exist p < 2 and ε > 0, depending only on
m, n, and q, with the following property. Suppose that u ∈ W 1,p

loc (Ω,Sn−1) is a
distributional solution of

div(u ∧∇u) = F + divG, (2.1)

where F ∈ Lmq/(m+q)
loc (Ω,Λ2R

n) and G ∈ Lqloc(Ω,Rm⊗Λ2R
n). If [u]BMO(Ω) ≤ ε,

then u ∈W 1,p/(p−1)
loc (Ω,Sn−1).

As mentioned above, Theorem 2.1 is an immediate consequence of Theo-
rem 1.1 and Theorem 2.2. The proof of the latter is inspired by the inverse
Hölder inequality technique used by Iwaniec–Sbordone [11] to prove regularity
for solutions of equations of the form

divA(x,∇u) = F + divG,

where A(x, ξ) = ∂F
∂ξ (x, ξ) for a quasi-convex function F (satisfying certain con-

ditions). We combine these methods with arguments from the regularity theory
for weakly harmonic maps.

We will use the following well-known results. The first one is due to Gia-
quinta–Modica [7].

Proposition 2.3 For 1 < a < b, and for some ball BR(x0) ⊂ Rm, suppose that
g ∈ La(BR(x0)) and f ∈ Lb(BR(x0)) are non-negative functions which satisfy

−
∫
Br/2(x1)

ga dx ≤ A
[(
−
∫
Br(x1)

g dx
)a

+−
∫
Br(x1)

fa dx
]

+ θ−
∫
Br(x1)

ga dx

for every ball Br(x1) ⊂ BR(x0) and for certain constants A, θ > 0. There
exists a constant θ0 = θ0(m,a, b) > 0, such that whenever θ < θ0, then g ∈
Lc(BR/2(x0)) with(

−
∫
BR/2(x0)

gc dx
)1/c

≤ B
[(
−
∫
BR(x0)

ga dx
)1/a

+
(
−
∫
BR(x0)

fc dx
)1/c]
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for certain numbers c > a and B > 0, both depending only on m, A, θ, a, and
b.

The following is a combination of the compensated compactness results of
Coifman–Lions–Meyer–Semmes [3], and the duality of the space BMO(Rm) =
{f ∈ L1

loc(Rm) : [f ]BMO(Rm) < ∞} with the Hardy space H1(Rm). The latter
is due to Fefferman–Stein [5].

Proposition 2.4 For 1 < p <∞, suppose that a function f ∈ W 1,p
loc (Rm) with

‖∇f‖Lp(Rm) < ∞, a vector field g ∈ Lp/(p−1)(Rm,Rm) with div g = 0 in the
distribution sense, and a function h ∈ BMO(Rm) are given. Then∣∣∣ ∫

Rm

∇f · g h dx
∣∣∣ ≤ C‖∇f‖Lp(Rm)‖g‖Lp/(p−1)(Rm)[h]BMO(Rm)

for a constant C which depends only on m and p.

Having the ingredients ready, we can now prove Theorem 2.2.
Proof of Theorem 2.2. Suppose q > 2, F ∈ L

mq/(m+q)
loc (Ω,Λ2R

n), and G ∈
Lqloc(Ω,Rm⊗Λ2R

n). Let for the moment p be any number in (1, 2), and suppose
that u ∈W 1,p

loc (Ω,Sn−1) is a solution of (2.1).
Let ψ ∈W 2,mq/(m+q)

loc (Ω,Λ2R
n) be a solution of

∆ψ = F in Ω.

Then ∇ψ ∈W 1,q
loc (Ω,Rm ⊗ Λ2R

n), and u satisfies

div(u ∧∇u) = div(G+∇ψ).

Hence we may assume without loss of generality that F = 0. Choose a ball
Br(x0) ⊂ Ω and a cut-off function ζ ∈ C∞0 (Br(x0)) with ζ ≡ 1 in Br/2(x0),
such that |∇ζ| ≤ 4r−1. Consider the Hodge decomposition

|∇(ζ(u− ūBr(x0)))|p−2 u ∧∇(ζ(u− ūBr(x0))) = ∇φ+ Φ,

where φ ∈ W 1,p/(p−1)
loc (Rm,Λ2R

n) and Φ ∈ Lp/(p−1)(Rm,Rm ⊗ Λ2R
n) have the

properties div Φ = 0 and

‖∇φ‖Ls(Rm) + ‖Φ‖Ls(Rm) ≤ C1‖∇(ζ(u− ūBr(x0)))‖p−1
L(p−1)s(Br(x0))

for any s ∈ ( 1
p−1 ,

p
p−1 ] and for a constant C1 = C1(m,n, s). The existence of

such a decomposition is due to Iwaniec–Martin [10]. In particular, we have

−
∫
Br(x0)

|∇φ|s dx ≤ C2

(
−
∫
Br(x0)

|∇u|s dx

)p−1

(2.2)
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for a constant C2 = C2(m,n, s), owing to the Poincaré and the Hölder inequality.
Observe that

2−m−
∫
Br/2(x0)

|∇u|p dx ≤ −
∫
Br(x0)

〈
u ∧∇(ζ(u− ūBr(x0))),∇φ+ Φ

〉
dx

= −
∫
Br(x0)

〈
u ∧∇(ζ(u− ūBr(x0))),Φ

〉
dx

+−
∫
Br(x0)

〈
∇ζ, (u ∧ (u− ūBr(x0))) · ∇φ

〉
dx

−−
∫
Br(x0)

〈
∇ζ, (u ∧∇u) · (φ− φ̄Br(x0))

〉
dx

+−
∫
Br(x0)

〈
G,∇(ζ(φ− φ̄Br(x0)))

〉
dx,

where we denote the standard scalar product in Rm and in Rm⊗Λ2R
n by 〈·, ·〉,

whereas we use a dot in Rn to avoid confusion. We have the estimates

−
∫
Br(x0)

〈
∇ζ, (u ∧ (u− ūBr(x0))) · ∇φ

〉
dx

≤ 4
r

(
−
∫
Br(x0)

|∇φ|
2m
m+1 dx

)m+1
2m
(
−
∫
Br(x0)

|u− ūBr(x0)|
2m
m−1 dx

)m−1
2m

≤ C3

(
−
∫
Br(x0)

|∇u|
2m
m+1 dx

) p(m+1)
2m

,

by (2.2) and the Sobolev inequality, and similarly

−−
∫
Br(x0)

〈
∇ζ, (u ∧∇u) · (φ− φ̄Br(x0))

〉
dx ≤ C4

(
−
∫
Br(x0)

|∇u|
2m
m+1 dx

) p(m+1)
2m

,

for certain constants C3, C4 which depend only on m and n.
Note that [ζ(u − ūBr(x0))]BMO(Rm) ≤ C5[u]BMO(Br(x0)) for a constant C5 =

C5(m,n). (This is proven in [4].) Extending∇u to Rm and applying Proposition
2.4, we thus find

−
∫
Br(x0)

〈
u ∧∇(ζ(u− ūBr(x0))),Φ

〉
dx

= −−
∫
Br(x0)

ζ
〈
∇u ∧ (u− ūBr(x0)),Φ

〉
dx

≤ C6[u]BMO(Ω)−
∫
Br(x0)

|∇u|p dx

for a constant C6 = C6(m,n, p).
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Finally, choose a number σ ∈ (2, q). We have

−
∫
Br(x0)

〈
G,∇(ζ(φ− φ̄Br(x0)))

〉
dx

≤ C7

(
−
∫
Br(x0)

|G|σ dx
)1/σ(

−
∫
Br(x0)

|∇φ|σ/(σ−1) dx
)σ−1

σ

≤ C8

(
−
∫
Br(x0)

|G|σ dx
)1/σ(

−
∫
Br(x0)

|∇u|σ/(σ−1) dx
) (p−1)(σ−1)

σ

≤ C8

[
−
∫
Br(x0)

|G|σ dx+
(
−
∫
Br(x0)

|∇u|σ/(σ−1) dx
) p(σ−1)

σ

+ 1
]

(for constants C7, C8 which depend on m, n, and σ) by the Hölder inequality,
the Poincaré inequality, the estimate (2.2), and Young’s inequality.

Now choose a ∈ (1,min{m+1
m , 2(σ−1)

σ }), and set b = qa
σ . Let θ0 be the

constant from Proposition 2.3 (belonging to a and b), and choose a number
θ ∈ (0, θ0). Then the conditions of Proposition 2.3 are satisfied for any ball
BR(x0) ⊂⊂ Ω, for the functions

g = |∇u|p/a, f = |G|σ/a + 1,

and for a constant A which depends only on m, n, and σ, provided that p ≥
amax{ 2m

m+1 ,
σ
σ−1} (which is strictly less than 2) and [u]BMO(Ω) ≤ C−1

6 θ. Hence
under these conditions, there exists a number c > a, not depending on p, such
that |∇u| ∈ Lpc/aloc (Ω). If 2−p is sufficiently small, then pc

a ≥
p
p−1 , and therefore

u ∈W 1,p/(p−1)
loc (Ω,Sn−1). This concludes the proof. �
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