An existence theorem for Volterra integrodifferential equations with infinite delay *

Ferenc Izsák

Abstract

Using Schauder's fixed point theorem, we prove an existence theorem for Volterra integrodifferential equations with infinite delay. As an appplication, we consider an n species Lotka-Volterra competitive system.

1 Introduction

Vrabie [10, page 265] studied the partial integrodifferential equation

$$
\begin{gather*}
\dot{u}(t)=-A u(t)+\int_{a}^{t} k(t-s) g(s, u(s)) \mathrm{d} s \tag{1.1}\\
u(a)=u_{0},
\end{gather*}
$$

where $u:[a, b] \rightarrow X, X$ is a Banach space, $A: \mathcal{D}(A) \subset X \rightarrow X$ is an M accretive operator; $t \in[a, b], g:[a, b] \times X \rightarrow X, k:[0, a] \rightarrow \mathcal{L}(X)$ are continuous functions. The result, existence of solutions on some interval $[a, c)$ was obtained by using the Schauder's fixed point theorem.

Schauder's fixed point theorem is a usual tool for proving existence theorems in infinite delay case. In [8], Teng applied it to prove existence theorems for Kolmogorov systems. Another frequently used method (especially for integrodifferential equations) is the Leray-Schauder alternative, see [5] and its references.

Modifying (1.1) we investigate the case when the initial function is given on $(-\infty, 0]$, which means infinite delay, moreover in the right-hand side we take a function of the integral. This form allows us proving existence theorems for systems. In this case g, k in the right hand side have to be also modified. The spirit of the proof is similar to [10, pages 265-268] but we need some assumptions on k and g and additional spaces and operators have to be introduced to carry out the proof.

In section 3 we apply the result to a system (a competition model arising from population dynamics); existence of global solution will be proved. In the compactness arguments we need the following definition.

[^0]Definition A family of functions $H \subset L^{1}([a, b] ; X)$ is 1-equiintegrable if the following two conditions are satisfied:

- For all $\epsilon>0$, there exists δ such that for all $f \in H, \lambda(E)<\delta \rightarrow$ $\left.\int_{E}\|f(t)\| \mathrm{d} t<\epsilon\right)$
- For all $\epsilon>0$, there exists $h>0$ such that for all $f \in H$ and all $h_{0}<h$,

$$
\int_{a}^{b-h_{0}}\left\|f\left(t+h_{0}\right)-f(t)\right\| \mathrm{d} t<\epsilon
$$

In this paper, let X be a Banach space, $A: \mathcal{D}(A) \subset X \rightarrow X$ an M-accretive operator [10, page 21]. Further, the spaces equipped with the supremum-norm are denoted by denoted by \mathcal{C}. We study of the abstract Cauchy problem ([7, page 90], [2, pages 390-398])

$$
\begin{gather*}
\dot{u}^{f}(t)+A u^{f}(t)=f(t) \quad \text { if } \quad t \geq a \\
u^{f}(a)=u(a) \tag{1.2}
\end{gather*}
$$

Here u^{f} denotes the f dependence of the solution. We also use the following theorem [10, page 65] which is the basis of the compactness method employing in the following section.

Theorem 1.1 Let $A: X \rightarrow X$ be an M-accretive operator, and $(I-\lambda A)^{-1}$ compact for each $\lambda>0$. Let $u_{0} \in \mathcal{D}(A)$ and $K \subset L^{1}([a, b] ; X)$ be 1-equiintegrable. Then the set $M(K)=\left\{u^{f}: u^{f}\right.$ is the mild solution of (1.2), $\left.f \in K\right\}$ is relatively compact in $\mathcal{C}([a, b] ; X)$.

2 An existence result for a class of Volterra-type integrodifferential equations

A class of Volterra-type integrodifferential equations

Let U be an open subset of X, and $U_{A}=U \cap \mathcal{D}(A)$, with $(I-\lambda A)^{-1}$ compact. Let $b>a$ and $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ be Lipschitz-continuous functions in the second variable, where $g_{i}:(-\infty, b] \times U_{A} \rightarrow X$ are bounded and continuous. Let $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be a function such that $k_{i} \in L_{1}([0, \infty), \mathcal{L}(X))$ and

$$
\begin{equation*}
k(t) g(s, u(s))=\left(k_{1}(t) g_{1}(s, u(s)), k_{2}(t) g_{2}(s, u(s)), \ldots, k_{n}(t) g_{n}(s, u(s))\right) \tag{2.1}
\end{equation*}
$$

Let the space X^{n} be equipped with the maximum norm, $\|\mathbf{x}\|=\max _{1 \leq i \leq n}\left\|x_{i}\right\|$, where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let $F: X^{n} \rightarrow X$ be a function such that for some constant $M_{F} \in \mathbb{R}$,

$$
\begin{equation*}
\|F(x)\| \leq M_{F}\|x\| \quad \text { and } \quad M_{F} \int_{-\infty}^{0}\|k(-\tau)\| \mathrm{d} \tau \leq 1 \tag{2.2}
\end{equation*}
$$

Consider the problem

$$
\begin{gather*}
\dot{u}(t)=-A u(t)+F\left(\int_{-\infty}^{t} k(t-s) g(s, u(s)) \mathrm{d} s\right) \text { for } t \geq a \tag{2.3}\\
u(t)=u_{0}(t-a) \text { for } t \leq a \tag{2.4}
\end{gather*}
$$

where $u_{0} \in \mathcal{C}((-\infty, 0], X)$ is a given bounded, equiintegrable function which fulfills the matching condition

$$
\begin{equation*}
u_{0}(0)=F\left(\int_{-\infty}^{0} k(-s) g\left(a+s, u_{0}(s)\right) \mathrm{d} s\right) \tag{2.5}
\end{equation*}
$$

Theorem 2.1 Under assumptions (2.1) and (2.2), there is a value c in (a, b) such that (2.3)-(2.4) has a weak solution on $(-\infty, c]$.

Proof: Note that $k_{i} \in L_{1}([0, \infty), \mathcal{L}(X))$ implies $k \in L_{1}\left([0, \infty), \mathcal{L}\left(X^{n}, \mathbb{R}^{n}\right)\right)$ and (2.2) makes sense. This is only a technical supposition because (2.3) could be rewrite with k / M and $M g$ (instead of k, g, resp.; $M \in \mathbb{R}$ is sufficiently big) fulfilled (2.3). Let

$$
P: \mathcal{C}((-\infty, b], U) \mapsto \mathcal{C}((-\infty, b], U)
$$

defined by

$$
P f(t)= \begin{cases}F\left(\int_{-\infty}^{t} k(t-s) g\left(s, u^{f}(s)\right) \mathrm{d} s\right) & \text { if } t \geq a \tag{2.6}\\ f(t) & \text { if } t \leq a\end{cases}
$$

where u^{f} is the weak solution of (1.2).
Observe that $\operatorname{Pf}=f$ holds if and only if u^{f} is the weak solution of the equation (2.3)-(2.4). Let us choose $\rho>0$ such that

$$
\begin{equation*}
B(u(a), \rho):=\{v \in X:\|v-u(a)\| \leq \rho\} \subset U \tag{2.7}
\end{equation*}
$$

Since g is bounded there is $M \in \mathbb{R}$ such that

$$
\begin{equation*}
\|g(s, v)\| \leq M \quad \text { for } \quad(s, v) \in\left([-\infty, b] \times\left[U_{A} \cap B\left(u_{0}, \rho\right)\right]\right) \tag{2.8}
\end{equation*}
$$

Denote by $S(t)$ the semigroup generated by $-A$ on $\mathcal{D}(A)$. Let us choose further $b \geq c_{0} \geq a$ such that for all $t \in\left[a, c_{0}\right]$

$$
\begin{equation*}
\left\|S(t-a) u_{0}-u_{0}\right\|+\left(c_{0}-a\right) M \leq \rho \tag{2.9}
\end{equation*}
$$

and $c \in\left[a, c_{0}\right]$ such that

$$
\begin{equation*}
(c-a) M_{F}\|k\|_{L_{1}} \leq 1 \tag{2.10}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
\mathcal{C}_{u_{0}}((-\infty, b], U)=\left\{u \in \mathcal{C}((-\infty, b], U): u(t)=u_{0}(t-a) \quad \text { for } \quad t \leq a\right\} \tag{2.11}
\end{equation*}
$$

Let

$$
H: \mathcal{C}_{u_{0}}((-\infty, b], U) \mapsto \mathcal{C}([a, b], U)
$$

be a natural homeomorphism with $(H f)(t)=f(t)$ for $t \in[a, b]$ and let

$$
\begin{equation*}
K_{u_{0}}^{r}:=\left\{f \in \mathcal{C}([-\infty, c], X):\|H f(t)\|_{\infty} \leq r \& f(b)=u_{0}(d-a) \quad \text { for } \quad d \leq a\right\} \tag{2.12}
\end{equation*}
$$

Obviously $K_{u_{0}}^{r}$ is nonempty, bounded, closed and convex subset of the space $\mathcal{C}_{u_{0}}([-\infty, c], X)$.

Observe that $P=P_{1} \circ P_{2}$, where (using the matching condition (2.5)) we define $P_{1}: \mathcal{C}_{u_{0}}((-\infty, b], U) \rightarrow \mathcal{C}_{u_{0}}((-\infty, b], U)$ as

$$
P_{1} v(t)= \begin{cases}F\left(\int_{-\infty}^{t} k(t-s) g(s, v(s)) \mathrm{d} s\right) & \text { if } t \geq a \tag{2.13}\\ v(t) & \text { if } t \leq a\end{cases}
$$

and $P_{2}: \mathcal{C}_{u_{0}}((-\infty, b], U) \rightarrow \mathcal{C}_{u_{0}}((-\infty, b], U)$ is defined as $P_{2}=H^{-1} P_{2}^{*} H$, where

$$
P_{2}^{*}: \mathcal{C}([a, b], U) \rightarrow \mathcal{C}([a, b], U)
$$

and $P_{2}^{*} g(t)$ is the weak solution of the abstract Cauchy problem

$$
\begin{gather*}
\dot{u}(t)+A u(t)=g(t) \quad \text { for } \quad t \geq a \tag{2.14}\\
u(a)=g(a)=u_{0}(0)
\end{gather*}
$$

For details on this problem, we refer the reader to Barbu [1, page 124] and for some applications of this result to [10, page 35].

Let $f, h \in L_{1}([a, b], X)$ and let u, v be solutions, in the weak sense, of

$$
\begin{align*}
\dot{u}(t)+A u(t) & =f(t) \\
\dot{v}(t)+A v(t) & =h(t) \tag{2.15}
\end{align*}
$$

with some initial conditions $u(a), v(a)$. Then for $s, t \in[a, b]$ we have

$$
\begin{equation*}
\|u(t)-v(t)\| \leq\|u(s)-v(s)\|+\int_{s}^{t}\|f(\tau)-h(\tau)\| \mathrm{d} \tau \tag{2.16}
\end{equation*}
$$

From this inequality, it follows that

$$
\begin{aligned}
\left\|P_{2}^{*} h_{1}(t)-P_{2}^{*} h_{2}(t)\right\| & \leq\left\|h_{1}(a)-h_{2}(a)\right\|+\int_{a}^{t}\left\|h_{1}(\tau)-h_{2}(\tau)\right\| \mathrm{d} \tau \\
& \leq\left\|h_{1}-h_{2}\right\|_{\infty}(t-a+1)
\end{aligned}
$$

which implies the continuity of P_{2}^{*} on $\mathcal{C}([a, b], U)$ and so P_{2} on $K_{u_{0}}^{r}$. Using (2.8), (2.9) and (2.16) for $u \in K_{u_{0}}^{r}, t \in\left[a, c_{0}\right]$ we get

$$
\begin{align*}
\left\|P_{2}^{*} u(t)-u(a)\right\| & \leq\left\|P_{2} u(t)-S(t-a) u(a)\right\|+\|S(t-a) u(a)-u(a)\| \\
& \leq\|S(t-a) u(a)-u(a)\|+\int_{a}^{c_{0}}\|g(t)\| \mathrm{d} t \tag{2.17}\\
& \leq\|S(t-a) u(a)-u(a)\|+\left(c_{0}-a\right) M \leq \rho .
\end{align*}
$$

Then we conclude that $P_{2}^{*} u(t) \in B(u(a), \rho) \cap \mathcal{D}(A)$. Consequently, $P_{2} u(t) \in$ $\mathcal{D}(g)$ for $t \geq a$. By (2.2), (2.8), (2.10) and (2.13), for $t \geq a$ we have

$$
\begin{aligned}
\|P u(t)\| & =\left\|P_{1} P_{2} u(t)\right\|=\left\|F\left(\int_{-\infty}^{t} k(t-s) g\left(s, P_{2} u(s)\right) \mathrm{d} s\right)\right\| \\
& \leq M_{F} \sup _{s \in(-\infty, t]}\left\|g\left(s, P_{2} u(s)\right)\right\| \int_{-\infty}^{0}\|k(-\tau)\| \mathrm{d} \tau \\
& \leq M_{F} M \int_{-\infty}^{0}\|k(-\tau)\| \mathrm{d} \tau \leq M .
\end{aligned}
$$

and (2.5) implies that

$$
P u(t)=u(t) \quad \text { for } t \leq a ;
$$

i.e., P maps $K_{u_{0}}^{M}$ into itself. Since

$$
\left\|\left(P_{1} v-P_{1} w\right)(t)\right\|
$$

$$
\begin{align*}
= & \left\|F\left(\int_{-\infty}^{t} k(t-s)[g(s, v(s))-g(s, w(s))] \mathrm{d} s\right)\right\| \\
= & M_{F} \| \int_{-\infty}^{a} k(t-s)[g(s, v(s))-g(s, w(s))] \mathrm{d} s \\
& +\int_{a}^{t} k(t-s)[g(s, v(s))-g(s, w(s))] \mathrm{d} s \| \\
\leq & M_{F}[v(a)-w(a) \\
& \left.+\max _{s \in[a, t]}[g(s, v(s))-g(s, w(s))](t-a)\|k(t-s)\|_{\mathcal{L}_{1}}\right], \tag{2.18}
\end{align*}
$$

the function P_{1} is continuous from $\mathcal{C}_{u_{0}}((-\infty, b] ; U)$ into itself. Using the continuity of P_{2} we have that $P: K_{u_{0}}^{M} \rightarrow K_{u_{0}}^{M}$ is continuous. Since

$$
\int_{E} P f(t) \mathrm{d} t \leq \lambda(E) \max _{t} P f(t) \leq \lambda(E)\|k\|_{L^{1}} M
$$

and

$$
\begin{aligned}
& \int_{a}^{b-h_{0}}\left\|P f\left(t+h_{0}\right)-P f(t)\right\| \mathrm{d} t \\
& \leq\|F\|\|a-b\|\left(\int_{-\infty}^{t+h_{0}} k(t-s) g\left(s, u^{f}(s)\right) \mathrm{d} s-\int_{-\infty}^{t} k(t-s) g\left(s, u^{f}(s)\right) \mathrm{d} s\right) \\
& \leq h_{0}\|F\|\|a-b\|\|k\|_{L_{1}} M
\end{aligned}
$$

we get that $\operatorname{HP}\left(K_{u_{0}}^{M}\right)$ is 1-equiintegrable. Let us define

$$
K_{u_{0}}:=\operatorname{cl}\left(\operatorname{conv} P\left(K_{u_{0}}^{M}\right)\right)
$$

Easy calculations shows that $H\left(K_{u_{0}}\right)=\operatorname{cl}\left(\operatorname{conv} H P\left(K_{u_{0}}^{r}\right)\right)$ is equiintegrable and Theorem 1.1 implies the relative compactness of $P_{2}^{*} H\left(K_{u_{0}}\right)=H P_{2}\left(K_{u_{0}}\right)$.

Since H is homeomorphism, $P_{2}\left(K_{u_{0}}\right)$ and $P\left(K_{u_{0}}\right)=P_{1} P_{2}\left(K_{u_{0}}\right)$ are relative compact. Since $P\left(K_{u_{0}}\right)$ is a subset of the closed, bounded and convex set $K_{u_{0}}$, the Schauder fixed point theorem ensures the existence of a fixed point of P.

3 Application to an n species Lotka-Volterra competitive system

We prove local existence of solutions for a system, which is a model of an n species competition arising in the population dynamics. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Feng [3] studied the system ($i=$ $1, \ldots, N$)

$$
\begin{gather*}
\left(u_{i}\right)_{t}=D_{i}\left[\Delta u_{i}+u_{i}\left(a_{i}-u_{i}-\sum_{j \neq i}^{N} \kappa_{i j} u_{j}^{\tau_{i j}}\right)\right] \quad \text { on }(0, \infty) \times \Omega \tag{3.1}\\
u_{i}=0 \quad \text { in }(0, \infty) \times \partial \Omega \\
u_{i}(s, x)=\eta_{i}(s, x) \quad \text { on }[-\tau, 0] \times \Omega,
\end{gather*}
$$

where $u_{i}(t, x)$ denotes the density of the i-th species at time t and position x (inside a bounded domain Ω of \mathbb{R}^{3}), $u_{j}^{\tau_{i j}}(t, x)=u_{j}\left(t-\tau_{i j}, x\right), \tau_{i j}>0, \tau=$ $\max \left\{\tau_{i j}\right\}, D_{i}, a_{i}$ are positive, and $\kappa_{i j}$ are nonnegative real numbers. Supposing the existence of a solution (a sufficient condition for this - using upper and lower semisolutions - is formulated in [6]) the authors describe the attractors of (3.1).

In [8], Teng studies

$$
\begin{align*}
\frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}= & x_{i}(t)\left[a_{i}(t)-g_{i}\left(t, x_{i}(t)\right)-\sum_{j=1}^{m} c_{i j} P_{j}\left(x\left(t-\tau_{i, j}(t)\right)\right)\right. \\
& \left.-\sum_{j=1}^{m} \int_{-\sigma_{i j}}^{0} \kappa_{i j}(t, s) Q_{j}\left(x_{j}(t+s)\right) \mathrm{d} s\right], \quad(i=1, \ldots, n) \tag{3.2}
\end{align*}
$$

an n-species Lotka-Volterra competitive system with delays as an application of existence result for periodic Kolmogorov systems with delay. Detailed study of the non-autonomous Lotka-Volterra models with delay (focused on existence of positive periodic solutions) can be found in [9].

We rewrite (3.1) taking into account that a bounded attractor A has a bounded neighborhood U and $B \in \mathbb{R}$ such that $u(t, x) \in U$ for $t \leq t_{0}$ implies $\|u(t, x)\|<B$ for all $t>t_{0}$. B can be considered as a bound determined by the carrying capacity of the territory. Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded, continuous such that $b(x)=x$ for $|x|<B$. The new form of (3.1) is

$$
\begin{align*}
& \left(u_{i}\right)_{t}=D_{i}\left[\Delta u_{i}+b\left(u_{i}\right)\left(a_{i}-b\left(u_{i}\right)-\sum_{j=1}^{N} \kappa_{i j} b\left(u_{j}^{\tau_{i j}}\right)\right)\right] \quad \text { on }(0, \infty) \times \Omega \tag{3.3}\\
& u_{i}=0 \quad \text { on }(0, \infty) \times \partial \Omega \\
& u_{i}(s, x)=\eta_{i}(s, x) \quad \text { on }[-\tau, 0] \times \Omega .
\end{align*}
$$

We reformulate (3.3) again in according to the notations and assumptions of Theorem 2.1. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded open subset, $X=\left[L^{2}(\Omega)\right]^{n}, \mathbf{u}=$ $\left(u_{1}, \ldots, u_{n}\right): \mathbb{R} \rightarrow X \mathbf{u}(s)(x)=\left(u_{1}(s, x), \ldots, u_{n}(s, x)\right)$ and

$$
\mathcal{D}(A)=\left[\mathcal{C}^{2}(\Omega)\right]^{n}, \quad A\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\left(D_{1} \Delta u_{1}, \ldots, D_{n} \Delta u_{n}\right)
$$

Let $g=\left(g_{1}, g_{2}, \ldots, g_{n+1}\right)$ be such that $g_{i}:(-\infty, \infty] \times X \rightarrow X$ are bounded and continuous, Lipschitz-continuous in the second variable and $\left.g_{i}(s, \mathbf{u}(s))\right|_{\mathbb{R} \times B}=$ $\mathbf{u}(s)$, where B is an a priori bound of the solutions of $(3.3), k=\left(k_{1}, k_{2}, \ldots, k_{n+1}\right)$, where $k_{i} \in L_{1}([0, \infty), \mathcal{L}(X))$.

We rewrite (2.3)-(2.4) in the form

$$
\begin{gather*}
\left(u_{i}(t, x)\right)_{t}=D_{i} \Delta u_{i}(t, x)+F_{i}\left(\int_{-\infty}^{t} k(t-s) g(s, \mathbf{u}(s)) \mathrm{d} s\right) \text { on }(0, \infty) \times \Omega \tag{3.4}\\
u_{i}(s, x)=\eta_{i}(s, x) \text { on }[-\tau, 0] \times \Omega
\end{gather*}
$$

where we take A as defined above and $n+1$ instead of n. In a special case we get a perturbed version of (3.3), supposed that the right-hand side of (3.4) is approximated such that

$$
\begin{equation*}
\left[\int_{-\infty}^{t} k_{i}(t-s) g_{i}(s, \mathbf{u}(s)) \mathrm{d} s\right]_{j} \approx \kappa_{i j} b\left(u_{j}^{\tau_{i j}}(t)\right) \quad(i, j=1, \ldots, n) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\int_{-\infty}^{t} k_{n+1}(t-s) g_{n+1}(s, \mathbf{u}(s)) \mathrm{d} s\right]_{j} \approx b\left(u_{j}(t)\right) \quad(j=1, \ldots, n) \tag{3.6}
\end{equation*}
$$

According to the choice of g requirements (3.5) and (3.6) can be rewritten as

$$
\begin{gather*}
\int_{-\infty}^{t} k_{i}(t-s)\left(u_{1}(s), u_{2}(s), \ldots, u_{n}(s)\right) \mathrm{d} s \tag{3.7}\\
\approx\left(\kappa_{i 1} b\left(u_{1}^{\tau_{i 1}}(t)\right), \kappa_{i 2} b\left(u_{2}^{\tau_{i 2}}(t)\right), \ldots, \kappa_{i n} b\left(u_{n}^{\tau_{i n}}(t)\right)\right) \quad(i=1, \ldots, n)
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{t} k_{n+1}(t-s)\left(u_{1}(s), \ldots, u_{n}(s)\right) \mathrm{d} s \approx\left(b\left(u_{1}(t)\right), \ldots, b\left(u_{n}(t)\right)\right) \tag{3.8}
\end{equation*}
$$

Obviously $k_{1}, k_{2}, \ldots, k_{n+1}$ can be chosen such that $k_{i} \in L_{1}([0, \infty), \mathcal{L}(X))$ and approximations (3.7) and (3.8) are sharp; namely, for all $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n+1}>0$ there are $k_{i} \in L_{1}([0, \infty), \mathcal{L}(X))$ such that for any bounded $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and for all $t>t_{0}$,

$$
\begin{aligned}
& \int_{-\infty}^{t} k_{i}(t-s)\left(u_{1}(s), u_{2}(s), \ldots, u_{n}(s)\right) \mathrm{d} s \\
& -\left(\kappa_{i 1} b\left(u_{1}^{\tau_{i 1}}(t)\right), \kappa_{i 2} b\left(u_{2}^{\tau_{i 2}}(t)\right), \ldots, \kappa_{i n} b\left(u_{n}^{\tau_{i n}}(t)\right)\right)<\epsilon_{i} \quad(i=1, \ldots, n)
\end{aligned}
$$

and

$$
\int_{-\infty}^{t} k_{n+1}(t-s)\left(u_{1}(s), \ldots, u_{n}(s)\right) \mathrm{d} s-\left(b\left(u_{1}(t)\right), \ldots, b\left(u_{n}(t)\right)\right)<\epsilon_{n+1}
$$

Moreover, the terms on the left-hand side of (3.7) and (3.8) lead to a more precise model than the original equation did (3.1) or (3.3) since the new terms keep track the past of the population. Finally let $F=\left(F_{1}, \ldots, F_{n}\right)$ where

$$
\int_{\infty}^{t} k(t-s) g(s, \mathbf{u}(s)) \mathrm{d} s \in\left[L^{2}(\Omega)\right]^{n \times(n+1)}
$$

and

$$
\begin{gather*}
F_{i}:\left[L^{2}(\Omega)\right]^{n \times(n+1)} \rightarrow L^{2}(\Omega) \\
F_{i}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}, \mathbf{x}_{n+1}\right)=a_{i}\left(\mathbf{x}_{n+1}\right)_{i}-\left(\mathbf{x}_{n+1}\right)_{i}^{2}-\sum_{j=1}^{n}\left(\mathbf{x}_{n+1}\right)_{i}\left(\mathbf{x}_{i}\right)_{j} \tag{3.9}
\end{gather*}
$$

Since $k=\left(k_{1}, k_{2}, \ldots, k_{n+1}\right)$ and $g=\left(g_{1}, g_{2}, \ldots g_{n+1}\right)$ fulfill every requirements listed in Theorem 2.1 we get the following

Theorem 3.1 Let $u_{i}(s, x)=\eta_{i}(s, x)$ on $[-\tau, 0] \times \Omega$ be an initial condition with a priori bound B of the possible solutions of (3.4). Let further k, g and F be as defined by (3.5), (3.6) and (3.9) satisfying the conditions of Theorem 2.1. Then (3.4) - a modified version of (3.1) - has a global solution.

We have to prove only the existence of a global solution. Observe that the condition $b>c_{0}$ (required in (2.9) and in (2.17)) plays no role here because we have not restricted the domain of g. By repeating the method for seeking local solution one can choose a constant $c-a$ in each steps, i.e. we have a local solution on $[a, c]$ and then $[a, 2 c-a],[a, 3 c-2 a]$ and so on, where every local solution fulfills the conditions of Theorem 2.1 which ensures the existence of a global solution.

Acknowledgements: The author is grateful to Gyula Farkas for his advice and to László Simon for reading the original manuscript.

References

[1] V. Barbu: Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, Leyden, 1976.
[2] K. J. Engel, R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 1999.
[3] W. Feng, C. Lu: Harmless Delays for Permanence in a Class of Population Models with Diffusion Effects Journal of Mathematical Analysis and Applications, 206 (2), (1997), 547-566.
[4] L. Lakshmikantham: Nonlinear DE-s in abstract spaces, International Series in Nonlinear Mathematics, Vol. 2, Pergamon Press, 1981.
[5] S. K. Ntouyas, P. Ch. Tsamatos: Global existence for functional semilinear Volterra integrodifferential equations in Banach space Acta Math. Hungarica, 80 (1-2), (1998), 67-82.
[6] C. v. Pao: Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
[7] A. Pazy: Semigroups of Linear Operators and Applications for Partial Differential Equations, Springer-Verlag, New York, 1983.
[8] Z. Teng: On the periodic solutions of periodic multi-species competitive systems with delays Applied Mathematics and Computation, 127, (2002) 235247.
[9] Z. Teng: On nonautonomous Lotka Volterra models of periodic multi-species competitive systems with delays, Journal of Differential Equations, 179 (2), (2002) 538-561.
[10] I. I. Vrabie: Compactness Methods for Nonlinear Evolutions (Pitman Monographs and Surveys in Pure and Applied Mathematics), Longman Scientific \& Technical, Essex - John Wiley \& Sons, Inc., New York, 1987.
[11] J. Wu: Theory and Applications of Partial Differential Equations, Springer Verlag, New York, 1998.

Ferenc Izsák
Department of Applied Analysis, Loránd Eötvös University
H-1518 Budapest, PO Box 120, Hungary
e-mail: bizsu@cs.elte.hu
and
Faculty of Mathematical Sciences, Universtity of Twente PO Box 217, 7500 AE Enschede, The Netherlands.

[^0]: * Mathematics Subject Classifications: 45J05, 45K05.

 Key words: Volterra integrodifferential equation, Schauder fixed point theorem, competitive systems.
 © 2003 Southwest Texas State University.
 Submitted October 21, 2002. Published January 7, 2003.

