Solution to a semilinear problem on type II regions determined by the Fucik spectrum *

Petr Tomiczek

Abstract

We prove the existence of solutions to the semi-linear problem $$
\begin{gathered} u^{\prime \prime}(x)+\alpha u^{+}(x)+\beta u^{-}(x)=f(x), \quad x \in(0, \pi), \\ u(0)=u(\pi)=0 \end{gathered}
$$ where the point (α, β) falls in regions of type (II) between curves of the Fučík spectrum. We use a variational method based on the generalization of the Saddle Point Theorem.

1 Introduction

We investigate the existence of solutions for the nonlinear boundary-value problem

$$
\begin{gather*}
u^{\prime \prime}(x)+\alpha u^{+}(x)-\beta u^{-}(x)=f(x), \quad x \in(0, \pi) \tag{1.1}\\
x(0)=x(\pi)=0
\end{gather*}
$$

Here $u^{ \pm}=\max \{ \pm u, 0\}, \alpha, \beta \in \mathbb{R}$ and $f \in L^{2}(0, \pi)$. For $f \equiv 0, \alpha=\lambda_{+}$, and $\beta=\lambda_{\text {_ }}$ Problem (1.1) becomes

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda_{+} u^{+}(x)-\lambda_{-} u^{-}(x)=0, \quad x \in(0, \pi) \tag{1.2}\\
x(0)=x(\pi)=0
\end{gather*}
$$

We define $\Sigma=\left\{\left(\lambda_{+}, \lambda_{-}\right) \in \mathbb{R}^{2}:(1.2)\right.$ has a nontrivial solution $\}$. This set is called the Fučík spectrum (see [3]), and can be expressed as $\Sigma=\bigcup_{j=1}^{\infty} \Sigma_{j}$ where

$$
\begin{aligned}
\Sigma_{1} & =\left\{\left(\lambda_{+}, \lambda_{-}\right) \in \mathbb{R}^{2}:\left(\lambda_{+}-1\right)\left(\lambda_{-}-1\right)=0\right\} \\
\Sigma_{2 i} & =\left\{\left(\lambda_{+}, \lambda_{-}\right) \in \mathbb{R}^{2}: i\left(\frac{1}{\sqrt{\lambda_{+}}}+\frac{1}{\sqrt{\lambda_{-}}}\right)=1\right\} \\
\Sigma_{2 i+1} & =\Sigma_{2 i+1,1} \cup \Sigma_{2 i+1,2} \quad \text { where }
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \Sigma_{2 i+1,1}=\left\{\left(\lambda_{+}, \lambda_{-}\right) \in \mathbb{R}^{2}: i\left(\frac{1}{\sqrt{\lambda_{+}}}+\frac{1}{\sqrt{\lambda_{-}}}\right)+\frac{1}{\sqrt{\lambda_{+}}}=1\right\}, \\
& \Sigma_{2 i+1,2}=\left\{\left(\lambda_{+}, \lambda_{-}\right) \in \mathbb{R}^{2}: i\left(\frac{1}{\sqrt{\lambda_{+}}}+\frac{1}{\sqrt{\lambda_{-}}}\right)+\frac{1}{\sqrt{\lambda_{-}}}=1\right\} .
\end{aligned}
$$
\]

Note that there are two types of regions between the curves of Σ :
Type (I) \mathcal{R}_{1} which consists of regions between the curves $\Sigma_{2 i}$ and $\Sigma_{2 i+1}, i \in \mathbb{N}$.
Type (II) \mathcal{R}_{2} which consists of regions between the curves $\Sigma_{2 i+1,1}$ and $\Sigma_{2 i+1,2}$, $i \in \mathbb{N}$.

If $(\alpha, \beta) \in \mathcal{R}_{1}$ one can solve (1.1) for arbitrary $f \in L^{2}(0, \pi)$ while this is not so for regions \mathcal{R}_{2} (see [1]).

We suppose that the point $(\alpha, \beta) \in \mathcal{R}_{2}$ is between the curves $\Sigma_{2 i+1,1}$ and $\Sigma_{2 i+1,2}, \alpha>\beta$, and $k>0$ such that $\lambda_{+}=\alpha+k, \lambda_{-}=\beta+k,\left(\lambda_{+}, \lambda_{-}\right) \in \Sigma_{2 i+1,2}$ and $\lambda_{+}<(2 i+2)^{2}$. We denote φ_{2} the solution of (1.2) belonging to $\left(\lambda_{+}, \lambda_{-}\right)$. In this work we obtain existence results for (1.1) with right hand side $f=-c \varphi_{2}+$ $\varphi_{2}^{\perp}, c>0$ where $\int_{0}^{\pi} \varphi_{2} \varphi_{2}^{\perp} d x=0$ and $\left(\frac{1}{\beta-(2 i)^{2}}+\frac{1}{\left.(2 i+2)^{2}-\alpha\right)}\right) \int_{0}^{\pi}\left(\varphi_{2}^{\perp}\right)^{2} d x<$ $\left(\frac{1}{\lambda_{+}-\alpha}-\frac{1}{\left.(2 i+2)^{2}-\alpha\right)}\right) \int_{0}^{\pi}\left(c \varphi_{2}\right)^{2} d x$.

This article is inspired by a result in [7] where the author solves the problem $\Delta u(x)+\alpha u^{+}(x)+\beta u^{-}(x)+p(x, u(x))=f(x)$ with nontrivial nonlinearity satisfying $p(x, u(x)) \neq 0$.

Remark 1.1 Assuming that $(2 i+2)^{2}>\lambda_{+}>\lambda_{-}$, if $\left(\lambda_{+}, \lambda_{-}\right) \in \Sigma_{2 i+1,1}$, then $\lambda_{-}>(2 i)^{2}$.

Assuming that $(2 i+2)^{2}>\alpha$, if the point (α, β) is in \mathcal{R}_{2} between the curves $\Sigma_{2 i+1,1}$ and $\Sigma_{2 i+1,2}$, then $\beta>(2 i)^{2}$. See the illustration in figure 1.

2 Preliminaries

Notation: We shall use the classical spaces $C(0, \pi), L^{p}(0, \pi)$ of continuous and measurable real-valued functions whose p-th power of the absolute value is Lebesgue integrable, respectively. H is the Sobolev space of absolutely continuous functions $u:(0, \pi) \rightarrow \mathbb{R}$ such that $u^{\prime} \in L^{2}(0, \pi)$ and $u(0)=u(\pi)=0$. We denote by the symbols $\|\cdot\|$, and $\|\cdot\|_{2}$ the norm in H, and in $L^{2}(0, \pi)$, respectively. We denote $\langle.,$.$\rangle the pairing in the space H$.

By a solution of (1.1) we mean a function $u \in C^{1}(0, \pi)$ such that u^{\prime} is absolutely continuous, u satisfies the boundary conditions and the equations (1.1) holds a.e. in $(0, \pi)$.

Let $I: H \rightarrow \mathbb{R}$ be a functional such that $I \in C^{1}(H, \mathbb{R})$ (continuously differentiable). We say that u is a critical point of I, if

$$
\left\langle I^{\prime}(u), v\right\rangle=0 \quad \text { for all } \quad v \in H
$$

We say that γ is a critical value of I, if there is $u_{0} \in H$ such that $I\left(u_{0}\right)=\gamma$ and $I^{\prime}\left(u_{0}\right)=0$.

Figure 1: Regions determined by the Fucik spectrum

We say that I satisfies Palais-Smale condition (PS) if every sequence (u_{n}) for which $I\left(u_{n}\right)$ is bounded in H and $I^{\prime}\left(u_{n}\right) \rightarrow 0($ as $n \rightarrow \infty)$ possesses a convergent subsequence.

We study (1.1) by using of varitional methods. More precisely, we look for critical points of the functional $I: H \rightarrow \mathbb{R}$, which is defined by

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\alpha\left(u^{+}\right)^{2}-\beta\left(u^{-}\right)^{2}\right] d x+\int_{0}^{\pi} f u d x . \tag{2.1}
\end{equation*}
$$

Every critical point $u \in H$ of the functional I satisfies

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{0}^{\pi}\left[u^{\prime} v^{\prime}-\left(\alpha u^{+}-\beta u^{-}\right) v+f v\right] d x=0 \quad \text { for all } \quad v \in H
$$

Then u is also a weak solution of (1.1) and vice versa.

The usual regularity argument for ODE yields immediately (see Fučík [3]) that any weak solution of (1.1) is also the solution in the sense mentioned above.

Method: We will use the following variant of Saddle Point Theorem which is proved in Struwe [6, Theorem 8.4].

Theorem 2.1 Let S be a closed subset in H and Q a bounded subset in H with relative boundary ∂Q. Set $\Gamma=\{h: h \in \mathbf{C}(H, H), h(x)=x$ on $\partial Q\}$. Suppose $I \in C^{1}(H, \mathbb{R})$ and
(i) $S \cap \partial Q=\emptyset$,
(ii) $S \cap h(Q) \neq \emptyset$, for every $h \in \Gamma$,
(iii) there are constants μ, ν such that $\mu=\inf _{u \in S} I(u)>\sup _{u \in \partial Q} I(u)=\nu$,
(iv) I satisfies Palais-Smale condition.

Then the number

$$
\gamma=\inf _{h \in \Gamma} \sup _{u \in Q} I(h(u))
$$

defines a critical value $\gamma>\nu$ of I.

Remark: We say that S and ∂Q link if they satisfy conditions i), ii) of the theorem above.

Now we present a few results needed later.
Lemma 2.2 Let φ be a solution of (1.2) with $\left(\lambda_{+}, \lambda_{-}\right) \in \Sigma, \lambda_{+} \geq \lambda_{-}$and $u=a \varphi+w, a \geq 0, w \in H$. Then functional $J(u)=\int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\lambda_{+}\left(u^{+}\right)^{2}-\right.$ $\left.\lambda_{-}\left(u^{-}\right)^{2}\right] d x$ satisfies

$$
\begin{equation*}
\int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{+} w^{2}\right] d x \leq J(u) \leq \int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right] d x \tag{2.2}
\end{equation*}
$$

Proof: We prove the inequality in the right of (2.2), the proof of the inequality in the left is similar. Since φ is the solution of (1.2) it holds

$$
\begin{equation*}
\int_{0}^{\pi}\left(\varphi^{\prime}\right)^{2} d x=\int_{0}^{\pi}\left[\lambda_{+}\left(\varphi^{+}\right)^{2}+\lambda_{-}\left(\varphi^{-}\right)^{2}\right] d x \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} \varphi^{\prime} w^{\prime} d x=\int_{0}^{\pi}\left[\lambda_{+} \varphi^{+} w-\lambda_{-} \varphi^{-} w\right] d x \quad \text { for } \quad w \in H \tag{2.4}
\end{equation*}
$$

By (2.3) and (2.4) we obtain

$$
J(u)=\int_{0}^{\pi}\left[\left((a \varphi+w)^{\prime}\right)^{2}-\lambda_{+}\left((a \varphi+w)^{+}\right)^{2}-\lambda_{-}\left((a \varphi+w)^{-}\right)^{2}\right] d x
$$

$$
\begin{align*}
= & \int_{0}^{\pi}\left[\left(a \varphi^{\prime}\right)^{2}+2 a \varphi^{\prime} w^{\prime}+\left(w^{\prime}\right)^{2}-\left(\lambda_{+}-\lambda_{-}\right)\left((a \varphi+w)^{+}\right)^{2}\right. \\
= & \int_{0}^{\pi}\left[\left(\lambda_{+}-\lambda_{-}\right)\left(a \varphi^{+}\right)^{2}+\lambda_{-}(a \varphi)^{2}+2 a\left(\left(\lambda_{+}-\lambda_{-}\right) \varphi^{+}+\lambda_{-} \varphi\right) w\right. \\
& \left.\quad+\left(w^{\prime}\right)^{2}-\left(\lambda_{+}-\lambda_{-}\right)\left((a \varphi+w)^{+}\right)^{2}-\lambda_{-}\left((a \varphi)^{2}+2 a \varphi w+w^{2}\right)\right] d x \\
= & \int_{0}^{\pi}\left\{\left(\lambda_{+}-\lambda_{-}\right)\left[\left(a \varphi^{+}\right)^{2}+2 a \varphi^{+} w-\left((a \varphi+w)^{+}\right)^{2}\right]\right. \\
& \left.\quad+\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right\} d x
\end{align*}
$$

For the function $\left(a \varphi^{+}\right)^{2}+2 a \varphi^{+} w-\left((a \varphi+w)^{+}\right)^{2}$ in the last integral in (2.5) it holds

$$
\begin{aligned}
& \left(a \varphi^{+}\right)^{2}+2 a \varphi^{+} w-\left((a \varphi+w)^{+}\right)^{2} \\
& \quad= \begin{cases}-\left((a \varphi+w)^{+}\right)^{2} \leq 0 & \varphi<0 \\
-w^{2} \leq 0 & \varphi \geq 0, a \varphi+w \geq 0 \\
a \varphi^{+}\left(a \varphi^{+}+w+w\right) \leq 0 & \varphi \geq 0, a \varphi+w<0\end{cases}
\end{aligned}
$$

Hence and by assumption $\lambda_{+} \geq \lambda_{-}$we obtain the assertion of the lemma (2.2).

Lemma 2.3 Let φ be a solution of (1.2) with $\left(\lambda_{+}, \lambda_{-}\right) \in \Sigma$ and $\varphi^{\perp} \in H$ such that $\int_{0}^{\pi} \varphi \varphi^{\perp} d x=0$. Let $d>0$ and $w \in H$ satisfying $\int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right] d x \leq$ $-d \int_{0}^{\pi} w^{2} d x$. We put $u=a \varphi+w, a \geq 0$ and $I(u)=\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\left(\lambda_{+}-k\right)\left(u^{+}\right)^{2}-\right.$ $\left.\left(\lambda_{-}-k\right)\left(u^{-}\right)^{2}-2\left(c \varphi+\varphi^{\perp}\right) u\right] d x$ where $0<k \leq d$ and $c>0$. Then there is constant $\tilde{a}>0$ such that for $u=\tilde{a} \varphi+w$ it holds

$$
\begin{equation*}
I(u) \leq-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{k}(c \varphi)^{2}-\frac{1}{d-k}\left(\varphi^{\perp}\right)^{2}\right] d x \tag{2.6}
\end{equation*}
$$

Proof: By (2.2) from Lemma 2.2 and the assumptions on w, we obtain

$$
\begin{align*}
& I(u) \\
& \quad=\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\lambda_{+}\left(u^{+}\right)^{2}-\lambda_{-}\left(u^{-}\right)^{2}\right] d x+\int_{0}^{\pi}\left[\frac{k}{2} u^{2}-\left(c \varphi+\varphi^{\perp}\right) u\right] d x \\
& \quad \leq \frac{1}{2} \int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2}\right] d x+\int_{0}^{\pi}\left[\frac{k}{2} u^{2}-\left(c \varphi+\varphi^{\perp}\right) u\right] d x \leq \\
& \quad \leq \int_{0}^{\pi}\left[-\frac{d}{2} w^{2}+\frac{k}{2} u^{2}-\left(c \varphi+\varphi^{\perp}\right) u\right] d x \tag{2.7}
\end{align*}
$$

We substitute $u=a \varphi+w$ and we have for the last integral in (2.7)

$$
\int_{0}^{\pi}\left[-\frac{d}{2} w^{2}+\frac{k}{2} u^{2}-\left(c \varphi+\varphi^{\perp}\right) u\right] d x
$$

$$
\begin{aligned}
& =\int_{0}^{\pi}\left[-\frac{d}{2} w^{2}+\frac{k}{2}(a \varphi+w)^{2}-\left(c \varphi+\varphi^{\perp}\right)(a \varphi+w)\right] d x \\
& =\int_{0}^{\pi}\left[-\frac{1}{2}(d-k) w^{2}+a\left(\frac{k}{2} a-c\right) \varphi^{2}+(a k-c) \varphi w-\varphi^{\perp} w\right] d x
\end{aligned}
$$

We put $a=\frac{c}{k}(=\tilde{a})$ and we obtain

$$
\begin{align*}
& \int_{0}^{\pi}\left[-\frac{1}{2}(d-k) w^{2}+\frac{c}{k}\left(\frac{k}{2} \frac{c}{k}-c\right) \varphi^{2}-\varphi^{\perp} w\right] d x \\
& \quad=-\frac{1}{2} \int_{0}^{\pi}\left[\left(\sqrt{(d-k)} w+\frac{1}{\sqrt{(d-k)}} \varphi^{\perp}\right)^{2}+\frac{1}{k}(c \varphi)^{2}-\frac{1}{d-k}\left(\varphi^{\perp}\right)^{2}\right] d x \leq \\
& \quad \leq-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{k}(c \varphi)^{2}-\frac{1}{d-k}\left(\varphi^{\perp}\right)^{2}\right] d x \tag{2.8}
\end{align*}
$$

From the above inequality and (2.7) it follows the assertion of Lemma 2.3.
Lemma 2.4 Let $\widehat{\varphi}$ be a solution of (1.2) with $\left(\widehat{\lambda}_{+}, \widehat{\lambda}_{-}\right) \in \Sigma$. Let $u=a \widehat{\varphi}+w$, $a \geq 0, f \in L_{2}(0, \pi)$ and $w \in H$ such that $\int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\widehat{\lambda}_{-} w^{2}\right] d x \leq 0$. Let $l>0$ then $\forall k_{2}<0 \exists K$ such that for u with $\|u\|_{2} \geq K$ it holds

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\left(\widehat{\lambda}_{+}+l\right)\left(u^{+}\right)^{2}-\left(\widehat{\lambda}_{-}+l\right)\left(u^{-}\right)^{2}+2 f u\right] d x \leq k_{2}<0 \tag{2.9}
\end{equation*}
$$

Proof: From inequality (2.2) in Lemma 2.2 and Hölder inequality we obtain

$$
\begin{aligned}
I(u) & =\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\widehat{\lambda}_{+}\left(u^{+}\right)^{2}-\widehat{\lambda}_{-}\left(u^{-}\right)^{2}\right] d x+\int_{0}^{\pi}\left[-\frac{l}{2} u^{2}+f u\right] d x \\
& \leq \frac{1}{2} \int_{0}^{\pi}\left[\left(w^{\prime}\right)^{2}-\widehat{\lambda}_{-} w^{2}\right] d x-\frac{l}{2}\|u\|_{2}^{2}+\|f\|_{2}\|u\|_{2}
\end{aligned}
$$

By assumption, the integral in the above inequality is less than zero. Then it is easy to see that for sufficiently large K and $\|u\|_{2}>K$, it holds $I(u) \leq k_{2}<0$.

3 Main result

Theorem 3.1 Let (α, β) be a point in \mathcal{R}_{2} between the curves $\Sigma_{2 i+1,1}$ and $\Sigma_{2 i+1,2}$,. Let $\alpha>\beta$ and $k>0$ be such that $\lambda_{+}=\alpha+k, \lambda_{-}=\beta+k$, and $\left(\lambda_{+}, \lambda_{-}\right) \in \Sigma_{2 i+1,2}$. Assume that $\lambda_{+}<(2 i+2)^{2}$. We denote by φ_{2} the solution of (1.2) with $\left(\lambda_{+}, \lambda_{-}\right)$and φ_{2}^{\perp} be the function satisfying $\int_{0}^{\pi} \varphi_{2} \varphi_{2}^{\perp} d x=0$. We put $f=-c \varphi_{2}+\varphi_{2}^{\perp}$, with $c>0$ and we assume that

$$
\begin{aligned}
& \left(\frac{1}{\beta-(2 i)^{2}}+\frac{1}{\left.(2 i+2)^{2}-\alpha\right)}\right) \int_{0}^{\pi}\left(\varphi_{2}^{\perp}\right)^{2} d x \\
& \quad<\left(\frac{1}{\lambda_{+}-\alpha}-\frac{1}{\left.(2 i+2)^{2}-\alpha\right)}\right) \int_{0}^{\pi}\left(c \varphi_{2}\right)^{2} d x
\end{aligned}
$$

Then there exists a solution of (1.1).

Proof: We take $l>0$ such that $(\alpha-l, \beta-l) \in \Sigma_{2 i+1,1}$ and we denote by φ_{1} the nontrivial solution of (1.2) with $(\alpha-l, \beta-l)$. Let H^{-}be the subspace of H spanned by function $\sin x, \sin 2 x, \ldots, \sin 2 i x$. We define $V \equiv V_{1} \cup V_{2}$ where

$$
\begin{aligned}
& V_{1}=\left\{u \in H: u=a_{1} \varphi_{1}+w, 0 \leq a_{1}, w \in H^{-}\right\} \\
& V_{2}=\left\{u \in H: u=a_{2} \varphi_{2}+w, 0 \leq a_{2}, w \in H^{-}\right\}
\end{aligned}
$$

Let $\tilde{a}>0, L>0$ then we define $Q \equiv Q_{1} \cup Q_{2}$ where

$$
\begin{aligned}
& Q_{1}=\left\{u \in V_{1}: 0 \leq a_{1} \leq \tilde{a},\|w\| \leq L\right\} \\
& Q_{2}=\left\{u \in V_{2}: 0 \leq a_{2} \leq \tilde{a},\|w\| \leq L\right\} .
\end{aligned}
$$

Let S be the subspace of H spanned by function $\sin (2 i+2) x, \sin (2 i+3) x, \ldots$ Next, we verify the assumptions of Theorem 2.1. We see that S is the closed subset of H and Q is the bounded subset in H.
i) For $u \in \partial Q_{1}$ we have $u=a_{1} \varphi_{1}+w$ with $a_{1}>0$ and $\left\langle a_{1} \varphi_{1}+w, \sin (2 i+1) x\right\rangle=$ $a_{1}\left\langle\varphi_{1}, \sin (2 i+1) x\right\rangle>0$. Similarly for $u \in \partial Q_{2}$ we obtain $\langle u, \sin (2 i+1) x\rangle<0$. For $z \in S$ it holds $\langle z, \sin (2 i+1) x\rangle=0$. Hence it follows $\partial Q \cap S=\emptyset$.
ii) The proof of the assumption $S \cap h(Q) \neq \emptyset \quad \forall h \in \Gamma$ is similar to the proof in [7, example 8.2]. We see that $H=S \oplus V$ and let $\pi: H \rightarrow V$ be the continuous projection of H onto V. We have to show that $0 \in \pi(h(Q))$. For $t \in[0,1]$, $u \in Q$ we define

$$
h_{t}=t \pi(h(u))+(1-t) u
$$

Function h_{t} defines a homotopy of $h_{0}=i d$ with $h_{1}=\pi \circ h$. Moreover, $h_{t} \mid \partial Q=\mathrm{id}$ for all $t \in[0,1]$. Hence the topological degree $\operatorname{deg}\left(h_{t}, Q, 0\right)$ is well-defined and by homotopy invariance we have

$$
\operatorname{deg}(\pi \circ h, Q, 0)=\operatorname{deg}(i d, Q, 0)=1
$$

Hence $0 \in \pi(h(Q))$, as was to be shown.
iii) First we find the infimum of functional I on the set S. We have

$$
\begin{aligned}
I(u) & =\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\alpha\left(u^{+}\right)^{2}-\beta\left(u^{-}\right)^{2}+2 f u\right] d x \\
& =\frac{1}{2} \int_{0}^{\pi}\left[\left(u^{\prime}\right)^{2}-\alpha u^{2}+(\alpha-\beta)\left(u^{-}\right)^{2}-2 f u\right] d x
\end{aligned}
$$

For $u \in S$ it holds $\int_{0}^{\pi}\left(u^{\prime}\right)^{2} d x \geq(2 i+2)^{2} \int_{0}^{\pi} u^{2} d x$. We denote $b=(2 i+2)^{2}-\alpha$ (which is positive by assumption) and we obtain

$$
\begin{aligned}
I(u) & \geq \frac{1}{2}\left\{\int_{0}^{\pi}\left[b u^{2}-2 f u\right] d x+\int_{0}^{\pi}\left[(\alpha-\beta)\left(u^{-}\right)^{2}\right] d x\right\} \\
& =\frac{1}{2}\left\{\int_{0}^{\pi}\left(\sqrt{b} u-\frac{1}{\sqrt{b}} f\right)^{2} d x-\frac{1}{b} \int_{0}^{\pi} f^{2} d x+\int_{0}^{\pi}(\alpha-\beta)\left(u^{-}\right)^{2} d x\right\}
\end{aligned}
$$

We note that $\alpha>\beta$. Hence and from previous inequality it follows

$$
\begin{equation*}
\inf _{u \in S} I(u) \geq-\frac{1}{2 b} \int_{0}^{\pi} f^{2} d x=-\frac{1}{2\left((2 i+2)^{2}-\alpha\right)} \int_{0}^{\pi}\left(c \varphi_{2}\right)^{2}+\left(\varphi_{2}^{\perp}\right)^{2} d x \tag{3.1}
\end{equation*}
$$

Second we estimate the value $I(u)$ for $u \in \partial Q$. For a function $w \in H_{-}$, we have

$$
\|w\|^{2}=\int_{0}^{\pi}\left(w^{\prime}\right)^{2} d x \leq(2 i)^{2} \int_{0}^{\pi} w^{2} d x=(2 i)^{2}\|w\|_{2}^{2}
$$

For $u \in Q_{2}\left(u=a_{2} \varphi_{2}+w\right)$ we put $d=\lambda_{-}-(2 i)^{2}>0$ then the function w satisfies the assumption $\int_{0}^{\pi}\left(w^{\prime}\right)^{2}-\lambda_{-} w^{2} d x \leq-d \int_{0}^{\pi} w^{2} d x$ of lemma 2.3.

It follows from the Remark 1.1 that $d-k=\left(\lambda_{-}-(2 i)^{2}\right)-\left(\lambda_{-}-\beta\right)=$ $\beta-(2 i)^{2}>0$. We can use the inequality (2.6) from the lemma 2.3 and for $u=\frac{c}{k} \varphi_{2}+w$ we obtain

$$
\begin{align*}
I(u) & \leq-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{k}(c \varphi)^{2}-\frac{1}{d-k}\left(\varphi^{\perp}\right)^{2}\right] d x \\
& =-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{\lambda_{+}-\alpha}(c \varphi)^{2}-\frac{1}{\beta-(2 i)^{2}}\left(\varphi^{\perp}\right)^{2}\right] d x \tag{3.2}
\end{align*}
$$

For $u \in Q_{1}$ we put $\hat{\lambda}_{+}=\alpha-l, \widehat{\lambda}_{-}=\beta-l, l>0$ and $\left(\hat{\lambda}_{+}, \widehat{\lambda}_{-}\right) \in \Sigma_{2 i+1,1}$. It follows from remark 1.1 that $\widehat{\lambda}_{-} \geq(2 i)^{2}$ then the function $u \in \partial Q_{1} \quad(u=$ $\left.a_{1} \varphi_{1}+w\right)$ satisfies assumptions of lemma 2.4 with $f=-c \varphi_{2}+\varphi_{2}^{\perp}$. We put in $(2.9) k_{2}=-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{\lambda_{+}-\alpha}(c \varphi)^{2}-\frac{1}{\beta-(2 i)^{2}}\left(\varphi^{\perp}\right)^{2}\right] d x$ and we obtain that the inequality (3.2) holds for $u \in \partial Q_{1}$ too. Hence

$$
\begin{equation*}
\sup _{u \in \partial Q} I(u) \leq-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{\lambda_{+}-\alpha}(c \varphi)^{2}-\frac{1}{\beta-(2 i)^{2}}\left(\varphi^{\perp}\right)^{2}\right] d x \tag{3.3}
\end{equation*}
$$

By (3.1), (3.3) and from the assumption of theorem 3.1 we have

$$
\begin{aligned}
\inf _{u \in S} I(u) & \geq-\frac{1}{2\left((2 i+2)^{2}-\alpha\right)} \int_{0}^{\pi}\left(c \varphi_{2}\right)^{2}+\left(\varphi_{2}^{\perp}\right)^{2} d x \\
& >-\frac{1}{2} \int_{0}^{\pi}\left[\frac{1}{\lambda_{+}-\alpha}(c \varphi)^{2}-\frac{1}{\beta-(2 i)^{2}}\left(\varphi^{\perp}\right)^{2}\right] d x \geq \sup _{u \in \partial Q} I(u)
\end{aligned}
$$

Then assumption iii) of theorem 3.1 holds.
iv) For this assumption, we will show that I satisfies the Palais-Smale condition. First, we suppose that the sequence $\left(u_{n}\right)$ is unbounded and there exists a constant c such that

$$
\begin{equation*}
\left|\frac{1}{2} \int_{0}^{\pi}\left[\left(u_{n}^{\prime}\right)^{2}-\alpha\left(u_{n}^{+}\right)^{2}-\beta\left(u_{n}^{-}\right)^{2}\right] d x+\int_{0}^{\pi} f u_{n} d x\right| \leq c \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I^{\prime}\left(u_{n}\right)\right\|=0 \tag{3.5}
\end{equation*}
$$

Let $\left(w_{k}\right)$ be an arbitrary sequence bounded in H. It follows from (3.5) and the Schwarz inequality that

$$
\begin{align*}
& \left|\lim _{\substack{n \rightarrow \infty \\
k \rightarrow \infty}} \int_{0}^{\pi}\left[u_{n}^{\prime} w_{k}^{\prime}-\left(\alpha u_{n}^{+}-\beta u_{n}^{-}\right) w_{k}\right] d x+\int_{0}^{\pi} f w_{k} d x\right| \\
& \quad=\left|\lim _{\substack{n \rightarrow \infty \\
k \rightarrow \infty}}\left\langle I^{\prime}\left(u_{n}\right), w_{k}\right\rangle\right| \leq \lim _{\substack{n \rightarrow \infty \\
k \rightarrow \infty}}\left\|I^{\prime}\left(u_{n}\right)\right\| \cdot\left\|w_{k}\right\|=0 . \tag{3.6}
\end{align*}
$$

Put $v_{n}=u_{n} /\left\|u_{n}\right\|$. Due to compact imbedding $H \subset L^{2}(0, \pi)$ there is $v_{0} \in H$ such that (up to subsequence) $v_{n} \rightharpoonup v_{0}$ weakly in $\mathrm{H}, v_{n} \rightarrow v_{0}$ strongly in $L^{2}(0, \pi)$. We divide (3.6) by $\left\|u_{n}\right\|$ and we obtain

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ k \rightarrow \infty}} \int_{0}^{\pi}\left[v_{n}^{\prime} w_{k}^{\prime}-\left(\alpha v_{n}^{+}-\beta v_{n}^{-}\right) w_{k}\right] d x=0 \tag{3.7}
\end{equation*}
$$

and also

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty \\ k \rightarrow \infty}} \int_{0}^{\pi}\left[\left(v_{n}^{\prime}-v_{m}^{\prime}\right) w_{k}^{\prime}-\left[\alpha\left(v_{n}^{+}-v_{m}^{+}\right)-\beta\left(v_{n}^{-}-v_{m}^{-}\right)\right] w_{k}\right] d x=0 \tag{3.8}
\end{equation*}
$$

We set $w_{k}=v_{n}-v_{m}$ in (3.8) and we get

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}}\left[\left\|v_{n}-v_{m}\right\|^{2}-\int_{0}^{\pi}\left[\left[\alpha\left(v_{n}^{+}-v_{m}^{+}\right)-\beta\left(v_{n}^{-}-v_{m}^{-}\right)\right]\left(v_{n}-v_{m}\right)\right] d x\right]=0 \tag{3.9}
\end{equation*}
$$

Since $v_{n} \rightarrow v_{0}$ strongly in $L^{2}(0, \pi)$ the integral in (3.9) convergent to 0 and then v_{n} is a Cauchy sequence in H and $v_{n} \rightarrow v_{0}$ strongly in H and $\left\|v_{0}\right\|=1$.

It follows from (3.7) and the usual regularity argument for ordinary differential equations (see Fučík [3]) that v_{0} is the solution of the equation $v_{0}^{\prime \prime}+\alpha v_{0}^{+}-$ $\beta v_{0}^{-}=0$. From the assumption $(\alpha, \beta) \notin \Sigma$ it follows that $v_{0}=0$. This is contradiction to $\left\|v_{0}\right\|=1$.

This implies that the sequence $\left(u_{n}\right)$ is bounded. Then there exists $u_{0} \in H$ such that $u_{n} \rightharpoonup u_{0}$ in $H, u_{n} \rightarrow u_{0}$ in $L^{2}(0, \pi)$ (up to subsequence). It follows from the equality (3.6) that

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty \\ k \rightarrow \infty}} \int_{0}^{\pi}\left[\left(u_{n}-u_{m}\right)^{\prime} w_{k}^{\prime}-\left[\alpha\left(u_{n}^{+}-u_{m}^{+}\right)-\beta\left(u_{n}^{-}-u_{m}^{-}\right)\right] w_{k}\right] d x=0 \tag{3.10}
\end{equation*}
$$

We put $w_{k}=u_{n}-u_{m}$ in (3.10) and the strong convergence $u_{n} \rightarrow u_{0}$ in $L^{2}(0, \pi)$ and (3.10) imply the strong convergence $u_{n} \rightarrow u_{0}$ in H. This shows that the functional I satisfies Palais-Smale condition and the proof of Theorem 2 is complete.

References

[1] E. N. Dancer: On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edin. 76A (1977), 283-300.
[2] D. G. de Figueiredo, W. M. Ni: Pertubations of second order linear elliptic problems by nonlinearities without Landesman-Lazer conditions, Nonlinear analysis, Theory, Methods \& Applications, Vol 3, No.5, 629-634, (1979).
[3] S. Fučík: Solvability of Nonlinear Equations and Boundary Value problems, D.Reidel Publ. Company, Holland 1980.
[4] E. M. Landesman, A. C. Lazer: Nonlinear perturbations of elliptic boundary value problems at resonance, J. Math. Mech. 19(1970), 609-623.
[5] P. Rabinowitz: Minmax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. no 65, Amer. Math. Soc. Providence, RI., (1986).
[6] M. Struwe: Variational Methods, Springer, Berlin, (1996).
[7] M. Schechter: Type (II) regions between curves of the Fucik spectrum, Nonlinear differ. equ. appl. 4(1997), 459-476.

Petr Tomiczek

Department of Mathematics, University of West Bohemia, Univerzitní 22, 30614 Plzeň, Czech Republic
e-mail: tomiczek@kma.zcu.cz

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 35J70, 58E05, 49B27.
 Key words: Resonance, eigenvalue, jumping nonlinearities, Fucik spectrum. (C)2003 Southwest Texas State University.

 Submitted October 7, 2002. Published January 28, 2003.
 Supported by Ministry of Education of the Czech Republic, MSM 235200001.

