Electronic Journal of Differential Equations, Vol. 2003(2003), No. 100, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

GLOBAL ATTRACTOR FOR AN EQUATION MODELLING A THERMOSTAT

RITA DE CÁSSIA D. S. BROCHE, L. AUGUSTO F. DE OLIVEIRA, \& ANTÔNIO L. PEREIRA

Abstract

In this work we show that the system considered by Guidotti and Merino in [2] as a model for a thermostat has a global attractor and, assuming that the parameter is small enough, the origin is globally asymptotically stable.

1. Introduction

The purpose of this note is to answer a question proposed by Guidotti and Merino [2], concerning the global stability for the trivial solution of the nonlinear and nonlocal boundary-value problem

$$
\begin{gather*}
u_{t}=u_{x x}, \quad x \in(0, \pi) t>0 \\
u_{x}(0, t)=\tanh (\beta u(\pi, t)), \quad t>0 \beta>0 \\
u_{x}(\pi, t)=0, \quad t>0 \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad x \in(0, \pi) .
\end{gather*}
$$

This problem was proposed in [2] as a rudimentary model for a thermostat. To achieve this goal, we first show the existence of a global compact attractor \mathcal{A}_{β} for (1.1), for any positive value of the parameter β. We then prove that $\mathcal{A}_{\beta}=\{0\}$ if $0<\beta<1 / \pi$, thus showing that the trivial solution is globally asymptotically stable in the phase space, for these values of β.

2. Global SEmi-Flux in a fractional power space X^{α}

As in [2] we adopt here the following weak formulation for (1.1): u is a solution of (1.1) if

$$
\begin{align*}
\int_{0}^{\pi} u_{t} \varphi d x+\int_{0}^{\pi} u_{x} \varphi_{x} d x & =-\tanh (\beta u(\pi)) \varphi(0), t>0 \tag{2.1}\\
u(0) & =u_{0}
\end{align*}
$$

for all $\varphi \in H^{1}(0, \pi)=H^{1}$.

[^0]Consider the linear operator $A \in \mathcal{L}\left(H^{1},\left(H^{1}\right)^{\prime}\right)$ induced by the continuous bilinear form $a(\cdot, \cdot): H^{1} \times H^{1} \rightarrow \mathbb{R}$ given by $a(u, v)=((u, v))_{H^{1}}$, that is,

$$
\langle A u, v\rangle_{\left(H^{1}\right)^{\prime} \times H^{1}}=a(u, v)=((u, v))_{H^{1}}, \forall u, v \in H^{1}
$$

We may interpret A as the unbounded closed nonnegative self-adjoint operator $A: D(A) \subset L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)=L^{2}$ defined by

$$
A u(x)=-u^{\prime \prime}(x)+u(x), x \in(0, \pi)
$$

for any $u \in D(A)=\left\{u \in H^{2}(0, \pi): u^{\prime}(0)=u^{\prime}(\pi)=0\right\}$. Let $\left\{\lambda_{n}\right\}$ and $\left\{e_{n}\right\}$ denote the eigenvalues and eigenfuctions of A, respectively. As it is easy to see, A is a sectorial operator in $L^{2}(0, \pi)$ and, therefore, its fractional powers are well defined (cf. Henry [4]). Let $X^{\alpha}=D\left(A^{\alpha}\right), \alpha \geq 0$, be the domain of A^{α}. It is well known that X^{α} endowed with the inner product

$$
(u, v)_{\alpha}=\left(A^{\alpha} u, A^{\alpha} v\right)_{L^{2}}=\sum_{n=0}^{\infty}\left|\lambda_{n}\right|^{2 \alpha}\left(u, e_{n}\right)_{L^{2}}\left(v, e_{n}\right)_{L^{2}}
$$

is a Hilbert space. In particular, we have $X^{0}=L^{2}, X^{1}=D(A)$ and $X^{1 / 2}=H^{1}$.
Following Amann [1] or Teman [5] we have, for any $\theta \in[0,1]$

$$
X^{\frac{1-\theta}{2}}=\left[H^{1}, L^{2}\right]_{\theta}
$$

where $[\cdot, \cdot]_{\theta}$ denotes the complex interpolation functor. On the other hand, for any $s \in[0,1]$,

$$
H^{s}(0, \pi)=\left[H^{1}, L^{2}\right]_{1-s}
$$

Letting $\theta=1-s$, we obtain $X^{\alpha}=H^{2 \alpha}$, for any $\alpha \in[0,1 / 2]$.
Denoting $X^{-1 / 2}=\left(X^{1 / 2}\right)^{\prime}=\left(H^{1}\right)^{\prime}$ and considering the linear operator $A \in$ $\mathcal{L}\left(H^{1},\left(H^{1}\right)^{\prime}\right)$ as a unbounded operator in $\left(H^{1}\right)^{\prime}=X^{-1 / 2}$ given by $D(A)=X^{1 / 2}$ and

$$
\langle A u, \varphi\rangle_{-1 / 2,1 / 2}=(u, \varphi)_{1 / 2}=((u, \varphi))_{H^{1}}
$$

for any $u, \varphi \in H^{1}=X^{1 / 2}$, we rewrite equation (2.1) as an evolution equation

$$
\begin{gather*}
u_{t}=-A u+F(u) \quad \text { in } X^{-1 / 2} t>0 \\
u(0)=u_{0} \tag{2.2}
\end{gather*}
$$

where $F: X^{\alpha} \rightarrow X^{-1 / 2}$ is defined by

$$
\langle F(u), \varphi\rangle_{-1 / 2,1 / 2}=-\tanh (\beta u(\pi)) \varphi(0)+\int_{0}^{\pi} u \varphi d x
$$

for $u \in X^{\alpha}$ and $\varphi \in X^{1 / 2}$, that is, $F(u)=-\gamma_{0}^{*} \tanh \left(\beta \gamma_{\pi}(u)\right)+u$ in $X^{-1 / 2}$, where $\gamma_{\pi} \in \mathcal{L}\left(X^{\alpha}, \mathbb{R}\right)$ is given by $\gamma_{\pi}(u)=u(\pi)$ and $\gamma_{0}^{*} \in \mathcal{L}\left(\mathbb{R}, X^{-1 / 2}\right)$ is the adjoint operator of $\gamma_{0} \in \mathcal{L}\left(X^{1 / 2}, \mathbb{R}\right)$ given by $\gamma_{0}(u)=u(0)$.

To have a well-posed problem in X^{α}, we make some restrictions on α. We impose first that $X^{\alpha} \hookrightarrow \mathcal{C}([0, \pi])$, which is accomplished by requiring that $\alpha>1 / 4$. Now, according to $[1,4],-A$ is the infinitesimal generator of an analytic semigroup $\left\{e^{-A t} ; t \geq 0\right\}$ in $\mathcal{L}\left(X^{-1 / 2}\right)$; since F maps X^{α} into $X^{-1 / 2}$, we impose also that $0 \leq \alpha-\left(-\frac{1}{2}\right)<1$. It turns out that the condition $\frac{1}{4}<\alpha<\frac{1}{2}$ implies that (2.2) has an unique global solution $u:[0, \infty) \rightarrow X^{\alpha}$, for any $u_{0} \in X^{\alpha}$. This follows
immediately from Theorem 3.3.3 in [4] and from the fact that F is globally Lipschitz continuous:

$$
\begin{aligned}
& \left|\langle F(u)-F(v), \varphi\rangle_{-1 / 2,1 / 2}\right| \\
& \leq\left|\tanh \left(\beta \gamma_{\pi}(u)\right)-\tanh \left(\beta \gamma_{\pi}(v)\right)\right||\varphi(0)|+\left|(u-v, \varphi)_{L^{2}}\right| \\
& \leq \beta\left\|\gamma_{\pi}\right\|_{\mathcal{L}\left(X^{\alpha}, \mathbb{R}\right)}\left\|\gamma_{0}\right\|_{\mathcal{L}\left(X^{1 / 2}, \mathbb{R}\right)}\|u-v\|_{\alpha}\|\varphi\|_{1 / 2}+\|u-v\|_{L^{2}}\|\varphi\|_{L^{2}} \\
& \leq\left(\beta\left\|\gamma_{\pi}\right\|_{\mathcal{L}\left(X^{\alpha}, \mathbb{R}\right)}\left\|\gamma_{0}\right\|_{\mathcal{L}\left(X^{1 / 2}, \mathbb{R}\right)}+k\right)\|u-v\|_{\alpha}\|\varphi\|_{1 / 2},
\end{aligned}
$$

for all φ in $X^{1 / 2}$ and any u, v in X^{α}, which implies

$$
\|F(u)-F(v)\|_{-1 / 2} \leq K\|u-v\|_{\alpha},
$$

for all $u, v \in X^{\alpha}$, where $K=\left(\beta\left\|\gamma_{\pi}\right\|_{\mathcal{L}\left(X^{\alpha}, \mathbb{R}\right)}\left\|\gamma_{0}\right\|_{\mathcal{L}\left(X^{1 / 2}, \mathbb{R}\right)}+k\right)$ and k is the embedding constant of X^{α} in L^{2}.

Since F maps bounded sets of X^{α} into bounded sets of $X^{-1 / 2}$, it follows by [4, Theorem 3.3.4] that the flow defined by (2.2) is global.

3. Main Results

We denote by $\{T(t) ; t \geq 0\} \subset \mathcal{L}\left(X^{-1 / 2}\right)$ the semigroup generated by (2.2). Since the spectrum of $A: X^{1 / 2} \subset X^{-1 / 2} \rightarrow X^{-1 / 2}$ is given by $\sigma(A)=\left\{n^{2}+1 ; n=\right.$ $0,1, \ldots\}$, for any $0<\delta<1$, we have, by [4 , Theorem 1.4.3],

$$
\begin{equation*}
\left\|e^{-A t}\right\|_{\mathcal{L}\left(X^{-1 / 2}\right)} \leq C e^{-\delta t}, \quad\left\|A^{\alpha} e^{-A t}\right\|_{\mathcal{L}\left(X^{-1 / 2}\right)} \leq C_{\alpha} t^{-\alpha} e^{-\delta t} \tag{3.1}
\end{equation*}
$$

for $t>0$. Since

$$
\begin{aligned}
\left|\langle F(u), \varphi\rangle_{-1 / 2,1 / 2}\right| & \leq|\tanh (\beta u(\pi))||\varphi(0)|+\left|(u, \varphi)_{L^{2}}\right| \\
& \leq|\varphi(0)|+\|u\|_{L^{2}}\|\varphi\|_{L^{2}} \\
& \leq \sqrt{2 \pi}\|\varphi\|_{1 / 2}+\|u\|_{L^{2}}\|\varphi\|_{1 / 2}
\end{aligned}
$$

for all $\varphi \in X^{1 / 2}$, we have that for all $u \in X^{\alpha}$,

$$
\begin{equation*}
\|F(u)\|_{-1 / 2} \leq \sqrt{2 \pi}+\|u\|_{L^{2}} \tag{3.2}
\end{equation*}
$$

Lemma 3.1. Let $\beta \in(0, \infty), \alpha \in(1 / 4,1 / 2)$. Denote by B_{ε} the ball with center 0 and radius $\pi(\sqrt{\pi}+\varepsilon)$ in L^{2}. Then we have
(1) For any $u_{0} \in X^{\alpha}$ there exists $t^{*}=t^{*}\left(u_{0}\right)$, depending only on the L^{2}-norm of u_{0}, such that the positive semiorbit $T(t) u_{0}$ is in B_{ε} for $t \geq t^{*}\left(u_{0}\right)$;
(2) While $T(t) u_{0}$ is outside B_{ε} its L^{2}-norm is decreasing.

Proof. Let $u_{0} \in X^{\alpha}, \epsilon>0$ and, for simplicity, denote by $u(\cdot, t)=T(t) u_{0}$ the solution of (1.1) through u_{0}. Then, we have

$$
\begin{align*}
\frac{d}{d t} \frac{1}{2} \int_{0}^{\pi} u(x, t)^{2} d x & =\int_{0}^{\pi} u(x, t) u_{t}(x, t) d x \\
& =-\tanh (\beta u(\pi, t)) u(0, t)-\int_{0}^{\pi} u_{x}(x, t)^{2} d x, t>0 \tag{3.3}
\end{align*}
$$

To obtain estimates for this derivative we consider the subsets

$$
\begin{gathered}
S_{1}\left(u_{0}\right)=\{t \in(0, \infty): u(0, t) u(\pi, t) \geq 0\} \\
S_{2}\left(u_{0}\right)=\{t \in(0, \infty): u(0, t) u(\pi, t)<0\}=(0, \infty) \backslash S_{1}\left(u_{0}\right) .
\end{gathered}
$$

If $t \in S_{2}\left(u_{0}\right)$, there exists $y(t) \in(0, \pi)$ such that $u(y(t), t)=0$ and then

$$
|u(x, t)| \leq|u(y(t), t)|+\int_{0}^{\pi}\left|u_{x}(x, t)\right| d x \leq \sqrt{\pi}\left\|u_{x}(\cdot, t)\right\|_{L^{2}}
$$

for all $x \in[0, \pi]$. Therefore,

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \quad \leq \quad \pi^{2}\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2}
$$

for any $t \in S_{2}\left(u_{0}\right)$. Hence, for all $t \in S_{2}\left(u_{0}\right)$,

$$
\begin{align*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} & =\left|\tanh (\beta u(\pi, t))\|u(0, t) \mid-\| u_{x}(\cdot, t) \|_{L^{2}}^{2}\right. \tag{3.4}\\
& \leq \sqrt{\pi}\left\|u_{x}(\cdot, t)\right\|_{L^{2}}-\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} .
\end{align*}
$$

If $\|u(\cdot, t)\|_{L^{2}}>\pi(\sqrt{\pi}+\epsilon)$, then

$$
\begin{equation*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} \leq-\epsilon(\sqrt{\pi}+\epsilon) \tag{3.5}
\end{equation*}
$$

To compute the derivative when $t \in S_{1}\left(u_{0}\right)$, we need to estimate $\left\|u_{x}(\cdot, t)\right\|_{L^{2}}$. Let $m:(0, \infty) \rightarrow \mathbb{R}^{+}$be the continuous function $m(t)=\min \{|u(0, t)|,|u(\pi, t)|\}$ and

$$
J\left(u_{0}\right)=\left\{t \in S_{1}\left(u_{0}\right), m(t) \leq \frac{1}{2 \pi}\|u(\cdot, t)\|_{L^{2}}\right\}
$$

From

$$
|u(x, t)| \leq \min \{|u(0, t)|,|u(\pi, t)|\}+\int_{0}^{\pi}\left|u_{x}(x, t)\right| d x
$$

for $x \in[0, \pi]$ and $t>0$, we have

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \leq \pi\left(m(t)+\sqrt{\pi}\left\|u_{x}(\cdot, t)\right\|_{L^{2}}\right)^{2} \leq 2 \pi^{2}\left(m(t)^{2}+\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2}\right) .
$$

Therefore,

$$
\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \geq \frac{1}{2 \pi^{2}}\|u(\cdot, t)\|_{L^{2}}^{2}-m(t)^{2}
$$

Thus, if $t \in J\left(u_{0}\right)$, then

$$
\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \geq \frac{1}{2 \pi^{2}}\|u(\cdot, t)\|_{L^{2}}^{2}-\frac{1}{4 \pi^{2}}\|u(\cdot, t)\|_{L^{2}}^{2}=\frac{1}{4 \pi^{2}}\|u(\cdot, t)\|_{L^{2}}^{2}
$$

Therefore, for all $t \in J\left(u_{0}\right)$,

$$
\begin{align*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} & =-\tanh (\beta u(\pi, t)) u(0, t)-\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \\
& \leq-\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \tag{3.6}\\
& \leq-\frac{1}{4 \pi^{2}}\|u(\cdot, t)\|_{L^{2}}^{2} .
\end{align*}
$$

If $\|u(\cdot, t)\|_{L^{2}}>\pi(\sqrt{\pi}+\epsilon)$, we obtain

$$
\begin{equation*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} \leq-\frac{1}{4}(\sqrt{\pi}+\varepsilon)^{2} \tag{3.7}
\end{equation*}
$$

On the other hand, if $t \in S_{1}\left(u_{0}\right) \backslash J\left(u_{0}\right)$, then

$$
\begin{align*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} & =-\tanh (\beta u(\pi, t)) u(0, t)-\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \\
& \leq-\tanh (\beta u(\pi, t)) u(0, t) \tag{3.8}\\
& =-\tanh (\beta|u(\pi, t)|)|u(0, t)| \\
& \leq-\tanh \left(\frac{\beta\|u(\cdot, t)\|_{L^{2}}}{2 \pi}\right) \frac{\|u(\cdot, t)\|_{L^{2}}}{2 \pi}
\end{align*}
$$

If $\|u(\cdot, t)\|_{L^{2}}>\pi(\sqrt{\pi}+\epsilon)$, we obtain

$$
\begin{equation*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} \leq-\tanh \left(\frac{\beta(\sqrt{\pi}+\epsilon)}{2}\right) \frac{(\sqrt{\pi}+\epsilon)}{2} \tag{3.9}
\end{equation*}
$$

Letting $\varepsilon_{1}=\min \left\{\varepsilon(\sqrt{\pi}+\varepsilon), \frac{1}{4}(\sqrt{\pi}+\varepsilon)^{2}, \tanh \left(\frac{\beta(\sqrt{\pi}+\epsilon)}{2}\right) \frac{(\sqrt{\pi}+\epsilon)}{2}\right\}$, we conclude using (3.5), (3.7) and (3.9), that

$$
\begin{equation*}
\frac{d}{d t}\|u(\cdot, t)\|_{L^{2}}^{2} \leq-2 \varepsilon_{1} \tag{3.10}
\end{equation*}
$$

This proves our second assertion.
Suppose $u\left(t, u_{0}\right)$ is outside B_{ε} for $0 \leq t \leq \bar{t}$. Then $\|u(\cdot, \bar{t})\|_{L^{2}}^{2} \leq\left\|u_{0}\right\|_{L^{2}}^{2}-2 \varepsilon_{1} \bar{t}$. Therefore, there must exist a $t^{*}=t^{*}\left(u_{0}\right) \leq \frac{1}{2 \varepsilon_{1}}\left(\left\|u_{0}\right\|_{L^{2}}^{2}-\pi^{2}(\sqrt{\pi}+\varepsilon)^{2}\right)$ such that $u\left(\cdot, t^{*}\right)$ belongs to B_{ε}. We claim that $\|u(\cdot, t)\|_{L^{2}} \leq \pi(\sqrt{\pi}+\varepsilon)$ for all $t \geq t^{*}$. Otherwise, there would exist $t_{1} \geq t^{*}$ and $\delta>0$ such that $\left\|u\left(\cdot, t_{1}\right)\right\|_{L^{2}}=\pi(\sqrt{\pi}+\varepsilon)$ and $\|u(\cdot, t)\|_{L^{2}}>\pi(\sqrt{\pi}+\varepsilon)$ for $t \in\left(t_{1}, t_{1}+\delta\right)$, which is a contradiction with the fact that $t \mapsto\|u(\cdot, t)\|_{L^{2}}$ is non increasing. This proves our first assertion.

Theorem 3.2. If $\beta \in(0, \infty)$ and $\alpha \in(1 / 4,1 / 2)$, then $\{T(t) ; t \geq 0\}$ has a global attractor \mathcal{A}_{β}.

Proof. . Let $u_{0} \in X^{\alpha}$ and $u(\cdot, t)=T(t) u_{0}$. By the variation of constant formula and estimates (3.1), (3.2), we have

$$
\begin{align*}
\|u(\cdot, t)\|_{\alpha} & \leq C e^{-\delta t}\left\|u_{0}\right\|_{\alpha}+C_{\alpha} \int_{0}^{t} e^{-\delta(t-s)}(t-s)^{-\alpha}\|F(u(\cdot, s))\|_{-1 / 2} d s \\
& \leq C e^{-\delta t}\left\|u_{0}\right\|_{\alpha}+C_{\alpha} \int_{0}^{t} e^{-\delta(t-s)}(t-s)^{-\alpha}\left(\sqrt{2 \pi}+\|u(\cdot, s)\|_{L^{2}}\right) d s \tag{3.11}
\end{align*}
$$

If $t^{*}\left(u_{0}\right)$ is as given by Lemma 3.1, for $t>t^{*}$ we have

$$
\begin{align*}
\|u(\cdot, t)\|_{\alpha} \leq & C e^{-\delta t}\left\|u_{0}\right\|_{\alpha}+C_{\alpha} \int_{0}^{t^{*}} e^{-\delta(t-s)}(t-s)^{-\alpha}\left(\sqrt{2 \pi}+\|u(\cdot, s)\|_{L^{2}}\right) d s \\
& +C_{\alpha} \int_{t^{*}}^{t} e^{-\delta(t-s)}(t-s)^{-\alpha}\left(\sqrt{2 \pi}+\|u(\cdot, s)\|_{L^{2}}\right) d s \\
\leq & C e^{-\delta t}\left\|u_{0}\right\|_{\alpha}+C_{\alpha} \int_{0}^{t^{*}} e^{-\delta(t-s)}(t-s)^{-\alpha}\left(\sqrt{2 \pi}+\|u(\cdot, s)\|_{L^{2}}\right) d s \\
& +C_{\alpha}(\sqrt{2 \pi}+\pi(\sqrt{\pi}+\varepsilon)) \int_{0}^{\infty} e^{-\delta(t-s)}(t-s)^{-\alpha} d s \\
\leq & C e^{-\delta t}\left\|u_{0}\right\|_{\alpha}+C_{\alpha} e^{-\delta t}\left(\sqrt{2 \pi}+\left\|u_{0}\right\|_{L^{2}}\right) \int_{0}^{t^{*}} e^{\delta s}(t-s)^{-\alpha} d s+M_{1} \\
\leq & e^{-\delta t}\left(C\left\|u_{0}\right\|_{\alpha}+C_{\alpha}\left(\sqrt{2 \pi}+\left\|u_{0}\right\|_{L^{2}}\right) e^{\delta t^{*}}\left(t^{*}\right)^{1-\alpha}(1-\alpha)^{-1}\right)+M_{1} \tag{3.12}
\end{align*}
$$

where $M_{1}=C_{\alpha}(\sqrt{2 \pi}+\pi(\sqrt{\pi}+\varepsilon)) \int_{0}^{\infty} e^{-\delta(t-s)}(t-s)^{-\alpha} d s$. From this formula, and the continuous inclusion of X_{α} in L^{2}, it is easy to see that one can choose $t_{1}>0$, depending only on the norm of u_{0} in X_{α}, so that

$$
\|u(\cdot, t)\|_{\alpha} \leq 2 M_{1},
$$

for all $t \geq t_{1}$ and, therefore, the semigroup $\{T(t) ; t \geq 0\}$ is bounded dissipative.
If $t<t^{*}$ the same estimate (without the last term and with t in the place of t^{*}) shows that

$$
\begin{equation*}
\|u(\cdot, t)\|_{\alpha} \leq e^{-\delta t} C\left\|u_{0}\right\|_{\alpha}+C_{\alpha}\left(\sqrt{2 \pi}+\left\|u_{0}\right\|_{L^{2}}\right) t^{1-\alpha}(1-\alpha)^{-1} \tag{3.13}
\end{equation*}
$$

From 3.12 and 3.13 it follows that orbits of bounded sets are bounded. Since A has compact resolvent and F maps bounded sets in X^{α} into bounded sets in $X^{-1 / 2}$, it follows from [3, Theorem 4.2.2] that $T(t)$ is compact for all $t>0$. The result follows then from [3, Theorem 3.4.6].
Remark 3.3. We observe that 3.12 above also gives an estimate for the size of the attractor.
Theorem 3.4. If $\beta \in(0,1 / \pi)$ and $\alpha \in(1 / 4,1 / 2)$, then $\mathcal{A}_{\beta}=\{0\}$.
Proof. Let $\varepsilon>0$ be given. We will use the estimates obtained in Lemma 3.2 for the decay of the L^{2}-norm of a solution $u(\cdot, t)$ when $t \in S_{1}\left(u_{0}\right)$. If $t \in S_{2}\left(u_{0}\right)$, we have

$$
\begin{align*}
\frac{d}{d t} \frac{1}{2}\|u(\cdot, t)\|_{L^{2}}^{2} & =\left|\tanh (\beta u(\pi, t))\|u(0, t) \mid-\| u_{x}(\cdot, t) \|_{L^{2}}^{2}\right. \\
& \leq \beta \mid u(\pi, t))\|u(0, t) \mid-\| u_{x}(\cdot, t) \|_{L^{2}}^{2} \\
& \leq \beta\left(\sqrt{\pi}\left\|u_{x}(\cdot, t)\right\|_{L^{2}}\right)^{2}-\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \tag{3.14}\\
& \leq(\beta \pi-1)\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2} \\
& \leq-\frac{1-\beta \pi}{\pi^{2}}\|u(t)\|_{L^{2}}^{2}
\end{align*}
$$

If $\|u(\cdot, t)\|_{L^{2}} \geq \varepsilon$ and $\varepsilon_{2}=\min \left\{\frac{1-\beta \pi}{\pi^{2}} \varepsilon^{2}, \frac{\varepsilon^{2}}{4 \pi^{2}}, \tanh \left(\frac{\beta \varepsilon}{2 \pi}\right)\left(\frac{\varepsilon}{2 \pi}\right)\right\}$, we obtain using (3.14), (3.6) and (3.8), that

$$
\begin{equation*}
\frac{d}{d t}\|u(\cdot, t)\|_{L^{2}}^{2} \leq-2 \varepsilon_{2} \tag{3.15}
\end{equation*}
$$

Suppose $\|u(\cdot, t)\|_{L^{2}} \geq \varepsilon$ for $0 \leq t \leq \bar{t}$. Then $\|u(\cdot, \bar{t})\|_{L^{2}}^{2} \leq\left\|u_{0}\right\|_{L^{2}}^{2}-2 \varepsilon_{2} \bar{t}$. Therefore, there must exist a $t^{*}=t^{*}\left(u_{0}\right) \leq \frac{1}{2 \varepsilon_{2}}\left(\left\|u_{0}\right\|_{L^{2}}^{2}-\varepsilon^{2}\right)$ such that $\|u(\cdot, t)\|_{L^{2}} \leq \varepsilon$ for $t \geq t^{*}$.

Since the attractor \mathcal{A}_{β} is a bounded subset of L^{2}, there exists $t^{*}(\varepsilon)$ such that $\mathcal{A}_{\beta}=T\left(t^{*}\right) \mathcal{A}_{\beta} \subset V_{\varepsilon}$, where V_{ε} is the ball of radius ε in L^{2}. Since ε is arbitrary, we conclude that $A_{\beta}=\{0\}$ as claimed.

References

[1] H. Amann, Parabolic Evolution Equations and Nonlinear Boundary Conditions, Journal of Differential Equations, 72 (1988), 201-269.
[2] P. Guidotti and S. Merino, Hopf Bifurcation in a Scalar Reaction Diffusion Equation, Journal of Differential Equations, 140, no. 1, (1997), 209-222.
[3] J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographys, 25, AMS (1988).
[4] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics, 840, Springer-Verlag (1981).
[5] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag (1980).

Departamento de Matemática, Instituto de Matemática e Estatítica, Universidade de São Paulo, Brazil

E-mail address, Rita de Cássia D. S. Broche: ritac@ime.usp.br E-mail address, L. Augusto F. de Oliveira: luizaug@ime.usp.br E-mail address, Antônio L. Pereira: alpereir@ime.usp.br

[^0]: 2000 Mathematics Subject Classification. 35B40, 35K60.
 Key words and phrases. Nonlocal boundary conditions, parabolic equations, attractors. © 2003 Texas State University-San Marcos.
 Submitted August 1, 2003. Published September 26, 2003.
 R. B. was partially supported by CAPES - Brazil.
 L. de O. was partially supported by grant MECD 023/01 from CAPES Brazil.

