Multiple positive solutions for a class of quasilinear elliptic boundary-value problems *

Kanishka Perera

Abstract

Using variational arguments we prove some nonexistence and multiplicity results for positive solutions of a class of elliptic boundary-value problems involving the p-Laplacian and a parameter.

1 Introduction

In a recent paper, Maya and Shivaji [4] studied the existence, multiplicity, and non-existence of positive classical solutions of the semilinear elliptic boundaryvalue problem

$$
\begin{align*}
-\Delta u & =\lambda f(u) \quad \text { in } \Omega \tag{1.1}\\
u & =0 \quad \text { on } \partial \Omega
\end{align*}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{n}, n \geq 1, \lambda>0$ is a parameter, and f is a C^{1} function such that

$$
\begin{equation*}
f(0)=0, \quad \lim _{t \rightarrow \infty} \frac{f(t)}{t}=0 \tag{1.2}
\end{equation*}
$$

Assuming
$\left(f_{1}\right) f^{\prime}(0)<0$,
(f_{2}) $\exists \beta>0$ such that $f(t)<0$ for $0<t<\beta$ and $f(t)>0$ for $t>\beta$,
$\left(\mathrm{f}_{3}\right) f$ is eventually increasing,
they showed using sub-super solutions arguments and recent results from semipositone problems that there are $\underline{\lambda}$ and $\bar{\lambda}$ such that (1.1) has no positive solution for $\lambda<\underline{\lambda}$ and at least two positive solutions for $\lambda \geq \bar{\lambda}$.

In the present paper we consider the corresponding quasilinear problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda f(x, u) \quad \text { in } \Omega, \tag{1.3}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

[^0]where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $1<p<\infty, \lambda>0$, and f is a Carathéodory function on $\Omega \times[0, \infty)$ satisfying
\[

$$
\begin{equation*}
f(x, 0)=0, \quad|f(x, t)| \leq C t^{p-1} \tag{1.4}
\end{equation*}
$$

\]

for some constant $C>0$. Note that when $p=2$ and f is C^{1} and satisfies (1.2), the existence of the limits $\lim _{t \rightarrow 0} f(t) / t=f^{\prime}(0)$ and $\lim _{t \rightarrow \infty} f(t) / t$ imply (1.4). Using variational methods, we shall prove the following theorems.

Theorem 1.1. There is a $\underline{\lambda}$ such that (1.3) has no positive solution for $\lambda<\underline{\lambda}$.
Theorem 1.2. Set $F(x, t)=\int_{0}^{t} f(x, s) d s$, and assume
$\left(\mathrm{F}_{1}\right) \exists \delta>0$ such that $F(x, t) \leq 0$ for $0 \leq t \leq \delta$,
$\left(\mathrm{F}_{2}\right) \exists t_{0}>0$ such that $F\left(x, t_{0}\right)>0$,
($\left.\mathrm{F}_{3}\right) \varlimsup_{t \rightarrow \infty} \frac{F(x, t)}{t^{p}} \leq 0$ uniformly in x.
Then there is $a \bar{\lambda}$ such that (1.3) has at least two positive solutions $u_{1}>u_{2}$ for $\lambda \geq \bar{\lambda}$.

Note that we have substantially relaxed the assumptions in [4] and therefore our results seem to be new even in the semilinear case $p=2$. More specifically, we have let f depend on x and dropped the assumption of differentiability in t, and replaced $\left(\mathrm{f}_{1}\right),\left(\mathrm{f}_{2}\right)$, and $\left(\mathrm{f}_{3}\right)$ with the much weaker assumptions $\left(\mathrm{F}_{1}\right)$ and $\left(\mathrm{F}_{2}\right)$ on the primitive F. We emphasize that $\left(\mathrm{F}_{1}\right)$ follows from $\left(\mathrm{f}_{1}\right)$, while (f_{2}) and $\left(\mathrm{f}_{3}\right)$ together imply $\left(\mathrm{F}_{2}\right)$, and that we make no monotonicity assumptions. The limit in $\left(\mathrm{F}_{3}\right)$ equals 0 in the p-sublinear case

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(x, t)}{t^{p-1}}=0 \text { uniformly in } x \tag{1.5}
\end{equation*}
$$

in particular, in the special case considered in [4].

2 Proofs of Theorems 1.1 and 1.2

Recall that the first Dirichlet eigenvalue of $-\Delta_{p}$ is positive and is given by

$$
\begin{equation*}
\lambda_{1}=\min _{u \neq 0} \frac{\int_{\Omega}|\nabla u|^{p}}{\int_{\Omega}|u|^{p}} \tag{2.1}
\end{equation*}
$$

(see Lindqvist [3]). If (1.3) has a positive solution u, multiplying (1.3) by u, integrating by parts, and using (1.4) gives

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p}=\lambda \int_{\Omega} f(x, u) u \leq C \lambda \int_{\Omega} u^{p}, \tag{2.2}
\end{equation*}
$$

and hence $\lambda \geq \lambda_{1} / C$ by (2.1), proving Theorem 1.1.

We will prove Theorem 1.2 using critical point theory. Set $f(x, t)=0$ for $t<0$, and consider the C^{1} functional

$$
\begin{equation*}
\Phi_{\lambda}(u)=\int_{\Omega}|\nabla u|^{p}-\lambda p F(x, u), \quad u \in W_{0}^{1, p}(\Omega) \tag{2.3}
\end{equation*}
$$

If u is a critical point of Φ_{λ}, denoting by u^{-}the negative part of u,

$$
\begin{equation*}
0=\left(\Phi_{\lambda}^{\prime}(u), u^{-}\right)=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla u^{-}-\lambda f(x, u) u^{-}=\left\|u^{-}\right\|^{p} \tag{2.4}
\end{equation*}
$$

shows that $u \geq 0$. Furthermore, $u \in L^{\infty}(\Omega) \cap C^{1}(\Omega)$ by Anane [1] and di Benedetto [2], so it follows from the Harnack inequality (Theorem 1.1 of Trudinger [6]) that either $u>0$ or $u \equiv 0$. Thus, nontrivial critical points of Φ_{λ} are positive solutions of (1.3).

By $\left(\mathrm{F}_{3}\right)$ and (1.4), there is a constant $C_{\lambda}>0$ such that

$$
\begin{equation*}
\lambda p F(x, t) \leq \frac{\lambda_{1}}{2}|t|^{p}+C_{\lambda} \tag{2.5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Phi_{\lambda}(u) \geq \int_{\Omega}|\nabla u|^{p}-\frac{\lambda_{1}}{2}|u|^{p}-C_{\lambda} \geq \frac{1}{2}\|u\|^{p}-C_{\lambda} \mu(\Omega) \tag{2.6}
\end{equation*}
$$

where μ denotes the Lebesgue measure in \mathbb{R}^{n}, so Φ_{λ} is bounded from below and coercive. This yields a global minimizer u_{1} since Φ_{λ} is weakly lower semicontinuous.

Lemma 2.1. There is a $\bar{\lambda}$ such that $\inf \Phi_{\lambda}<0$, and hence $u_{1} \neq 0$, for $\lambda \geq \bar{\lambda}$.
Proof. Taking a sufficiently large compact subset Ω^{\prime} of Ω and a function $u_{0} \in$ $W_{0}^{1, p}(\Omega)$ such that $u_{0}(x)=t_{0}$ on Ω^{\prime} and $0 \leq u_{0}(x) \leq t_{0}$ on $\Omega \backslash \Omega^{\prime}$, where t_{0} is as in $\left(\mathrm{F}_{2}\right)$, we have

$$
\begin{equation*}
\int_{\Omega} F\left(x, u_{0}\right) \geq \int_{\Omega^{\prime}} F\left(x, t_{0}\right)-C t_{0}^{p} \mu\left(\Omega \backslash \Omega^{\prime}\right)>0 \tag{2.7}
\end{equation*}
$$

and hence $\Phi_{\lambda}\left(u_{0}\right)<0$ for λ large enough.
Now fix $\lambda \geq \bar{\lambda}$, let

$$
\widetilde{f}(x, t)=\left\{\begin{array}{ll}
f(x, t), & t \leq u_{1}(x), \tag{2.8}\\
f\left(x, u_{1}(x)\right), & t>u_{1}(x),
\end{array} \quad \text { and } \quad \widetilde{F}(x, t)=\int_{0}^{t} \widetilde{f}(x, s) d s\right.
$$

Then consider

$$
\begin{equation*}
\widetilde{\Phi}_{\lambda}(u)=\int_{\Omega}|\nabla u|^{p}-\lambda p \widetilde{F}(x, u) \tag{2.9}
\end{equation*}
$$

If u is a critical point of $\widetilde{\Phi}_{\lambda}$, then $u \geq 0$ as before, and

$$
\begin{align*}
0= & \left(\widetilde{\Phi}_{\lambda}^{\prime}(u)-\Phi_{\lambda}^{\prime}\left(u_{1}\right),\left(u-u_{1}\right)^{+}\right) \\
= & \int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}\right) \cdot \nabla\left(u-u_{1}\right)^{+} \\
& -\lambda\left(\widetilde{f}(x, u)-f\left(x, u_{1}\right)\right)\left(u-u_{1}\right)^{+} \tag{2.10}\\
= & \int_{u>u_{1}}\left(|\nabla u|^{p-2} \nabla u-\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}\right) \cdot\left(\nabla u-\nabla u_{1}\right) \\
\geq & \int_{u>u_{1}}\left(|\nabla u|^{p-1}-\left|\nabla u_{1}\right|^{p-1}\right)\left(|\nabla u|-\left|\nabla u_{1}\right|\right) \geq 0
\end{align*}
$$

implies that $u \leq u_{1}$, so u is a solution of (1.3) in the order interval [$0, u_{1}$]. We will obtain a critical point u_{2} with $\widetilde{\Phi}_{\lambda}\left(u_{2}\right)>0$ via the mountain-pass lemma, which would complete the proof since $\widetilde{\Phi}_{\lambda}(0)=0>\widetilde{\Phi}_{\lambda}\left(u_{1}\right)$.
Lemma 2.2. The origin is a strict local minimizer of $\widetilde{\Phi}_{\lambda}$.
Proof. Setting $\Omega_{u}=\left\{x \in \Omega: u(x)>\min \left\{u_{1}(x), \delta\right\}\right\}$, by (2.8) and $\left(\mathrm{F}_{1}\right)$, $\widetilde{F}(x, u(x)) \leq 0$ on $\Omega \backslash \Omega_{u}$, so

$$
\begin{equation*}
\widetilde{\Phi}_{\lambda}(u) \geq\|u\|^{p}-\lambda p \int_{\Omega_{u}} \widetilde{F}(x, u) \tag{2.11}
\end{equation*}
$$

By (1.4), Hölder's inequality, and Sobolev imbedding,

$$
\begin{equation*}
\int_{\Omega_{u}} \widetilde{F}(x, u) \leq C \int_{\Omega_{u}} u^{p} \leq C \mu\left(\Omega_{u}\right)^{1-\frac{p}{q}}\|u\|^{p} \tag{2.12}
\end{equation*}
$$

where $q=n p /(n-p)$ if $p<n$ and $q>p$ if $p \geq n$, so it suffices to show that $\mu\left(\Omega_{u}\right) \rightarrow 0$ as $\|u\| \rightarrow 0$.

Given $\varepsilon>0$, take a compact subset Ω_{ε} of Ω such that $\mu\left(\Omega \backslash \Omega_{\varepsilon}\right)<\varepsilon$ and let $\Omega_{u, \varepsilon}=\Omega_{u} \cap \Omega_{\varepsilon}$. Then

$$
\begin{equation*}
\|u\|_{p}^{p} \geq \int_{\Omega_{u, \varepsilon}} u^{p} \geq c^{p} \mu\left(\Omega_{u, \varepsilon}\right) \tag{2.13}
\end{equation*}
$$

where $c=\min \left\{\min u_{1}\left(\Omega_{\varepsilon}\right), \delta\right\}>0$, so $\mu\left(\Omega_{u, \varepsilon}\right) \rightarrow 0$. But, since $\Omega_{u} \subset \Omega_{u, \varepsilon} \cup$ $\left(\Omega \backslash \Omega_{\varepsilon}\right)$,

$$
\begin{equation*}
\mu\left(\Omega_{u}\right)<\mu\left(\Omega_{u, \varepsilon}\right)+\varepsilon \tag{2.14}
\end{equation*}
$$

and ε is arbitrary.
An argument similar to the one we used for Φ_{λ} shows that $\widetilde{\Phi}_{\lambda}$ is also coercive, so every Palais-Smale sequence of $\widetilde{\Phi}_{\lambda}$ is bounded and hence contains a convergent subsequence as usual. Now the mountain-pass lemma gives a critical point u_{2} of $\widetilde{\Phi}_{\lambda}$ at the level

$$
\begin{equation*}
c:=\inf _{\gamma \in \Gamma} \max _{u \in \gamma([0,1])} \widetilde{\Phi}_{\lambda}(u)>0 \tag{2.15}
\end{equation*}
$$

where $\Gamma=\left\{\gamma \in C\left([0,1], W_{0}^{1, p}(\Omega)\right): \gamma(0)=0, \gamma(1)=u_{1}\right\}$ is the class of paths joining the origin to u_{1} (see, e.g., Rabinowitz [5]).

References

[1] A. Anane. Etude des valeurs propres et de la résonnance pour l'opérateur p-Laplacien. PhD thesis, Université Libre de Bruxelles, 1987. C. R. Acad. Sci. Paris Sér. I Math., 305(16):725-728, 1987.
[2] E. di Benedetto. $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8):827-850, 1983.
[3] P. Lindqvist. On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$. Proc. Amer. Math. Soc., 109(1):157-164, 1990. Addendum: Proc. Amer. Math. Soc., 116(2):583-584, 1992.
[4] C. Maya and R. Shivaji. Multiple positive solutions for a class of semilinear elliptic boundary value problems. Nonlinear Anal., 38(4, Ser. A: Theory Methods):497-504, 1999.
[5] P. H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.
[6] N. Trudinger. On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math., 20:721-747, 1967.

Kanishka Perera

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901, USA
e-mail: kperera@fit.edu http://my.fit.edu/~kperera/

[^0]: *Mathematics Subject Classifications: 35J20, 35J65.
 Key words: p-linear p-Laplacian problems, positive solutions, non-existence, multiplicity, variational methods.
 © 2003 Southwest Texas State University.
 Submitted May 29, 2002. Published January 23, 2003.

