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SINGULAR SOLUTIONS TO PROTTER’S PROBLEM FOR THE
3-D WAVE EQUATION INVOLVING LOWER ORDER TERMS

MYRON. K. GRAMMATIKOPOULOS, TZVETAN D. HRISTOV, & NEDYU I. POPIVANOV

Abstract. In 1952, at a conference in New York, Protter formulated some
boundary value problems for the wave equation, which are three-dimensional

analogues of the Darboux problems (or Cauchy-Goursat problems) on the
plane. Protter studied these problems in a 3-D domain Ω0, bounded by two
characteristic cones Σ1 and Σ2,0, and by a plane region Σ0. It is well known
that, for an infinite number of smooth functions in the right-hand side, these
problems do not have classical solutions. Popivanov and Schneider (1995)

discovered the reason of this fact for the case of Dirichlet’s and Neumann’s
conditions on Σ0: the strong power-type singularity appears in the general-
ized solution on the characteristic cone Σ2,0. In the present paper we consider

the case of third boundary-value problem on Σ0 and obtain the existence of
many singular solutions for the wave equation involving lower order terms. Es-

pecifica ally, for Protter’s problems in R3 it is shown here that for any n ∈ N
there exists a Cn(Ω̄0)-function, for which the corresponding unique generalized
solution belongs to Cn(Ω̄0\O) and has a strong power type singularity at the

point O. This singularity is isolated at the vertex O of the characteristic cone
Σ2,0 and does not propagate along the cone. For the wave equation without

lower order terms, we presented the exact behavior of the singular solutions

at the point O.

1. Introduction

Consider the hyperbolic partial differential equation, involving the wave operator
in its main part, with lower order terms of the form

Lu ≡ ux1x1 + ux2x2 − utt + b1ux1 + b2ux2 + but + cu = f (1.1)

expressed in Cartesian coordinates x1, x2, t in a simply connected region Ω0 ⊂ R3.
The region

Ω0 := {(x1, x2, t) : 0 < t < 1/2, t <
√
x2

1 + x2
2 < 1− t}

is bounded by the disk

Σ0 := {(x1, x2, t) : t = 0, x2
1 + x2

2 < 1}
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with center at the origin O(0, 0, 0) and the characteristic surfaces of (1.1):

Σ1 := {(x1, x2, t) : 0 < t < 1/2,
√
x2

1 + x2
2 = 1− t},

Σ2,0 := {(x1, x2, t) : 0 < t < 1/2,
√
x2

1 + x2
2 = t}.

In this work we are interested in finding sufficient conditions for the existence and
uniqueness of a generalized solution to the following problem.
Problem Pα. Find a solution to (1.1) in Ω0 that satisfies the boundary conditions

u|Σ1 = 0, [ut + αu]|Σ0\O = 0, (1.2)

where α ∈ C1(Σ̄0\O).

The adjoint problem to Pα is as follows.
Problem P∗α. Find a solution of the adjoint equation

L∗u ≡ ux1x1 + ux2x2 − utt − (b1u)x1 − (b2u)x2 − (bu)t + cu = g in Ω0

with the boundary conditions:

u|Σ2,0 = 0, [ut + (α+ b)u]|Σ0 = 0. (1.3)

The following problems were introduced by Protter (see [23]).
Protter’s Problems. Find a solution of the wave equation

�u ≡ ∆xu− utt ≡ ux1x1 + ux2x2 − utt = f in Ω0 (1.4)

with one of the following boundary conditions
P1 : u|Σ0∪Σ1 = 0, P1∗ : u|Σ0∪Σ2,0 = 0 ;

P2 : u|Σ1 = 0, ut|Σ0 = 0, P2∗ : u|Σ2,0 = 0, ut|Σ0 = 0 .
(1.5)

Protter [23] formulated and investigated both Problems P1 and P1∗ in Ω0 as
multi-dimensional analogues of the Darboux problem on the plane. It is well known
that the corresponding Darboux problems on R2 are well posed, which is not true
for the Protter’s problems in R3. The uniqueness of a classical solution of Prob-
lem P1 was proved by Garabedian [8]. For recent results concerning the Protter’s
problems (1.5) see the work of Popivanov, Schneider [21], Grammatikopoulos, Hris-
tov, Popivanov [9] and references therein. For more publications in this area see,
for example: [1, 2, 7, 12, 15, 16, 17, 22]. Some different statements of Darboux
type problems can be found in [4, 5, 6, 14, 18] in bounded or unbounded domains,
different from Ω0.

According to the ill-possedness of Protter’s Problems P1 and P2, it is interest-
ing to find some their regularizations. A nonstandard, nonlocal regularization of
Problem P1, can be found in [7]. In the present paper we are looking for some
other kind of regularization and formulate the following problem.
Open Question 1. Is it possible to find conditions for the coefficients b1, b2, b3, c
and α, under which for all smooth functions f Problem Pα has only regular solu-
tions?
Remark 1.1. If the answer to the above question is positive, then, using an oper-
ator Lk with lower order perturbations in the wave equation (1.4), we can find pos-
sible regularization for Problem P2. Solving the equation Lkuk = f , with Lk → �
(i.e. b1k, b2k, b3k, ck → 0) and αk → 0, we can find an approximated sequence uk.
Due to the fact that in this case the cones Σ1 and Σ2,0 are again characteristics for
Lk, this process, with respect to our boundary value problem, looks to be natural.
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For Problem eq:0p1 with Pα and α(x) 6= 0 there are only few publications, while
for (1.4) with Pα, we refer the reader to [9]. Some results of this type can be found
also in Section 7 of this paper.

In the case of the equation (1.1) , which involves either lower order terms or
some other type perturbations, Problem Pα in Ω0 with α(x) ≡ 0 has been studied
by Aldashev in [1, 2, 3]. For comments, concerning Aldashev’s results, we refer the
reader to Remark 6.5. Finally, we point out that in the case of (1.1), with nonzero
lower order terms, Karatoprakliev [13] obtained a priori estimates, but only for
solutions enough smooth of Problem P1 in Ω0.

Next, we formulate the following well known result [24, 20], presented here in
the terms of the polar coordinates x1 = % cosϕ, x2 = % sinϕ.
Theorem 1.2. For all n ∈ N, n ≥ 4; an, bn arbitrary constants, the functions

vn(%, ϕ, t) = t%−n
(
%2 − t2

)n− 3
2 (an cosnϕ+ bn sinnϕ) (1.6)

are classical solutions of the homogeneous problem P1∗ and the functions

wn(%, ϕ, t) = %−n
(
%2 − t2

)n− 1
2 (an cosnϕ+ bn sinnϕ) (1.7)

are classical solutions of the homogeneous problem P2∗.
This theorem shows that for the classical solvability (see [6]) of the problem P1

(respectively, P2) the function f at least must be orthogonal to all smooth functions
(1.6) (respectively, (1.7)). The reason of this fact has been found by Popivanov and
Schneider in [20], where they announced for Problems P1 and P2 that there exist
singular solutions for the wave equation (1.4) with power type isolated singularities
even for very smooth functions f . Using Theorem 1.2, Popivanov and Schneider
[21] proved the existence of generalized solutions of Problems P1 and P2, which
have at least power type singularities at the vertex O of the cone Σ2,0. Considering
Problems P1 and P2, Popivanov and Schneider [20] announced the existence of
singular solutions for both wave and degenerate hyperbolic equation. First a priori
estimates for singular solutions of Protter’s Problems P1 and P2, concerning the
wave equation in R3, were obtained in [21]. On the other hand, for the case of the
wave equation in Rm+1, Aldashev [1] shows that there exist solutions of Problem
P1 (respectively, P2) in the domain Ωε, which grow up on the cone Σ2,ε like
ε−(n+m−2) (respectively, ε−(n+m−1)), when ε→ 0 and the cone Σ2,ε := {% = t+ ε}
approximates Σ2,0. It is obvious that for m = 2 this results can be compared with
the estimate (1.10) of Theorem 1.4 and with the analogous estimates of Theorems
6.1 and 6.3. For the homogeneous Problem P ∗α (except the case α ≡ 0, i.e. except
Problem P2∗), even for the wave equation, we do not know nontrivial solutions
analogous to (1.6) and (1.7). Anyway, in the present paper under appropriate
conditions for the coefficients of the general equation (1.1), we derive results which
ensure the existence of many singular solutions of Problem Pα. Here we refer also
to Khe Kan Cher [16], who gives some nontrivial solutions for the homogeneous
Problems P1∗ and P2∗, but in the case of Euler-Poisson-Darboux equation. These
results are closely connected to the such ones of Theorem 1.2.

In order to obtain our results, we give the following definition of a generalized
solution of Problem Pα with a possible singularity at the point O.
Definition 1.3. A function u = u(x1,x2, t) is called a generalized solution of Pα:
in Ω0, if

(1) u ∈ C1(Ω̄0\O), [ut + α(x)u]
∣∣
Σ0\O

= 0 u
∣∣
Σ1

= 0,
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(2) The equality∫
Ω0

[utvt − ux1vx1 − ux2vx2 + (b1ux1 + b2ux2 + but + cu− f)v]dx1dx2dt

=
∫

Σ0

α(x)(uv)(x, 0)dx1dx2

(1.8)

holds for all v in

V0 := {v ∈ C1(Ω̄0) : [vt + (α+ b)v]
∣∣
Σ0

= 0, v = 0 in a neighborhood of Σ2,0}.

To deal with difficulties such as singularities of generalized solutions on the cone
Σ2,0, we introduce the region

Ωε = Ω0 ∩ {%− t > ε}, ε ∈ [0, 1),

which in polar coordinates becomes

Ωε = {(%, ϕ, t) : t > 0, 0 ≤ ϕ < 2π, ε+ t < % < 1− t}. (1.9)

We define generalized solution of Problem Pα in Ωε, ε ∈ (0, 1), in Definition 2.2
below. Note that, if a generalized solution u belongs to C1(Ω̄ε)∩C2(Ωε), it is called
a classical solution of Problem Pα in Ωε, ε ∈ (0, 1), and it satisfies the equation
(1.1) in Ωε. It should be pointed out that the case ε = 0 is totally different from
the case ε 6= 0.

This paper is a generalization, extension, and improvement of the results ob-
tained in [9]. The paper, besides Introduction, consists of six more sections. In
Section 2, using some appropriate techniques, we formulate the 2-D boundary value
problems Pα,1, Pα,2 and Pα,3, corresponding to the 3-D Problem Pα. The aim of
Section 3 is to treat Problem Pα,3. For this reason, we construct and study the sys-
tem of integral equations, assigned to the under consideration equation (1.1). Also,
we present results concerning the classical solutions of Problem Pα,3 in Ωε, ε ∈ (0, 1)
and give corresponding a priori estimates. We mention also here Lemma 3.2, which
is actually a maximum principle for Problem Pα,3. In Section 4 we prove Theorems
4.1 and 4.2, which ensure the existence and uniqueness of a generalized solution of
Problem Pα,1 in 2-D domain. Using the results of the previous section, in Section 5
we study the existence and uniqueness of a generalized solution of 3-D Problem Pα.
More precisely, Theorem 5.1 ensures the uniqueness of a generalized solution for
Problem Pα in Ωε, ε ∈ [0, 1), while Theorems 5.2, 5.3 and 5.4 ensure the existence
of a generalized solution for problem Pα in Ω0, which is a classical one in each
domain Ωε, ε ∈ [0, 1) and satisfies some a priori estimates in C2(Ωε). Comparing
these estimates with such ones of [9], we see that the new estimates are better even
in the case of the wave equation (1.4) without lower order terms. In Theorems
6.1, 6.3 and 1.4 under different conditions, imposed on the coefficients of the equa-
tion (1.1), we present some singular generalized solutions which are smooth enough
away from the point O, while at the point O they have power type singularity of
the type (x2

1 + x2
2 + t2)−n/2. More precisely, we formulate and prove the following

theorem.

Theorem 1.4. Let the coefficients b1, b2, b be constants, c(x1, x2, t) = c(|x|, t) ∈
C1(Ω̄0), 4c ≤ b21 + b22 − b2 in Ω̄0 and α = α(|x|) ∈ C1(0, 1] ∩ C[0, 1]. Then for
each n ∈ N there exists a function fn(x1, x2, t) ∈ Cn−2(Ω̄0) ∩ C∞(Ω0), for which
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the corresponding generalized solution un of problem Pα belongs to C2(Ω̄0\O) and
satisfies the estimate

|un(x1, x2, |x|)| ≥
1
2
|un(2x1, 2x2, 0)|+ |x|−n| cosn(arctan

x2

x1
)|. (1.10)

On the other hand, in Theorems 6.1 and 6.3 the coefficients of the equation (1.1)
are nonconstant.

Finally, in Theorem 7.1 for the wave equation (1.4) we present two-sided esti-
mates for the singularities of the generalized solution of Problem Pα. In particular,
the exact behavior for the singular solution un(x1, x2, t) around O is (x2

1 + x2
2 +

t2)−n/2 cosn(arctan x2
x1

).

Remark 1.5. Actually, all these results state some conditions on the coefficients of
the equation (1.1), under which we do not have a positive answer to Open Question
1. For example, Theorem 7.1 ensures that for any parameter α(x), involved to the
boundary condition (1.2) on Σ0, there are infinitely many singular solutions of the
wave equation (1.4). That means that, it is impossible to give a positive answer to
Open Question 1, by using the wave operator only. Possibly, it is necessary to ask
some of the nonzero lower order perturbations of the wave equation to be involved
to the more general equation (1.1). This is one of the reasons of the existence of
the present paper, where we use and developed further the ideas of [9]. Note also
that, each one of the singular solutions has a strong singularity at the vertex O
of the cone Σ2,0. The singularities of the generalized solutions do not propagate in
the direction of the bicharacteristics on the characteristic cone. It is traditionally
assumed that the wave equation, with right-hand side sufficiently smooth in Ω̄0,
cannot have a solution with an isolated singular point. For results, concerning the
propagation of singularities for second order operators, see Hörmander [11, Chapter
24.5].

We conclude this section with the following four more questions.
Open Questions:

(1) Find the exact behavior of all singular solutions at the point O, different
from those ones which appear in Theorems 6.1, 6.3 and 7.1.

(2) Find appropriate conditions for the function f under which the Problem
Pα, even for the wave equation, has only classical solutions. We do not
know any kind of such results even for Problem P2.

(3) In all results, concerning the existence of singular solutions (except Theorem
1.4), we assume that a2 ≡ 0. Is it possible to find any singular solution,
when a2 6= 0? Even in the case a2 6= 0, Theorem 5.3 ensures the existence of
a generalized solution for any function f , but we do not know the behavior
of a such solution at (0, 0, 0).

(4) From the a priori estimates, obtained in Theorems 5.2–5.4 for all solutions
of Problem Pα, including singular ones, it follows that, as ρ → 0, none
of these solutions can grow up faster than exponential one. The arising
question is: are there singular solutions of Problem Pα with exponential
growth as ρ → 0 or any such solution is of polynomial growth satisfying
(1.10)?

In the case of Problem P1, for the wave equation (1.1) the answer to Open Questions
1, 2 and 4 above can be found in [22].
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2. Preliminaries

In this section we consider (1.1) in polar coordinates x1 = % cosϕ, x2 = % sinϕ
and t

Lu =
1
%

(%u%)% +
1
%2
uϕϕ − utt + a1u% + a2uϕ + but + cu = f (2.1)

in a simply connected region

Ωε :=
{

(%, ϕ, t) : 0 < t < (1− ε)/2, 0 ≤ ϕ < 2π, ε+ t < % < 1− t
}
, (2.2)

0 < ε < 1, bounded by the disc Σ0 := {(%, ϕ, t) : t = 0, % < 1} and the characteristic
surfaces of (2.1)

Σ1 := {(%, ϕ, t) : 0 ≤ ϕ < 2π, % = 1− t},
Σ2,ε := {(%, ϕ, t) : 0 ≤ ϕ < 2π, % = ε+ t}.

The coefficients a1, a2 depend on b1, b2 in an obvious way. We seek sufficient con-
ditions for the existence and uniqueness of a generalized solution of the equation
(2.1) with f ∈ C(Ω̄ε), which satisfies the following boundary conditions

Pα : u
∣∣
Σ1∩∂Ωε

= 0, [ut + αu]
∣∣
Σ0∩∂Ωε

= 0; (2.3)

P ∗α : u
∣∣
Σ2,ε

= 0, [ut + (α+ b)u]
∣∣
Σ0∩∂Ωε

= 0. (2.4)

Here, for the sake of simplicity, we assume that all coefficients of (2.1) depend only
on % and t, and we set α(x) ≡ α(|x|) = α(%) ∈ C1(0, 1]. The problem P ∗α is the
adjoint one to Problem Pα in Ωε.

Remark 2.1. In what follows, we consider the domain Ωε and its boundary in
Cartesian coordinates. Nevertheless, for convenience we use the polar coordinates
in the sense that the intersections ϕ = 0 and ϕ = 2π do not belong to the boundary
of Ωε and all the functions, which we use here, are considered as periodical ones.

Now, in order to obtain our results, we define the notion of a generalized solution
as follows.

Definition 2.2. A function u = u(%, ϕ, t) is called a generalized solution of Problem
Pα in Ωε, ε > 0, if:

(1) u ∈ C1(Ω̄ε), u
∣∣
Σ1∩∂Ωε

= 0; [ut + α(%)u]
∣∣
Σ0∩∂Ωε

= 0;
(2) The equality∫

Ωε

[utvt − u%v% −
1
%2
uϕvϕ + (a1u% + a2uϕ + but + cu− f)v]% d% dϕ dt

=
∫

Σ0∩∂Ωε

α(%)uv% d%dϕ
(2.5)

holds for all

v ∈ Vε := {v ∈ C1(Ω̄ε) : [vt + (α+ b)v]
∣∣
Σ0∩∂Ωε

= 0, v
∣∣
Σ2,ε

= 0}.

The following lemma describes the properties of generalized solutions of Problem
Pα in Ωε.

Lemma 2.3. Each generalized solution of Problem Pα in Ω0 is also a generalized
solution of the same problem in Ωε for ε > 0.
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The proof of this lemma follows from the proof in [9, Lemma 2.1]. In the special,
but main case, when

f(%, ϕ, t) = f (1)
n (%, t) cosnϕ+ f (2)

n (%, t) sinnϕ, (2.6)

we ask the generalized solution to be of the form

u(%, ϕ, t) = u(1)
n (%, t) cosnϕ+ u(2)

n (%, t) sinnϕ.

Then, in view of (2.1), we obtain the 2-D system

1
%

(%u(1)
n,%)% − u

(1)
n,tt + a1u

(1)
n,% + bu

(1)
n,t + (c− n2

%2
)u(1)
n + na2u

(2)
n = f (1)

n ,

1
%

(%u(2)
n,%)% − u

(2)
n,tt + a1u

(2)
n,% + bu

(2)
n,t + (c− n2

%2
)u(2)
n − na2u

(1)
n = f (2)

n .

(2.7)

We consider this system in the domain

Gε = {(%, t) : t > 0, ε+ t < % < 1− t}

which is bounded by the sets:

S0 = {(%, t) : t = 0, 0 < % < 1},
S1 = {(%, t) : % = 1− t},
S2,ε = {(%, t) : % = t+ ε}.

(2.8)

In this case, for u = (u(1), u(2))(%, t), the 2-D problem corresponding to Pα is Pα,1:

1
%

(%u(1)
% )% − u(1)

tt + a1u
(1)
% + bu

(1)
t + (c− n2

%2
)u(1) + na2u

(2) = f (1) in Gε,

1
%

(%u(2)
% )% − u(2)

tt + a1u
(2)
% + bu

(2)
t + (c− n2

%2
)u(2) − na2u

(1) = f (2) in Gε,

u(i)
∣∣
S1∩∂Gε

= 0, [u(i)
t + α(%)u(i)]

∣∣
S0∩∂Gε

= 0, i = 1, 2.

(2.9)

The generalized solution of the Problem Pα,1 is as follows.

Definition 2.4. A function u = (u(1), u(2))(%, t) is called a generalized solution of
Problem Pα,1 in Gε, ε > 0, if:

(1) u ∈ C1(Ḡε), [u(i)
t + α(%)u(i)]

∣∣
S0∩∂Gε

= 0, u(i)
∣∣
S1∩∂Gε

= 0, i = 1, 2;
(2) The equalities∫

Gε

[
u

(1)
t v1,t − u(1)

% v1,% +
(
a1u

(1)
% + bu

(1)
t + (c− n2

%2
)u(1) + na2u

(2) − f (1)
)
v1

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(1)v1% d%,∫
Gε

[u(2)
t v2,t − u(2)

% v2,% +
(
a1u

(2)
ρ + bu

(2)
t + (c− n2

%2
)u(2) − na2u

(1) − f (2)
)
v2

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(2)v2% d%

(2.10)
hold for all

v1, v2 ∈ V (1)
ε = {v ∈ C1(Ḡε) : [vt + (α+ b)v]

∣∣
S0∩∂Gε

= 0, v
∣∣
S2,ε∩∂Gε

= 0}.



8 M. K. GRAMMATIKOPOULOS, T. D. HRISTOV, & N. I. POPIVANOV EJDE–2003/03

Introducing a new function

z(i)(%, t) = %
1
2u(i)(%, t), i = 1, 2, (2.11)

we transform the system (2.9) to the system

z(1)
%% − z

(1)
tt + a1z

(1)
% + bz

(1)
t +

(
c− 1

2%
a1 −

4n2 − 1
4%2

)
z(1) + na2z

(2) = %
1
2 f (1),

z(2)
%% − z

(2)
tt + a1z

(2)
% + bz

(2)
t +

(
c− 1

2%
a1 −

4n2 − 1
4%2

)
z(2) − na2z

(1) = %
1
2 f (2).

(2.12)
with the string operator in the main part. Substituting the new coordinates

ξ = 1− %− t, η = 1− %+ t, (2.13)

from (2.12) we derive

U
(1)
ξη −A1U

(1)
ξ −B1U

(1)
η − C1U

(1) −D1U
(2) = F 1(ξ, η) in Dε,

U
(2)
ξη −A2U

(2)
ξ −B2U

(2)
η − C2U

(2) −D2U
(1) = F 2(ξ, η) in Dε,

(2.14)

where Dε = {(ξ, η) : 0 < ξ < η < 1− ε} and for i = 1, 2:

U (i)(ξ, η) = z(i)(%(ξ, η), t(ξ, η)),

F (i)(ξ, η) =
1

4
√

2
(2− η − ξ) 1

2 f (i)(%(ξ, η), t(ξ, η)).
(2.15)

Note that, in the case of the equation (2.1), the corresponding coefficients of the
system (2.14) are

A1 = A2 =
1
4

(a1 + b), B1 = B2 =
1
4

(a1 − b), D2 = −D1 =
1
4
na2,

C1 = C2 =
1
4
( 4n2 − 1

(2− ξ − η)2
+

a1

2− ξ − η
− c
)
.

(2.16)

As we see, Problem Pα,1 is reduced to the Darboux-Goursat problem for the system
(2.14) with the same boundary conditions. That is, we consider the following
question.
Problem Pα,2. Find a solution (U1, U2) of the system (2.14) in Dε with the
boundary conditions

U (i)(0, η) = 0, (U (i)
η − U

(i)
ξ )(ξ, ξ) + α(1− ξ)U (i)(ξ, ξ) = 0, i = 1, 2. (2.17)

To investigate the smoothness or the singularity of a solution of the original 3-D
problem Pα on Σ2,0, we are seeking a classical solution of the corresponding 2-D
problem Pα,2 not only in the domain Dε, but also in the domain

D(1)
ε := {(ξ, η) : 0 < ξ < η < 1, 0 < ξ < 1− ε}, ε > 0. (2.18)

Clearly, Dε ⊂ D(1)
ε .

Consider now an appropriate boundary value problem for the system of equations
whose coefficients are continuous in D̄

(1)
ε , ε > 0:

Problem Pα,3. Find a solution (U1, U2) of the system

U
(1)
ξη −A1U

(1)
ξ −B1U

(1)
η − C1U

(1) −D1U
(2) = F 1(ξ, η) in D̄(1)

ε ,

U
(2)
ξη −A2U

(2)
ξ −B2U

(2)
η − C2U

(2) −D2U
(1) = F 2(ξ, η) in D̄(1)

ε ,
(2.19)
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with the boundary conditions

U (i)(0, η) = 0, (U (i)
η − U

(i)
ξ )(ξ, ξ) + α(1− ξ)U (i)(ξ, ξ) = 0, (2.20)

for i = 1, 2 and ξ ∈ (0, 1− ε).

3. The system of integral equations corresponding to Problem Pα,3

First of all, we construct an equivalent system of integral equations in such a
way that any solution to Problem Pα,3 is a solution of the constructed system and
vice-verca. For this reason, following the ideas of [9], concerning the representation
of the solutions of the Protter’s problem for the wave equation, we will try to find a
corresponding representation of the solutions in the case, where the equation (1.1)
involves lower order terms. In this case, because of the appearance in the equation
(2.1) of the term a2uϕ, we have to deal not with a single scalar equation, but with
a system of equations. In order to realize these ideas, for any (ξ0, η0) ∈ D(1)

ε , we
consider the sets

Π := {(ξ, η) : 0 < ξ < ξ0, ξ0 < η < η0}, T := {(ξ, η) : 0 < ξ < ξ0, ξ < η < ξ0}

and the following integrals:

I
(i)
0 :=

∫∫
Π

U
(i)
ξη (ξ, η) dξdη =

∫ ξ0

0

∫ η0

ξ0

U
(i)
ξη (ξ, η) dη dξ ,

I
(i)
1 :=

∫∫
T

U
(i)
ξη (ξ, η) dξdη =

∫ ξ0

0

∫ ξ0

ξ

U
(i)
ξη (ξ, η) dη dξ .

As it has been shown in [9],

I
(i)
0 + 2I(i)

1 = U (i)(ξ0, η0)−
∫ ξ0

0

α(1− ξ)U (i)(ξ, ξ) dξ.

Set p(i) := U
(i)
ξ , q(i) := U

(i)
η . Then, in view of the last relation and (2.19), we obtain

U (1)(ξ0, η0) =
∫ ξ0

0

∫ η0

ξ0

[F 1 +A1p
(1) +B1q

(1) + C1U
(1) +D1U

(2)](ξ, η) dη dξ

+ 2
∫ ξ0

0

∫ η

0

[F 1 +A1p
(1) +B1q

(1) + C1U
(1) +D1U

(2)](ξ, η) dξ dη

+
∫ ξ0

0

α(1− ξ)U (1)(ξ, ξ) dξ, for (ξ0, η0) ∈ D̄(1)
ε ,

(3.1)

U (2)(ξ0, η0) =
∫ ξ0

0

∫ η0

ξ0

[F 2 +A2p
(2) +B2q

(2) + C2U
(2) +D2U

(1)](ξ, η) dη dξ

+ 2
∫ ξ0

0

∫ η

0

[F 2 +A2p
(2) +B2q

(2) + C2U
(2) +D2U

(1)](ξ, η) dξ dη

+
∫ ξ0

0

α(1− ξ)U (2)(ξ, ξ) dξ, for (ξ0, η0) ∈ D̄(1)
ε ,

(3.2)
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which is the first couple of desired integral equations. From (3.1) and (3.2) we derive
for the first derivatives p(i) and q(i) (i = 1, 2) the next four integral equations:

p(1)(ξ0, η0) =
∫ ξ0

0

[F 1 +A1p
(1) +B1q

(1) + C1U
(1) +D1U

(2)](ξ, ξ0) dξ

+
∫ η0

ξ0

[F 1 +A1p
(1) +B1q

(1) + C1U
(1) +D1U

(2)](ξ0, η) dη

+α(1− ξ0)U (1)(ξ0, ξ0),
(3.3)

q(1)(ξ0, η0) =
∫ ξ0

0

[F 1 +A1p
(1) +B1q

(1) + C1U
(1) +D1U

(2)](ξ, η0) dξ, (3.4)

p(2)(ξ0, η0) =
∫ ξ0

0

[F 2 +A2p
(2) +B2q

(2) + C2U
(2) +D2U

(1)](ξ, ξ0) dξ

+
∫ η0

ξ0

[F 2 +A2p
(2) +B2q

(2) + C2U
(2) +D2U

(1)](ξ0, η) dη

+ α(1− ξ0)U (2)(ξ0, ξ0),

(3.5)

q(2)(ξ0, η0) =
∫ ξ0

0

[F 2 +A2p
(2) +B2q

(2) + C2U
(2) +D2U

(1)](ξ, η0) dξ. (3.6)

Now, we set

M := max

(
sup
D

(1)
ε

|F 1|, sup
D

(1)
ε

|F 2|

)
, Mα := sup

[0,1−ε]
|α(ξ)|

c(ε) := max
i=1,2

{
sup
D

(1)
ε

|Ai|, sup
D

(1)
ε

|Bi|, sup
D

(1)
ε

|Ci|, sup
D

(1)
ε

|Di|

}
,

(3.7)

and formulate the following results.

Theorem 3.1. Let F i, Ai, Bi, Ci, Di ∈ C(D̄(1)
ε ), i = 1, 2, ε > 0. Then there

exists a classical solution (U (1), U (2)) ∈ C1(D̄(1)
ε ) of the Problem Pα,3 for which

U
(i)
ξη ∈ C(D̄(1)

ε ), i = 1, 2 and

|U (i)(ξ0, η0)| ≤M [4c(ε) +Mα]−2 exp {8c(ε) + 2Mα} in D(1)
ε , i = 1, 2,

sup
D

(1)
ε

{|U (i)
ξ |, |U

(i)
η |} ≤M [4c(ε) +Mα]−1 exp {8c(ε) + 2Mα} , i = 1, 2. (3.8)

Proof. To get our results, we will solve the system of integral equations (3.1)–(3.6).
For this reason we use sequence of successive approximations (U (i)

m , p
(i)
m , q

(i)
m ),m =
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1, 2, . . . , defined by the formulae

U
(i)
m+1(ξ0, η0) =

∫ ξ0

0

∫ η0

ξ0

E(i)
m (ξ, η) dη dξ + 2

∫ ξ0

0

∫ η

0

E(i)
m (ξ, η) dξ dη

+
∫ ξ0

0

α(1− ξ)U (i)
m (ξ, ξ) dξ, i = 1, 2; m = 0, 1, 2 . . .

p
(i)
m+1(ξ0, η0) =

∫ ξ0

0

E(i)
m (ξ, ξ0) dξ +

∫ η0

ξ0

E(i)
m (ξ0, η) dη

+ α(1− ξ0)U (i)
m (ξ0, ξ0), i = 1, 2; m = 0, 1, 2 . . .

q
(i)
m+1(ξ0, η0) =

∫ ξ0

0

E(i)
m (ξ, η0) dξ, i = 1, 2; m = 0, 1, 2 . . .

U
(i)
0 (ξ0, η0) =0, p

(i)
0 (ξ0, η0) = 0,

q
(i)
0 (ξ0, η0) =0, i = 1, 2, in D1

ε ,

(3.9)

where

E(1)
m (ξ, η) := [F 1 +A1p

(1)
m +B1q

(1)
m + C1U

(1)
m +D1U

(2)
m ](ξ, η),

E(2)
m (ξ, η) := [F 2 +A2p

(2)
m +B2q

(2)
m + C2U

(2)
m +D2U

(1)
m ](ξ, η).

We will show that each of the functions U (i)
m , p

(i)
m and q(i)

m , i = 1, 2, is continuous in
D̄

(1)
ε and for any (ξ0, η0) ∈ D̄(1)

ε and m ∈ N

|(U (i)
m − U

(i)
m−1)(ξ0, η0)| ≤M [4c(ε) +Mα]m−1

(m+ 1)!
(ξ0 + η0)m+1

, (3.10)

max
{
|(p(i)

m − p
(i)
m−1)|(ξ0, η0), |(q(i)

m − q
(i)
m−1)|(ξ0, η0)

}
≤M [4c(ε) +Mα]m−1

m!
(ξ0 + η0)m

(3.11)

Indeed, by induction: 1) For m = 1

U
(i)
1 (ξ0, η0) =

∫ ξ0

0

∫ η0

ξ

F (i)(ξ, η) dη dξ +
∫ ξ0

0

∫ ξ0

ξ

F (i)(ξ, η) dη dξ ,

and hence

|U (1)(ξ0, η0)| ≤Mξ0η0 ≤M(ξ0 + η0)2/2.

Similarly one can estimate p(i)
1 and q

(i)
1 . 2) Let now, by the induction hypothesis,

(3.10) and (3.11) be satisfied for some m ∈ N. Then for i = 1, 2

|(U (i)
m − U

(i)
m−1)(ξ0, η0)| ≤M [4c(ε) +Mα]m−1

m!
(ξ0 + η0)m := Qm(ξ0 + η0)m.
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It follows that

|(U (i)
m+1 − U (i)

m )(ξ0, η0)|

≤ Qm
[
4c(ε)

(∫ ξ0

0

∫ η0

ξ0

(ξ + η)m dη dξ + 2
∫ ξ0

0

∫ η

0

(ξ + η)m dξ dη
)

+
Mα

m+ 1

∫ ξ0

0

(2ξ)m+1 dξ
]

≤ Qm
(m+ 1)(m+ 2)

[
4c(ε)

(
(ξ0 + η0)m+2 − ηm+2

0 − ξm+2
0

)
+Mα(2ξ0)m+2

]
≤ Qm+1

(m+ 2)
(ξ0 + η0)m+2.

By (3.3) and (3.5), we have

|(p(i)
m+1 − p(i)

m )|(ξ0, η0)

≤ Qm
m+ 1

[
4c(ε)

(
(ξ0 + η0)m+1 − ξ0m+1

)
+Mα(2ξ0)m+1

]
≤ Qm+1(ξ0 + η0)m+1.

A similar estimate holds for (q(i)
m+1 − q

(i)
m ). So that (3.10) and (3.11) hold and

hence the uniform convergence of the sequences {U (i)
m (ξ, η)}m∈N, {p(i)

m (ξ, η)}m∈N
and {q(i)

m (ξ, η)}m∈N in D̄(1)
ε follows. For the limit functions U (i), p(i), q(i) ∈ C(D̄(1)

ε )
we obtain the integral equalities (3.1)–(3.6) with the obvious condition U (i)(0, η0) =
0. From the integral equalities (3.1)–(3.6) it follows that p(i) = U

(i)
ξ and q(i) = U

(i)
η

in D̄
(1)
ε . Therefore, U (i) ∈ C1(D̄(1)

ε ), i = 1, 2.
Also, in view of (3.10), we see that

|(U (i)(ξ0, η0)| =
∣∣ ∞∑
m=0

(U (i)
m+1 − U (i)

m )(ξ0, η0)
∣∣ ≤M ∞∑

m=0

[4c(ε) +Mα]m

(m+ 2)!
(ξ0 + η0)m+2

≤M [4c(ε) +Mα]−2 exp {8c(ε) + 2Mα} , i = 1, 2.

So, using (3.11), for the derivatives U (i)
ξ0

(ξ0, η0) and U (i)
η0 (ξ0, η0) we get the estimates

|U (i)
ξ0

(ξ0, η0)| =
∣∣ ∞∑
m=0

(p(i)
m+1 − p(i)

m )(ξ0, η0)
∣∣ ≤M ∞∑

m=0

[4c(ε) +Mα]m

(m+ 1)!
(ξ0 + η0)m+1

≤M [4c(ε) +Mα]−1 exp {8c(ε) + 2Mα} , i = 1, 2

and
|U (i)
η0

(ξ0, η0)| ≤M [4c(ε) +Mα]−1 exp {8c(ε) + 2Mα} , i = 1, 2,
which shows (3.8). Also, by (3.3)–(3.6), it follows that

U
(1)
ξ0η0
≡ U (1)

η0ξ0
= F 1 +A1U

(1)
ξ0

+B1U
(1)
η0

+ C1U
(1) +D1U

(2),

U
(2)
ξ0η0
≡ U (2)

η0ξ0
= F 2 +A2U

(2)
ξ0

+B2U
(2)
η0

+ C2U
(2) +D2U

(1).

Thus, the vector-valued function U(ξ0, η0) is a solution to the system (2.19) and
Uξη ∈ C(D̄(1)

ε ). Finally, using representations (3.3)–(3.6) for the first derivatives of
U (i), we conclude that each function U (i)(ξ0, η0) satisfies the boundary condition
(2.20) of the Problem Pα,3 for η = ξ. �

The next lemma is very important for the investigation of the singularity of a
generalized solution of Problem Pα.
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Lemma 3.2. Let F i, Ai, Bi, Ci, Di ∈ C(D̄(1)
ε ), i = 1, 2,

Ai ≥ 0, Bi ≥ 0, Ci ≥ 0, Di ≥ 0, α(1− ξ) ≥ 0 in D̄(1)
ε , i = 1, 2 (3.12)

and

(a) p(i)
1 ≥ 0 and q

(i)
1 ≥ 0, or (b) F (i) ≥ 0 in D̄(1)

ε , i = 1, 2. (3.13)

Then for the solution (U (1), U (2)) of Problem Pα,3 (already found in Theorem 3.1)
we have

U (i)(ξ, η) ≥ 0, U (i)
η (ξ, η) ≥ 0, U

(i)
ξ (ξ, η) ≥ 0 for (ξ, η) ∈ D̄(1)

ε , i = 1, 2.
(3.14)

Proof. First, suppose that the condition (b) is satisfied. Then, in view of (3.9),
for (ξ0, η0) ∈ D̄(1)

ε we have

U
(i)
1 (ξ0, η0) =

∫ ξ0

0

∫ η0

ξ0

F (i)(ξ, η) dη dξ + 2
∫ ξ0

0

∫ η

0

F (i)(ξ, η) dξ dη ≥ 0, (3.15)

p
(i)
1 (ξ0, η0) =

∫ ξ0

0

F (i)(ξ, ξ0) dξ +
∫ η0

ξ0

F (i)(ξ0, η) dη ≥ 0, (3.16)

q
(i)
1 (ξ0, η0) =

∫ ξ0

0

F (i)(ξ, η0) dξ ≥ 0, i = 1, 2. (3.17)

Thus, the condition (b) is stronger, than (a). Assume now that (a) p(i)
1 ≥ 0 and

q
(i)
1 ≥ 0 in D̄(1)

ε . Then, using (3.17), we find that U (i)
1 ≥ 0. Thus, in both cases (a)

or (b), the inequalities (3.15) - (3.17) hold. Suppose next that for some m ∈ N

(U (i)
m − U

(i)
m−1) ≥ 0, (p(i)

m − p
(i)
m−1) ≥ 0, (q(i)

m − q
(i)
m−1) ≥ 0 in D̄(1)

ε , i = 1, 2.

Then

E(i)
m − E

(i)
m−1 =Ai(p(i)

m − p
(i)
m−1) +Bi(q(i)

m − q
(i)
m−1) + Ci(U (i)

m − U
(i)
m−1)

+Di(U (i+1)
m − U (i+1)

m−1 ) ≥ 0 in D̄(1)
ε , i = 1, 2,

where we denote U (3)
m := U

(1)
m . Therefore, we see that

(U (i)
m+1 − U (i)

m )(ξ0, η0) =
∫ ξ0

0

∫ η0

ξ0

(E(i)
m − E

(i)
m−1)(ξ, η) dη dξ

+ 2
∫ ξ0

0

∫ η

0

(E(i)
m − E

(i)
m−1)(ξ, η) dξ dη

+
∫ ξ0

0

α(1− ξ)(U (i)
m − U

(i)
m−1)(ξ, ξ) dξ ≥ 0.

In the same manner,

(p(i)
m+1 − p(i)

m )(ξ0, η0) =
∫ ξ0

0

(E(i)
m − E

(i)
m−1)(ξ, ξ0) dξ +

∫ η0

ξ0

(E(i)
m − E

(i)
m−1)(ξ0, η) dη

+ α(1− ξ0)(U (i)
m − U

(i)
m−1)(ξ0, ξ0) ≥ 0,

(q(i)
m+1 − q(i)

m )(ξ0, η0) =
∫ ξ0

0

(E(i)
m − E

(i)
m−1)(ξ, η0) dξ ≥ 0.
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Finally, by induction, we conclude that

U (i)(ξ0, η0) =
∞∑
m=0

(U (i)
m+1 − U (i)

m )(ξ0, η0) ≥ 0,

p(i)(ξ0, η0) ≥ 0, q(i)(ξ0, η0) ≥ 0, (ξ0, η0) ∈ D̄(1)
ε .

�

Remark 3.3. Note here that Lemma 3.2, which is actually a maximum principle
for Problem Pα,3, describes the behavior of the system (2.19) around the point
(1, 1). Thus, this lemma becomes particularly useful in Sections 6 and 7 in finding
singular solutions of the equation (2.1). None the less, when the equation (2.1)
transforms to the system (2.14), by (2.16), we see that D2 = −D1 = na2/4. Since,
in view of Lemma 3.2, D1 ≥ 0 and D2 ≥ 0, it should be a2 ≡ 0. Because of this
fact, we are able to find singular solutions only when a2 ≡ 0 (see also Introduction,
Open Questions, 3).

As a consequence of Theorem 3.1 and representations (3.3)–(3.6), we have the
following smoothness result:

Theorem 3.4. Let F i, Ai, Bi, Ci, Di ∈ C1(D̄(1)
ε ), i = 1, 2, ε > 0. Then there exists

a classical solution U ∈ C2(D̄(1)
ε ) of Problem Pα,3.

Proof. Since we have already shown that

p(1)
η (ξ0, η0) ≡ q(1)

ξ (ξ0, η0) = [F 1 +A1p
(1) +B1q

(1) +C1U
(1) +D1U

(2)](ξ0, η0) (3.18)

and that similar representations for p(2)
η and q

(2)
ξ hold, we have to prove only the

fact that p(i)
ξ and q

(i)
η exist and belong to C(D̄(1)

ε ). Indeed, to do this, we observe
the following:

1. For fixed η0 the equality (3.18) is a linear ODE for the function q(1)(ξ0, η0).
So, using the well known formula for the solution with the initial Cauchy data
q(1)(0, η0) = 0 from (3.4), we find that

q(1)(ξ0, η0) =
∫ ξ0

0

[F 1 +A1p
(1) +C1U

(1) +D1U
(2)](ξ, η0) exp

(∫ ξ0

ξ

B1(τ, η0)dτ
)
dξ.

(3.19)
Since F 1, A1, B1, C1, D1, U

(1), U (2) ∈ C1(D̄(1)
ε ) and p(1), p

(1)
η ∈ C(D̄(1)

ε ), by (3.19),
we conclude that q(1) ∈ C1(D̄(1)

ε ).
2. For fixed ξ0 the equality (3.18) is a linear ODE for the function p(1)(ξ0, η0).

So, arguments similar to those above lead to

p(1)(ξ0, η0) =G1(ξ0) exp
(∫ η0

ξ0

A1(ξ0, η)dη
)

+
∫ η0

ξ0

[
F 1 +B1q

(1) + C1U
(1) +D1U

(2)
]

(ξ0, η)

× exp
(∫ η0

η

A1(ξ0, τ)dτ
)
dη.

(3.20)
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The function G1(ξ0), which is defined implicitly by (3.3), is of the form

G1(ξ0)

=
∫ ξ0

0

[
F 1 +A1p

(1) +B1q
(1) + C1U

(1) +D1U
(2)
]
(ξ, ξ0)dξ + α(1− ξ0)U (1)(ξ0, ξ0).

Obviously G1 ∈ C1(D̄(1)
ε ), because F 1, A1, B1, C1, D1, α, U (1), U (2), q(1) ∈

C1(D̄(1)
ε ) and p(1), p

(1)
η ∈ C(D̄(1)

ε ). Finally, by (3.20), we see that p(1) ∈ C1(D̄(1)
ε ).

�

Remark 3.5. By studying a solution of the Problem Pα,3 in the domain D̄
(1)
ε ,

we are actually investigating the behavior of the solution of Problem Pα,2 in the
domain D̄δ, when δ → 0, around the line η = 1. It is easy to show that, for
any ε ∈ (0, 1) and δ ∈ (0, 1), the solutions of these two problems coincide in their
common domain D̄

(1)
ε ∩ D̄δ.

4. Existence and uniqueness theorems for the 2-D Problem Pα,1

Consider the 2-D problem Pα,1 :

1
%

(%u(1)
% )% − u(1)

tt + a1u
(1)
%

+ bu
(1)
t + (c− n2

%2
)u(1) + na2u

(2) = f (1) in Gε,

1
%

(%u(2)
% )% − u(2)

tt + a1u
(2)
% + bu

(2)
t + (c− n2

%2
)u(2) − na2u

(1) = f (2) in Gε,

u(i)
∣∣
S1∩∂Gε

= 0, [u(i)
t + α(%)u(i)]

∣∣
S0∩∂Gε

= 0, i = 1, 2.

(4.1)

Note that, the generalized solution of the problem Pα,1 in the domain Gε ,
ε ∈ (0, 1), was defined by Definition 2.4.
Theorem 4.1. Let a1, a2, b, c, f

(1), f (2) ∈ C1(Ḡ0 \ (0, 0)). Then there exists a
generalized solution u = (u(1), u(2)) ∈ C2(Ḡ0 \ (0, 0)) of problem Pα,1 in G0, which
is a classical solution of the problem Pα,1 in any domain Gε, ε ∈ (0, 1).
Proof. In view of (2.11) and (2.13), i.e. z(%, t) = %1/2u(%, t) and ξ = 1 − % − t,
η = 1− %+ t, we introduce the function

U (i)(ξ, η) = z(i)(%(ξ, η), t(ξ, η)).

Then Problem Pα,1, in the new terms, becomes Pα,2, i.e.

U
(1)
ξη −A1U

(1)
ξ −B1U

(1)
η − C1U

(1) −D1U
(2) = F 1(ξ, η) in Dε,

U
(2)
ξη −A2U

(2)
ξ −B2U

(2)
η − C2U

(2) −D2U
(1) = F 2(ξ, η) in Dε,

(4.2)

U (i)(0, η) = 0, (U (i)
η − U

(i)
ξ )(ξ, ξ) + α(1− ξ)U (i)(ξ, ξ) = 0, i = 1, 2, (4.3)

where the connection between the coefficients is given by (2.16). For each fixed
ε ∈ (0, 1) Theorem 3.4 ensures the existence of a classical solution (U (1), U (2)) ∈
C2(D̄(1)

ε ) of the problem Pα,3. More precisely, for any fixed ε1, ε2 with 0 < ε1 <
ε2 < 1 the corresponding vector-valued solution Uε2 is a restriction of Uε1 in the
region Dε2 . So, essentially we have a function of class C2

(
D0\(0, 0)

)
, which in any

region Dε coincides with the corresponding solution Uε and is a classical solution
of Problem Pα,3. We remark that the inverse transformations (2.11) and (2.13)
lead to a vector-valued function (u(1), u(2)) ∈ C2

(
Ḡ0\(0, 0)

)
, which is a classical

solution of Problem Pα,1 in each Gε. This solution is also a generalized solution of
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the same problem in G0, because for each concrete test function v ∈ V0 there is an
εv > 0 for which v ≡ 0 in G0\Gεv and (1.8) coincides with (2.5). The proof of the
theorem is complete. �

Theorem 4.2. Let a1, a2, b, c ∈ C1(Ḡ0 \ (0, 0)). Then for each fixed ε ∈ (0, 1) there
exists at most one generalized solution of the problem Pα,1 in Gε.

Proof. Let (u(1)
1 , u

(2)
1 ) and (u(1)

2 , u
(2)
2 ) be two generalized solutions of Pα,1 in Gε.

Then for u(i) := u
(i)
1 − u

(i)
2 , i = 1, 2, we see that

(1) u(i) ∈ C1(Ḡε), [u(i)
t + α(%)u(i)]

∣∣
S0∩∂Gε

= 0, u(i)
∣∣
S1∩∂Gε

= 0, i = 1, 2;
(2) The equalities∫
Gε

[
u

(1)
t v

(1)
t − u(1)

% v(1)
% +

(
a1u

(1)
% + bu

(1)
t + (c− n2

%2
)u(1) + na2u

(2)
)
v(1)

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(1)v(1)% d%,∫
Gε

[
u

(2)
t v

(2)
t − u(2)

% v(2)
% +

(
a1u

(2)
% + bu

(2)
t + (c− n2

%2
)u(2) − na2u

(1)
)
v(2)

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(2)v(2)% d%

(4.4)
hold for all functions v(1), v(2) ∈ V (1)

ε .

If the functions v(i) ∈ C2(Ḡε), then from (4.4) we conclude that∫
Gε

[(1
%

(ρv(1)
% )% − v(1)

tt −
1
%

(%a1v
(1))% − (bv(1))t

+(c− n2

%2
)v(1)

)
u(1) + na2v

(1)u(2)
]
%d% dt = 0,∫

Gε

[(1
ρ

(ρv(2)
% )% − v(2)

tt −
1
%

(%a1v
(2))% − (bv(2))t

+(c− n2

%2
)v(2)

)
u(2) − na2v

(2)u(1)
]
%d% dt = 0.

(4.5)

For h(1), h(2) ∈ C1
(
Ḡ0\(0, 0)

)
we state the following problem.

Problem P ∗α,1. Find a solution v(1), v(2) ∈ V (1)
ε ∩ C2(Ḡε) of the system

1
%

(ρv(1)
% )% − v(1)

tt −
1
%

(%a1v
(1))% − (bv(1))t + (c− n2

%2
)v(1) − na2v

(2) = h(1),

1
%

(%v(2)
% )% − v(2)

tt −
1
%

(%a1v
(2))% − (bv(2))t + (c− n2

%2
)v(2) + na2v

(1) = h(2).

For z(i) = %1/2v(i), ξ1 = 1− ε− η, η1 = 1− ε− ξ, and

V (i)(ξ1, η1) = z(i)(1− ε− η1, 1− ε− ξ1), (4.6)

the domain Gε maps into Dε, and for appropriate coefficients Ai, Bi, Ci, Di and
β = α + b the above Problem P ∗α,1 transforms to the Darboux–Goursat Problem
Pβ,3. But for this problem Theorem 3.4 ensures the solvability in C2(D̄ε). Conse-
quently, there exists a classical solution (V (1), V (2)) ∈ C2(D̄ε) and so the inverse
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transformations (2.11) and (2.13) lead to a classical solution (v(1), v(2)) ∈ C2(Ḡε)
of Problem P ∗α,1. Moreover, with these functions v(1), v(2) the system (4.5) becomes∫

Gε

[(
h(1) + na2v

(2)
)
u(1) + na2v

(1)u(2)
]
%d% dt = 0,∫

Gε

[(
h(2) − na2v

(1)
)
u(2) − na2v

(2)u(1)
]
%d% dt = 0.

(4.7)

Since the functions h(1)(%, t), h(2)(%, t) ∈ C1
(
Ḡ0\(0, 0)

)
are arbitrary, (4.7) gives

u(1)(%, t) = u(2)(%, t) = 0 in Gε, i.e. (u(1)
1 , u

(2)
1 ) ≡ (u(1)

2 , u
(2)
2 ). The proof is complete.

�

5. Existence and uniqueness theorems for the 3-D Problem Pα

In this section we consider the following 3-D boundary value problem.
Problem Pα. Find a solution to the equation

Lu =
1
%

(%u%)% +
1
%2
uϕϕ − utt + a1u% + a2uϕ + but + cu = f(%, ϕ, t) in Ωε, (5.1)

which satisfies the boundary conditions

u
∣∣
Σ1∩∂Ωε

= 0, [ut + α(%)u]
∣∣
Σ0∩∂Ωε

= 0. (5.2)

For this problem we formulate the following theorems.

Theorem 5.1. Let a1, a2, b, c ∈ C1(Ω̄0\O). Then for 0 ≤ ε < 1 there exists at
most one generalized solution of Problem Pα in Ωε.

Proof. Case 0 < ε < 1. If u1, u2 are two generalized solutions of Pα in Ωε, then
u := u1 − u2 ∈ C1(Ω̄ε) satisfies (5.2) and∫

Ωε

[utvt − u%v% −
1
%2
uϕvϕ + (a1u% + a2uϕ + but + cu)v]% d% dϕ dt

=
∫

Σ0∩∂Ωε

α(%)uv% d%dϕ
(5.3)

holds for all v ∈ Vε. We will show that in the Fourier expansion

u(%, ϕ, t) =
∞∑
n=0

{
u(1)
n (%, t) cosnϕ+ u(2)

n (%, t) sinnϕ
}

(5.4)

the coefficients satisfy u
(i)
n (%, t) ≡ 0 in Ωε, i = 1, 2, i.e. u ≡ 0 in Ωε. Since

u ∈ C1(Ω̄ε), using the substitution

v1(%, ϕ, t) = w1(%, t) cosnϕ ∈ Vε or v2(%, ϕ, t) = w2(%, t) sinnϕ ∈ Vε
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in (5.3), we derive the system∫
Gε

[
u

(1)
n,tw1,t − u(1)

n,%w1,% +
(
a1u

(1)
n,% + bu

(1)
n,t + (c− n2

%2
)u(1)
n + na2u

(2)
n

)
w1

]
%d% dt

=
∫
S0∩∂Gε

α(%)u(1)
n w1% d%,∫

Gε

[
u

(2)
n,tw2,t − u(2)

n,%w2,% +
(
a1u

(2)
n,% + bu

(2)
n,t + (c− n2

%2
)u(2)
n − na2u

(1)
n

)
w2

]
% d%dt

=
∫
S0∩∂Gε

α(%)u(2)
n w2% d%

(5.5)
for all w1, w2 ∈ V (1)

ε and n ∈ N∪{0}. By Definition 2.4, the function (u(1)
n , u

(2)
n )(%, t)

is a generalized solution of the homogeneous problem Pα,1. Clearly, Theorem 4.2
implies u(1)

n (%, t) ≡ u
(2)
n (%, t) ≡ 0 in Ωε for n ∈ N ∪ {0} and so u(1) = u1 − u2 ≡ 0

in Ωε. Case ε = 0. Let ε0 be an arbitrary fixed number of (0, 1). Then, by Lemma
2.3, it follows that the generalized solution u ∈ C1(Ω̄0 \ (0, 0, 0)) of Problem Pα in
Ω0 is also a generalized solution of the homogeneous problem Pα in Ωε0 . Since, by
the previous case, u ≡ 0 in Ωε0 and ε0 > 0 is arbitrary, we see that u = u1−u2 ≡ 0
in Ω0. This completes the proof of the theorem. �

Theorem 5.2. Let a1, a2, b, c ∈ C1
(
Ω̄0\O

)
and the function f ∈ C(

−
Ω0)∩C1(

−
Ω0\O)

be of the form

f(%, ϕ, t) =
k∑

n=0

{
f (1)
n (%, t) cosnϕ+ f (2)

n (%, t) sinnϕ
}
, k ∈ N ∪ {0}. (5.6)

Then there exists one and only one generalized solution

u(%, ϕ, t) =
k∑

n=0

{
u(1)
n (%, t) cosnϕ+ u(2)

n (%, t) sinnϕ
}

(5.7)

of the problem Pα in Ω0. This solution u ∈ C2
(
Ω̄0\O

)
is a classical solution of the

problem Pα in each domain Ωε, ε ∈ (0, 1). Moreover, if

|a1| ≤ d%−1, |a2| ≤ d%−2, |b| ≤ d%−2, |c| ≤ d%−2, |α| ≤ d%−2 in Ω̄0\O,

then, in view of (5.7), for a fixed n, the corresponding trigonometric polynomial un
of degree n, satisfies the following a priori estimates: For n = 0,

‖u0(x1, x2, t)‖C1(Ω
(1)
ε )

=
∑
|α|≤1

sup
Ω

(1)
ε

|Dαu0| ≤ 6ε3/2 exp
(32d+ 2

ε2

)
‖f (1)

0 ‖C0(Ḡ0); (5.8)

while for n ∈ N,

‖un(x1, x2, t)‖C1(Ω
(1)
ε )
≤ 6ε3/2

n(n+ 2d)
exp

(8n(n+ 3d)
ε2

)(
‖f (1)
n ‖C0(Ḡ0) + ‖f (2)

n ‖C0(Ḡ0)

)
,

(5.9)
where Ω(1)

ε = Ω0 ∩ {(%, t) : %+ t > ε}.
Proof. It suffices to consider the case of a fixed number n. As in Section 2, we
make the substitutions

ξ = 1− %− t, η = 1− %+ t, (5.10)
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and introduce the new function

U (i)(ξ, η) = %1/2u(i)(%(ξ, η), t(ξ, η)). (5.11)

Denote

F (i)(ξ, η) :=
1

4
√

2
(2− η − ξ)1/2f (i)

n (ξ, η) ∈ C1
(
D̄0\(1, 1)

)
,

and use the notation of (2.16). Then the problem reduces to Problem Pα,3. Thus,
we can use Theorems 3.1 and 3.4 to ensure the existence of a classical solution
(U (1), U (2))(ξ, η) of this problem with the estimates (3.8).
Case n ∈ N. In view of (3.7), (2.16), it is easy to see that we can chose

c(ε) :=
n(n+ 2d)

ε2
, Mα :=

4d
ε2

M ≤ 1
4

max
{
‖f (1)
n ‖C0(Ḡ0), ‖f (2)

n ‖C0(Ḡ0)

}
:= Mn,

Hence, Theorems 3.1 and 3.4 ensure the smoothness of the solution U of Problem
Pα,3 in D

(1)
ε = {(ξ, η) : 0 < ξ < η < 1, 0 < ξ < 1− ε}, ε > 0, i.e.

(U (1)
n , U (2)

n )(ξ, η) := U(ξ, η) ∈ C2(D̄(1)
ε ) . (5.12)

On the other hand, these theorems ensure the a priori estimates

sup
D

(1)
ε

|U (i)
n (ξ, η)| ≤Mn [4c(ε) +Mα]−2 exp {8c(ε) + 2Mα}

≤Mnε
4[4n(n+ 2d)]−2 exp

{
(8n(n+ 3d)ε−2

}
,

sup
D

(1)
ε

{|U (i)
n,ξ|, |U

(i)
n,η|} ≤Mnε

2[4n(n+ 2d)]−1 exp
{

(8n(n+ 3d)ε−2
}
.

Also, by (5.10) and (5.11), we have u(i)
n (%, t) = %−

1
2U

(i)
n (ξ, η). Since % ≥ ε/2 for

(ξ, η) ∈ D(1)
ε , by the inverse transformation we see that

|u(i)
n (%, t)| ≤Mn

ε7/2

8n2(n+ 2d)2
exp

(8n(n+ 3d)
ε2

)
,

|u(i)
n,t(%, t)| ≤Mn

ε3/2

n(n+ 2d)
exp

(8n(n+ 3d)
ε2

)
,

|u(i)
n,%(%, t)| ≤Mn

ε3/2

n(n+ 2d)
exp

(8n(n+ 3d)
ε2

)
.

(5.13)

Therefore, in view of (5.7) and (5.13), for the trigonometrical polynomial

un(%, ϕ, t) = u(1)
n (%, t) cosnϕ+ u(2)

n (%, t) sinnϕ (5.14)

we derive

‖1
%
un,ϕ(%, ϕ, t)‖

C(Ω
(1)
ε )
≤Mn

ε5/2

4n(n+ 2d)2
exp

(
8n(n+ 3d)

ε2

)
. (5.15)

Since un(% cosϕ, % sinϕ, t) = u
(1)
n (%, ϕ, t), obviously one has

|un,xi(x1, x2, t)| ≤ 2Mn
ε3/2

n(n+ 2d)
exp

(
8n(n+ 3d)

ε2

)
, i = 1, 2.

So, the estimate (5.9) holds in Ω(1)
ε .
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Case n = 0. By (5.6) and (5.7), we have f0(%, ϕ, t) = f
(1)
0 (%, t) and u0(x1, x2, t) =

u0(%, ϕ, t) = u
(1)
0 (%, t). Take

c(ε) :=
8d+ 1

4ε2
, Mα :=

4d
ε2
, M :=

1
4
‖f (1)

0 ‖C0(Ḡ0) .

Then, as in the previous case, we obtain (5.8). �

Theorem 5.3. Let the conditions of Theorem 5.2 be fulfilled. Also, for the sake
of simplicity, suppose that a1, a2, b, c ∈ C1(Ω̄0) and |α′(%)| ≤ d1/%

−3. Then for a
fixed n ∈ N the corresponding trigonometric polynomial un of degree n from (5.14)
satisfies the following a priori estimate

‖un(x1, x2, t)‖C2(Ω̄
(1)
ε )
≤ C1ε

−1/2 exp
(8n(n+ 3d)

ε2

)(
‖f (1)
n ‖C0(Ḡ0) + ‖f (2)

n ‖C0(Ḡ0)

)
,

(5.16)
where the constant C1 does not depend on n and ε.
Proof. We will use the estimates of Theorem 5.2 and the representations of the
second derivatives of Theorem 3.4. Following the same arguments, as in Theorem
5.2, we obtain the estimates

sup
D

(1)
ε

{|U (i)
n,ξη|, |U

(i)
n,ηη|, |U

(i)
n,ξξ|} ≤ C1Mn exp

{
8n(n+ 3d)ε−2

}
, i = 1, 2

and conclude that

sup
D

(1)
ε

{|un,xixj |, |un,txi |} ≤ C1Mnε
−1/2 exp

(8n(n+ 3d)
ε2

)
.

�
The next theorem is an immediate consequence of Theorems 5.1, 5.2 and 5.3.

Theorem 5.4. Let the conditions of Theorem 5.3 be fulfilled and let f ∈ C1(Ω̄0)
be of the form

f(%, ϕ, t) =
∞∑
n=0

{f (1)
n (%, t) cosnϕ+ f (2)

n (%, t) sinnϕ}. (5.17)

Suppose that the Fourier coefficients f (1)
n (%, t) and f (2)

n (%, t) satisfy

‖f‖exp (ε) := exp
(32d+ 2

ε2

)
‖f (1)

0 ‖C0(Ḡ0) +
∞∑
n=1

1
n(n+ 2d)

exp
(8n(n+ 3d)

ε2

)
×
(
‖f (1)
n ‖C0(Ḡ0) + ‖f (2)

n ‖C0(Ḡ0)

)
<∞ .

(5.18)

Then there exists one and only one generalized solution u ∈ C1
(

Ω̄(1)
ε

)
of the prob-

lem Pα in Ωε and satisfies the a priori estimate

‖u‖
C1(Ω

(1)
ε )
≤ 6ε3/2‖f‖exp (ε). (5.19)

Moreover, if

‖f‖exp1 (ε) := exp
(32d+ 2

ε2

)
‖f (1)

0 ‖C0(Ḡ0) +
∞∑
n=1

exp
(8n(n+ 3d)

ε2

)
×
(
‖f (1)
n ‖C0(Ḡ0) + ‖f (2)

n ‖C0(Ḡ0)

)
<∞,

(5.20)
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then u ∈ C2
(

Ω̄(1)
ε

)
, u(x, t) is a classical solution of the problem Pα in Ωε and

satisfies the a priori estimate

‖u‖
C2(Ω

(1)
ε )
≤ C2ε

−1/2‖f‖exp1 (ε). (5.21)

Remark 5.5. It is obvious that the estimates (5.19) or (5.21) hold, if the series
(5.18) and (5.20) are finite. In this case we have a solution, which is of class
C1(Ω̄0\O) or of class C2(Ω̄0\O). For example, the condition (5.20) is valid for each
ε ∈ (0, 1), if there exists a sequence an → +∞ as n→ +∞ such that

∞∑
n=1

exp
(
n2an

) (
‖f (1)
n ‖C0(Ḡ0) + ‖f (2)

n ‖C0(Ḡ0)

)
<∞. (5.22)

To show this, it is enough to see that the inequality n(ε2an− 8) ≥ 24d holds, for
all large enough n ∈ N.

6. On the singularity of solutions of Problem Pα

For the the equation

Lu =
1
%

(%u%)% +
1
%2
uϕϕ − utt + a1u% + a2uϕ + but + cu = f(%, ϕ, t) in Ω0, (6.1)

we consider the boundary conditions of Problem Pα, i.e.

Pα : u
∣∣
Σ1

= 0, [ut + α(%)u]
∣∣
Σ0\O

= 0 (6.2)

and prove the following result.
Theorem 6.1. Let α(%) ≥ 0; a1, b, c ∈ C1(Ω̄0\O), a2 ≡ 0 and

a1(%, t) ≥ |b|(%, t), a1(%, t) ≥ 2%c(%, t), (%, t) ∈ Ω0. (6.3)

Then for each function

fn(%, ϕ, t) = %−n(%2 − t2)n−1/2 cosnϕ ∈ Cn−2(Ω̄0) ∩ C∞(Ω0), n ∈ N,
the corresponding generalized solution un of the problem Pα belongs to C2(Ω̄0\O)
and satisfies the estimate

|un(%, ϕ, %)| ≥ 1
2
|un(2%, ϕ, 0)|+ %−n| cosnϕ| ≥ %−n| cosnϕ|, 0 < % < 1 . (6.4)

Proof. Note that, by Theorem 1.2, the functions

wn(%, ϕ, t) = %−n(%2 − t2)n−1/2(an cosnϕ+ bn sinnϕ), n ≥ 4,

are classical solutions of the homogeneous Problem P ∗α for the wave equation, when
α ≡ 0.

Now consider the special case of Problem Pα:

Lu = fn ≡ %−n(%2 − t2)n−1/2 cosnϕ in Ω0. (6.5)

Observe also that

fn(x1, x2, t) = (x2
1 + x2

2)−n(x2
1 + x2

2 − t2)n−1/2 Re(x1 + ix2)n

and obviously fn ∈ Cn−2(Ω̄0) ∩ C∞(Ω0), n ∈ N. Theorem 5.1 states that the
equation (6.5) with boundary conditions (6.2) has at most one generalized solution.
On the other hand, from Theorem 5.2 it is known that, for the above right-hand
side, there exists a generalized solution in Ω0 of the form

un(%, ϕ, t) = u(1)
n (%, t) cosnϕ ∈ C2(Ω̄0\O),
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which is classical solution in Ωε, ε ∈ (0, 1). By setting u(2)
n (%, t) = %

1
2u

(1)
n (%, t) and

substituting
ξ = 1− %− t, η = 1− %+ t, (6.6)

the equation (6.5), with boundary conditions (6.2), in view of

U(ξ, η) = u(2)
n (%(ξ, η), t(ξ, η)), (6.7)

becomes a Darboux-Goursat problem Pα,3:

Uξη −AUξ −BUη − CU = F (ξ, η), (6.8)

U(0, η) = 0, (Uη − Uξ)(ξ, ξ) + α(1− ξ)U(ξ, ξ) = 0. (6.9)

Note that, because of the condition a2 ≡ 0 and the special right-hand side of (6.5),
we do not obtain a system as in the general case of Section 3, but a single equation
(6.8). According to (2.16), the coefficients of (6.8) are defined as follows:

A =
1
4

(a1 + b) ≥ 0, B =
1
4

(a1 − b) ≥ 0,

C(ξ, η) =
1
4

( 4n2 − 1
(2− η − ξ)2

+
a1(ξ, η)

2− η − ξ
− c(ξ, η)

)
≥ 0, n ∈ N,

(6.10)

F (ξ, η) = 2n−
5
2

[ (1− ξ)(1− η)
2− η − ξ

]n− 1
2 ∈ Cn−1(D̄(1)

ε ), F (ξ, η) ≥ 0, (6.11)

where we preserve the same notations for a1, b and c in the new coordinates (ξ, η).
Next, in view of Theorem 3.4 and Lemma 3.2, we formulate the following result.
Proposition 6.2. There exists a classical solution U(ξ, η) ∈ C2(D̄0 \ (1, 1)) for the
problem (6.8), (6.9) for which

U(ξ, η) ≥ 0, Uξ(ξ, η) ≥ 0, Uη(ξ, η) ≥ 0 in D̄(1)
ε .

Set

K =
∫
D

(1)
1
2

F 2(ξ, η) dξdη > 0. (6.12)

Then from (6.8) for 0 < ε < 1/2 it follows that

0 < K ≤
∫
D

(1)
ε

F 2(ξ, η) dξdη

=
∫
D

(1)
ε

(UξηF )(ξ, η)dξ dη −
∫
D

(1)
ε

[(AUξ +BUη + CU)F ](ξ, η) dξdη

=:I1 − I2.

(6.13)

Using the properties of F (ξ, η) from (6.11) and following [9], we find that

I1 :=
∫ 1−ε

0

∫ 1

ξ

(UξηF )(ξ, η) dη dξ

=
∫
D

(1)
ε

(UFξη)(ξ, η) dξ dη −
∫ 1−ε

0

[Uξ(ξ, ξ)F (ξ, ξ) + U(ξ, ξ)Fη(ξ, ξ)] dξ

−
∫ 1

1−ε
U(1− ε, η)Fη(1− ε, η) dη.

(6.14)

An elementary calculation shows that

Fξ(ξ, η) ≤ 0, Fη(ξ, η) ≤ 0, (6.15)



EJDE–2003/03 SINGULAR SOLUTIONS TO PROTTER’S PROBLEM 23

which actually follows from Lemma 3.2, and

Fξ(ξ, ξ) = Fη(ξ, ξ) =
1
16

(1− 2n)(1− ξ)n− 3
2 . (6.16)

From (6.13) and (6.14) it follows that

0 < K ≤ I1 − I2 =−
∫ 1−ε

0

[Uξ(ξ, ξ)F (ξ, ξ) + U(ξ, ξ)Fξ(ξ, ξ)] dξ

−
∫ 1

1−ε
U(1− ε, η)Fη(1− ε, η) dη

+
∫
D

(1)
ε

{(Fξη − CF )U − F (AUξ +BUη)} dξ dη.

(6.17)

Also, it is easy to check that

Fξη(ξ, η)− 4n2 − 1
4(2− η − ξ)2

F (ξ, η) = 0 (6.18)

and so, because of (6.3), (6.10) and Proposition 6.2,

(Fξη −CF )U −F (AUξ +BUη) = −
( a1(ξ, η)

2− η − ξ
− c(ξ, η)

)FU
4
−F (AUξ +BUη) ≤ 0.

Thus, we find

0 < K ≤ I1 − I2 ≤−
∫ 1−ε

0

[Uξ(ξ, ξ)F (ξ, ξ) + U(ξ, ξ)Fξ(ξ, ξ)] dξ

−
∫ 1

1−ε
U(1− ε, η)gη(1− ε, η) dη,

(6.19)

where, as it is easy to check,

Fξ(ξ, ξ) =
1
2

[F (ξ, ξ)]ξ. (6.20)

The function U(ξ, η) is a classical solution of (6.8), (6.9) in D̄ε, ε ∈ (0, 1) with

Uξ(ξ, ξ) =
1
2

[U(ξ, ξ)]ξ +
1
2
α(1− ξ)U(ξ, ξ). (6.21)

If we substitute (6.20) and (6.21) into (6.19), we get

K ≤I1 − I2 = −1
2

∫ 1−ε

0

[F (ξ, ξ)U(ξ, ξ)]ξ dξ

− 1
2

∫ 1−ε

0

α(1− ξ)U(ξ, ξ)F (ξ, ξ) dξ −
∫ 1

1−ε
U(1− ε, η)Fη(1− ε, η) dη

=− 1
2

(FU)(1− ε, 1− ε)− 1
2

∫ 1−ε

0

α(1− ξ)U(ξ, ξ)F (ξ, ξ) dξ

−
∫ 1

1−ε
U(1− ε, η)Fη(1− ε, η) dη.

(6.22)

Next, in view of Proposition 6.2 and the properties of the function F (ξ, η), we find

U(ξ, η) ≥ 0, Uη(ξ, η) ≥ 0, α(ξ) ≥ 0, F (ξ, η) ≥ 0, Fη(ξ, η) ≤ 0 in D̄(1)
ε ,
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which together with (6.22) and because of F (1− ε, 1) = 0 implies

K ≤ I1 + I2 ≤ −
∫ 1

1−ε
U(1− ε, η)Fη(1− ε, η) dη − 1

2
(FU)(1− ε, 1− ε)

=
∫ 1

1−ε
U(1− ε, η)|Fη(1− ε, η)| dη − 1

2
(FU)(1− ε, 1− ε)

≤
∫ 1

1−ε
U(1− ε, 1)|Fη(1− ε, η)| dη − 1

2
(FU)(1− ε, 1− ε)

=
[
U(1− ε, 1)− 1

2
U(1− ε, 1− ε)

]
F (1− ε, 1− ε).

Since F (1− ε, 1− ε) = 1
4ε
n− 1

2 , we have

0 < K ≤
[
U(1− ε, 1)− 1

2
U(1− ε, 1− ε)

]1
4
εn−

1
2 .

For ξ = 1− ε, η = 1 we have % = t = ε/2 and so

0 < 4Kε
1
2−n ≤ u(2)

n

(ε
2
,
ε

2

)
− 1

2
u(2)
n (ε, 0). (6.23)

Finally, the inverse transformation gives

u(1)
n

(ε
2
,
ε

2

)
≥ 1

2
u(1)
n (ε, 0) + C̃1ε

−n ≥ C̃1ε
−n, 0 < ε <

1
2
,

where C̃1 = 2
5
2K. Multiplying the function un by C̃−1

1 , we see that (6.4) holds.
The proof is complete. �

Note that the conditions of Theorem 6.1 are only sufficient, and not invariant
with respect to change of variables. Now, we use this fact in order to find some new
singular solutions. For this reason, consider the special form of the equation (6.1)

Lu =
1
%

(%u%)% +
1
%2
uϕϕ − utt + a1(u% − ut) + cu = f(%, ϕ, t) in Ωε, (6.24)

with the boundary conditions (6.2).
Theorem 6.3. Let a1, c ∈ C1(Ω̄0\O); a1 ∈ C(Ω̄0) and α(%) ∈ C1(0, 1] ∩ C[0, 1],
without any conditions imposed on the sign. Suppose that a1(%, t) ≥ 2%c(%, t) for
(%, t) ∈ Ω0. Then there exists appropriate constant Λ0, such that for any other
constant Λ ≥ Λ0 and function

fn(%, ϕ, t) = exp {Λ(%+ t)} %−n(%2 − t2)n−1/2 cosnϕ, n ∈ N,

the corresponding singular generalized solution un of the problem Pα belongs to
C2(Ω̄0\O) and the estimate (6.4) holds.
Proof. We are looking for appropriate right-hand side functions fn of the equation
(6.24), for which singular solutions exist. Set

u(%, ϕ, t) = exp {λ(%+ t)}w(%, ϕ, t),

where the function λ(s) will be chosen later. Then the equation (6.24) becomes

L1w =
1
%

(%w%)% +
1
%2
wϕϕ − wtt + (a1 + 2λ′)(w% − wt) + (c+ λ′%−1)w

= exp {−λ(%+ t)} f(%, ϕ, t) in Ωε
(6.25)



EJDE–2003/03 SINGULAR SOLUTIONS TO PROTTER’S PROBLEM 25

and so we lead to the following boundary value problem:

Pβ :
{
L1w = g := exp {−λ(%+ t)} f in Ω0,
w
∣∣
Σ1

= 0, [wt + β(%)w]
∣∣
Σ0\O

= 0 (6.26)

with β(%) = α(%) + λ′(%). In order to apply Theorem 6.1 to Problem Pβ , we need
the following conditions

α(%) + λ′(%) ≥ 0, a1(%, t) + 2λ′(%) ≥ 0, a1(%, t)− 2%c(%, t) ≥ 0,

which are satisfied, for example, for λ(%) = Λ% and Λ > 0 large enough. Following
the proof of Theorem 6.1 and using the transformations (6.6) and (6.7), we lead to
the function W (ξ, η) of (6.7), for which the equation (6.8) reduces to

Wξη −
1
2

(a1 + 2λ′)Wη − CW = F (ξ, η). (6.27)

Here C(ξ, η) and F (ξ, η) are functions from (6.11) and (6.10).
We formulate now a result to be used in the proof of Theorem 7.1.

Proposition 6.4. There exists a classical solution W (ξ, η) ∈ C2(D̄0\(1, 1)) of the
problem (6.27), (6.9) for which

W (ξ, η) ≥ 0, Wξ(ξ, η) ≥ 0, Wη(ξ, η) ≥ 0 in D̄(1)
ε . (6.28)

For the function

gn(%, ϕ, t) = %−n(%2 − t2)n−1/2 cosnϕ, (6.29)

as the right-hand side of the equation L1w = g, Theorem 6.1 gives a singular
solution wn satisfying (6.4); that is,

|wn(%, ϕ, %)| ≥ 1
2
|wn(2%, ϕ, 0)|+ %−n| cosnϕ| ≥ %−n| cosnϕ|, 0 < % < 1. (6.30)

Now, the inverse transform un = exp {Λ(%+ t)}wn gives

|un(%, ϕ, %)| ≥ 1
2
|un(2%, ϕ, 0)|+ %−n| cosnϕ| ≥ %−n| cosnϕ|, 0 < % < 1, (6.31)

where the function un(%, ϕ, t) is a solution of the problem (6.24), (6.2) with

f(%, ϕ, t) = exp {Λ(%+ t)} %−n(%2 − t2)n−1/2 cosnϕ.

The proof is complete. �

Next, we find singular solutions for the original Problem Pα, formulated in Sec-
tion 1.
Proof of Theorem 1.4 Recall that we are looking for a suitable right-hand side
function fn of (1.1) for which singular solutions exist. Set

u(x1, x2, t) = exp {(bt− b1x1 − b2x2)/2} v(x1, x2, t) . (6.32)

Then equation (2.1) becomes

vx1x1 + vx2x2 − vtt + c1v = h ≡ exp {(b1x1 + b2x2 − bt)/2} f in Ω0, (6.33)

where c1 := c+ (b2 − b21 − b22)/4. In order to apply Theorem 6.3, we rewrite (6.33)
in polar coordinates and obtain the problem Pγ :

1
%

(%v%)% +
1
%2
vϕϕ − vtt + c1v = h(%, ϕ, t) in Ω0,

v
∣∣
Σ1

= 0, [vt + γ(%)v]
∣∣
Σ0\O

= 0



26 M. K. GRAMMATIKOPOULOS, T. D. HRISTOV, & N. I. POPIVANOV EJDE–2003/03

with γ(%) := α(%) + b/2. In order to apply Theorem 6.3 to the Problem Pγ , the
only condition we need is c1 ≤ 0, i.e. c+ (b2 − b21 − b22)/4 ≤ 0, which is satisfied. If
we now choose

hn(%, ϕ, t) = exp {Λ(%+ t)} %−n(%2 − t2)n−1/2 cosnϕ

according to Theorem 6.3 with the constant Λ large enough, then the Problem Pγ
has a corresponding singular solution vn ∈ C2(Ω̄0\O) with the estimate

|vn(%, ϕ, %)| ≥ 1
2
|vn(2%, ϕ, 0)|+ %−n| cosnϕ|, 0 < % < 1.

Now the inverse transform of (6.32) gives a singular generalized solution un ∈
C2(Ω̄0\O) of the Problem Pα with the right-hand side

fn = exp {(bt− b1x1 − b2x2)/2 + Λ(%+ t)}

× |x|−n(x2
1 + x2

2 − t2)n−1/2 cosn(arctan
x2

x1
).

The proof is complete. �

Remark 6.5. Aldashev in [2] considered (2.1) and studied the homogeneous Prob-
lems Pα and P ∗α. Unfortunately, as it is easy to check, the procedure which he
follows leads to a correct conclusion only in the case of the wave equation, i.e. only
in the case where all the lower order terms in (2.1) are identically zero. Otherwise,
this procedure leads to systems of differential equations which are not equivalent to
those which should be solved (see (2.7)). This is due to the fact that, in the systems
obtained in [2] by integration with respect to ϕ, the Fourier coefficients uk of degree
k depend on the coefficients uk−1 of degree k − 1.

7. Applications to the wave equation, singular solutions

In this section we consider the wave equation

�u = ux1x1 + ux2x2 − utt = f(x1, x2, t) (7.1)

subject to the boundary-value problem Pα, i.e.

�u = f in Ω0, u
∣∣
Σ1

= 0, [ut + α(|x|)u]
∣∣
Σ0\O

= 0. (7.2)

As an application to the wave equation of the results of the previous section, we
have the following statement.
Theorem 7.1. Let α ∈ C∞(0, 1] ∩C[0, 1] be an arbitrary function. Then:

(i) For each n ∈ N, n ≥ 4, there exists a function fn ∈ Cn−2(Ω̄0) ∩ C∞(Ω0),
for which the corresponding generalized solution un of the problem Pα be-
longs to Cn(Ω̄0\O) and satisfies the estimate

|un(x1, x2, |x|)| ≥
1
2
|un(2x1, 2x2, 0)|+ |x|−n| cosn(arctan

x2

x1
)|. (7.3)

(ii) In the case α(%) ≤ 0 an upper estimate of the singular solution un is

|un(x1, x2, t)| ≤ Cµ|x|−1/2
( |x|
x2

1 + x2
2 − t2

)n− 1
2 | cosn(arctan

x2

x1
)|, (|x|, t) ∈ Dµ

1 ,

(7.4)
where Cµ is a constant. and

Dµ
1 := {(%, t) : 0 < %− t ≤ %+ t ≤ µ(%− t)} , µ < 2

2n+1
2n−1 − 1.
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Thus, for α(%) ≤ 0 we have two-sided estimates, which in the limit cases t = |x|
and t = 0 are:

|x|−n| cosn(arctan
x2

x1
)| ≤ |un(x1, x2, |x|)|,

|un(x1, x2, 0)| ≤ C|x|−n| cosn(arctan
x2

x1
)|,

(7.5)

with C a constant. That is, in the case of α(%) ≤ 0 the exact behavior of un(x1, x2, t)
around O is (x2

1 + x2
2 + t2)−n/2 cosn(arctan x2

x1
).

Proof. (i) Note that, the wave equation (7.1) is of the form (6.24) and so the first
part of Theorem 7.1 follows from Theorem 6.3 and [9]. Actually, according to this
theorem we choose the function fn to be of the special form

�u = fn = exp {Λ(%+ t)} %−n(%2 − t2)n−1/2 cosnϕ in Ω0, (7.6)

where Λ > 0 is large enough and such that Λ + α(%) ≥ 0, % ∈ [0, 1]. Then by
Theorems 5.1 and 5.2 there exists a unique generalized solution un(%, ϕ, t) of the
equation (7.6), satisfying the boundary conditions (7.2) and the estimates (7.3) (see
Theorem 6.3). On the other hand, by [9, Theorem 5.2], for the equation (7.6) there
exists a generalized solution in Ω0 of the form

un(%, ϕ, t) = u(1)
n (%, t) cosnϕ ∈ Cn(Ω̄0\O),

which is a classical solution of Problem Pα in Ωε, ε ∈ (0, 1).
(ii) By setting u(2)

n (%, t) = %
1
2u

(1)
n (%, t) and substituting

ξ = 1− %− t, η = 1− %+ t, (7.7)

the problem (7.6), (7.2), in view of

Un(ξ, η) = u(2)
n (%(ξ, η), t(ξ, η)), (7.8)

becomes a Darboux-Goursat problem Pα,3 :

Un,ξη − C(ξ, η)Un = G(ξ, η) ≡ exp {Λ(1− ξ)}F (ξ, η), (7.9)

Un(0, η) = 0, (Un,η − Un,ξ)(ξ, ξ) + α(1− ξ)Un(ξ, ξ) = 0. (7.10)

Here, the coefficients

C(ξ, η) =
4n2 − 1

4(2− η − ξ)2
∈ C∞(D̄(1)

ε ), n ≥ 4, (7.11)

and

F (ξ, η) = 2n−
5
2

[ (1− ξ)(1− η)
2− η − ξ

]n− 1
2 ∈ Cn−1(D̄(1)

ε ) (7.12)

are defined by (2.16) and (2.15). Now, we need some information about the behavior
of the function Un(ξ, η). Since, by Theorem 6.3,

Un(ξ, η) = exp {Λ(%+ t)} W (ξ, η) = exp {Λ(1− ξ)} W (ξ, η),

W (ξ, η) ≥ 0 and Wη(ξ, η) ≥ 0 in D̄(1)
ε , in view of Proposition 6.4, we formulate the

following result.
Proposition 7.2. There exists a classical solution Un(ξ, η) ∈ Cn(D̄0 \ (1, 1)) for
(7.9), (7.10) for which

Un(ξ, η) ≥ 0, Un,η(ξ, η) ≥ 0, (ξ, η) ∈ D̄(1)
ε . (7.13)
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Put

K1 =
∫
D0

G2(ξ, η) dξ dη > 0. (7.14)

Then, by (7.9), for 0 < ε < 1 it follows that

K1 ≥
∫
D

(1)
ε

G2(ξ, η) dξ dη ≥
∫
D

(1)
ε

G(ξ, η)F (ξ, η) dξ dη

=
∫
D

(1)
ε

Un,ξηF (ξ, η) dξ dη −
∫
D

(1)
ε

C(ξ, η)Un(ξ, η)F (ξ, η) dξ dη

=: I1 − I2.

(7.15)

Then

I1 =
∫ 1−ε

0

∫ 1

ξ

(Un,ξηF )(ξ, η) dη dξ

=−
∫ 1−ε

0

Un,ξ(ξ, ξ)F (ξ, ξ) dξ −
∫
D

(1)
ε

(Un,ξFη)(ξ, η) dξ dη,

(7.16)

and, by (7.12), F (ξ, 1) = 0. Since∫
D

(1)
ε

(Un,ξFη)(ξ, η) dξ dη

=
∫ 1−ε

0

(UnFη)(η, η) dη +
∫ 1

1−ε
(UnFη)(1− ε, η) dη −

∫
D

(1)
ε

(UnFξη)(ξ, η) dξ dη,

(7.17)
equation (7.16) becomes

I1 = −
∫ 1−ε

0

[Un,ξ(ξ, ξ)F (ξ, ξ) + Un(ξ, ξ)Fη(ξ, ξ)] dξ

−
∫ 1

1−ε
(UnFη)(1− ε, η) dη +

∫
D

(1)
ε

(UnFξη)(ξ, η) dξ dη.
(7.18)

From (7.18) and (7.15) it follows that

K1 ≥I1 − I2 = −
∫ 1−ε

0

[Un,ξ(ξ, ξ)F (ξ, ξ) + Un(ξ, ξ)Fξ(ξ, ξ)] dξ

−
∫ 1

1−ε
(UnFη)(1− ε, η) dη +

∫
D

(1)
ε

Un[Fξη − CF ](ξ, η) dξ dη.
(7.19)

Because of (6.18), the last integral vanishes. Thus, using the boundary conditions
for the functions Un and F , when η = ξ, we see that

K1 ≥ I1 − I2

= −
∫ 1−ε

0

[Un,ξ(ξ, ξ)F (ξ, ξ) + Un(ξ, ξ)Fξ(ξ, ξ)] dξ −
∫ 1

1−ε
(UnFη)(1− ε, η) dη

= −1
2

(FUn)(1− ε, 1− ε)− 1
2

∫ 1−ε

0

α(1− ξ)Un(ξ, ξ)F (ξ, ξ) dξ

−
∫ 1

1−ε
(UnFη)(1− ε, η) dη.

(7.20)
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Since α(ξ), Fη ≤ 0 and F,Un, Un,η ≥ 0, for 0 < δ < ε < 1, we have
K1 ≥ I1 − I2

≥ −1
2

(UnF )(1− ε, 1− ε) +
∫ 1

1−ε
Un(1− ε, η)|Fη(1− ε, η)| dη

≥ −1
2

(UnF )(1− ε, 1− ε) +
∫ 1

1−δ
Un(1− ε, η)|Fη(1− ε, η)| dη

≥ −1
2

(UnF )(1− ε, 1− ε) +
∫ 1

1−δ
Un(1− ε, 1− δ)|Fη(1− ε, η)| dη

≥ −1
2

(UnF )(1− ε, 1− ε) + (UnF )(1− ε, 1− δ)

≥ Un(1− ε, 1− δ)
[
F (1− ε, 1− δ)− 1

2
F (1− ε, 1− ε)

]
≥ ν(UnF )(1− ε, 1− δ),

(7.21)

provided taht the constant v > 0 satisfies

2(1− ν)F (1− ε, 1− δ) ≥ F (1− ε, 1− ε). (7.22)

Using the explicit formula (7.12) for the function F (ξ, η), we see that the above
inequality is equivalent to

2(1− ν)
( δ

ε+ δ

)n− 1
2 ≥ 2−n+ 1

2 , (7.23)

which implies

0 < ν ≤ 1− 1
2
(ε+ δ

2δ
)n− 1

2 . (7.24)

A necessary condition, for (7.24) to be satisfied is that

1 ≤ ε

δ
< 2

2n+1
2n−1 − 1. (7.25)

In this concrete case, using (7.25), we can find an upper estimate for the generalized
solution un. To do this, we consider the domain

Dµ := {(ξ, η) : 1− η ≤ 1− ξ ≤ µ(1− η)}, (7.26)

where 1 ≤ µ < 2
2n+1
2n−1 − 1. Observe that

inf
Dµ

{
1− 1

2

(1− ξ + 1− η
2(1− η)

)n− 1
2
}

= 1− 1
2

(1 + µ

2

)n− 1
2

=: Cµ > 0.

For ν = Cµ the inequalities (7.23) and (7.22) are satisfied and so, by (7.21), we see
that

U(ξ, η) ≤ 2−n+5/2K1C
−1
µ

( 2− ξ − η
(1− ξ)(1− η)

)n− 1
2
, (ξ, η) ∈ Dµ. (7.27)

By (6.7) and (6.6), the inequality (7.27) transforms to

u(2)
n (%, t) ≤ 4K1C

−1
µ

( %

%2 − t2
)n− 1

2
, (7.28)

which is satisfied for (%, t) ∈ Dµ
1 :=

{
0 < %− t ≤ %+ t ≤ µ(%− t)

}
. Finally, (7.28)

implies

u(1)
n (%, t) ≤ 4K1C

−1
µ %−1/2

( %

%2 − t2
)n− 1

2
for (%, t) ∈ Dµ

1 , (7.29)
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which coincides with the estimate (7.4). Note that Cµ = 1/2 on {t = 0} and so

u(1)
n (%, 0) ≤ 8K1%

−n, 0 < % < 1, (7.30)

which is the upper estimate in (7.5). The proof of Theorem 7.1 is complete. �

Remark 7.3. Since in Theorems 6.1, 6.3 and 7.1 the conditions imposed upon
lower terms of (6.1) are not invariant with respect to substitution of the independent
variables

v(%, ϕ, t) = u(%, ϕ, t) expλ(%, t), (7.31)
for various functions λ(%, t), we can find a series of singular solutions of Problem
Pα for different classes of equations of the form (6.1). This procedure is interesting
by itself and is demonstrated by the following simple example
Example. Consider the special form of the equation (6.1), with constant lower
order terms, that is

Lu ≡ ux1x1 +ux2x2−utt+b1ux1 +b2ux2 +but+
1
4

(b21 +b22−b2)u = f, in Ω0, (7.32)

with the boundary conditions (6.2). Obviously, the equation (7.32) satisfies the
conditions of Theorems 1.4 for α ∈ C1([0, 1]) and we obtain a singular solution
un By using the transform (6.32), the equation (7.32) becomes the wave equation
(7.1). Then Theorem 7.1 becomes useful and in the case, when α(|x|) ≤ −b/2, in
addition, we have two-sided estimates (7.5) of the generalized solution un(x1, x2, t),
whose exact behavior around the point O is (x2

1 + x2
2 + t2)−n/2 cosn(arctan x2

x1
).
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