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A REDUCTION METHOD FOR PROVING THE EXISTENCE OF
SOLUTIONS TO ELLIPTIC EQUATIONS INVOLVING THE

p-LAPLACIAN

MOHAMED BENALILI & YOUSSEF MALIKI

Abstract. We introduce a reduction method for proving the existence of so-
lutions to elliptic equations involving the p-Laplacian operator. The existence

of solutions is implied by the existence of a positive essentially weak subso-
lution on a manifold and the existence of a positive supersolution on each
compact domain of this manifold. The existence and nonexistence of posi-
tive supersolutions is given by the sign of the first eigenvalue of a nonlinear

operator.

1. introduction

Let (M, g) be a complete non-compact Riemannian manifold of dimension n ≥ 3.
On this manifold, we consider the elliptic quasilinear equation

∆pu+ kup−1 −Kuq = 0, (1.1)

with q > p− 1, where K ≥ 0 and k ≤ K are smooth functions on the manifold M
and ∆pu = div(|∇u|p−2∇u) is the p-laplacian operator of u.

Under some positivity assumption on the function K, we reduce the existence of
a weak positive solution to (1.1) on M to the existence of a positive essentially weak
subsolution on M together with the existence of a positive supersolution on each
compact subdomain of M . The difficulty we face using the method of sub and su-
persolutions resides in seeking a positive subsolution u and a positive supersolution
u that at the same time satisfy the condition u ≤ u. Our reduction method makes
easier the analysis of (1.1) on general complete non-compact manifolds. This result
extends the case studied by Peter Li et al [2] for the Laplace-Beltrami operator (i.e.
p = 2).

In the third section, we show that the existence and the nonexistence of posi-
tive supersolutions to (1.1) on arbitrary bounded subdomains of M is completely
determined by the sign of the first eigenvalue of the non-linear operator Lpu =
−∆pu − k|u|p−2u on the zero set Zo = {x ∈ M : K(x) = 0} of the function K.
This property was also obtained in [2] for the Laplace-Beltrami operator.
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2. Reduction Result

Definition 2.1. A positive and smooth function K is said to be essentially positive
if there exists an exhaustion by compact domains {Ωi}i≥0 such that

M = ∪i≥0Ωi and K
∣∣
∂Ωi

> 0 ∀i ≥ 0.

Furthermore, If there is a positive weak supersolution ui ∈ Hp
1 (Ωi) ∩ Co(Ωi) on

each Ωi, then K is called permissible.

Definition 2.2. A positive solution u of the equation (1.1) is said to be maximal
if for every positive solution v, we have v ≤ u.

In this section, we prove the following theorem.

Theorem 2.3. Suppose that K is permissible and k ≤ K. If there exists a positive
subsolution u ∈ Hp

1,loc(M) ∩ L∞(M) ∩ Co(M) of (1.1) on M , then it has a weak
positive and maximal solution u ∈ Hp

1 (M). Moreover u is of class C1,α on each
compact set for some α ∈ (0, 1).

To prove this theorem, we show the following lemmas.

Lemma 2.4. Let Ω ⊂ M be a bounded domain. Assume that (1.1) has a positive
subsolution u ∈ Hp

1,loc(Ω) ∩ Co(Ω) and a positive supersolution u ∈ Hp
1,loc(Ω). If

(u− u)
∣∣
∂Ω
≥ 0 then u ≥ u on Ω.

Proof. First, we note that multiplying a positive supersolution u of (1.1) by a
constant a ≥ 1 we get a supersolution. Indeed,

∆p(au) + k(au)p−1 −K(au)q = ap−1
(
∆pu+ kup−1

)
uq −K(au)q

≤ ap−1Kuq
(
1− aq−p+1

)
≤ 0.

So we can assume without loss of generality that u ≥ 1 on a compact domain.
Suppose that the set S = {x ∈ Ω : u(x) < u(x)} is not empty. Let φ = max(u−u, 0)
be the test function which is positive and belongs to Hp

1,0(Ω). We have,∫
S

〈
|∇u|p−2∇u− |∇u|p−2∇u,∇(u− u)

〉
dvg

≤
∫

S

(k(up−1 − up−1)(u− u)−K(uq − uq))(u− u)dvg

≤
∫

S

K(up−1 − up−1 − uq + uq))(u− u)dvg

≤
∫

S

K(up−1(1− uq−p+1)− up−1(1− uq−p+1))(u− u)dvg

≤
∫

S

K(up−1(1− uq−p+1)− up−1(1− uq−p+1))(u− u)dvg

≤
∫

S

K(1− uq−p+1)(up−1 − up−1)(u− u)dvg

≤ 0 (q − p+ 1 > 0).

If p ≥ 2, by Simon inequality there exists a positive constant Cp > 0 such that

Cp

∫
S

|∇(u− u)|p dvg ≤
∫

S

〈
|∇u|p−2∇u− |∇u|p−2∇u,∇(u− u)

〉
dvg ≤ 0.
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Hence, ∥∥(u− u)+
∥∥

Hp
1,0(Ω)

=
∫

Ω

∣∣∇(u− u)+
∣∣p dvg = 0

i.e. (u− u)+ = 0, or u ≤ u on Ω.
For 1 < p < 2, there exists by the same inequality there exists a positive constant

C ′p > 0 such that

C ′p

∫
S

|∇(u− u)|2

(|∇u|+ |∇u|)2−p
dvg ≤

∫
S

〈
|∇u|p−2∇u− |∇u|p−2∇u,∇(u− u)

〉
dvg ≤ 0

that is ∫
S

|∇(u− u)|2

(|∇u|+ |∇u|)2−p
dv = 0. (2.1)

It follows from the Hölder inequality that,∫
S

|∇(u− u)|p dvg =
∫

S

|∇(u− u)|p

(|∇u|+ |∇u|)p(1− p
2 )

((|∇u|+ |∇u|)p(1− p
2 )dvg

≤
( ∫

S

|∇(u− u)|2

(|∇u|+ |∇u|)2−p
dvg

)p/2( ∫
S

(|∇u|+ |∇u|)p)1−
p
2 dvg

)
.

By (2.1), we get ∥∥(u− u)+
∥∥

Hp
1,0(Ω)

=
∫

Ω

∣∣∇(u− u)+
∣∣p dvg = 0 .

Hence u ≤ u on Ω. �

Let Hn(−1) be the n-dimensional simply connected hyperbolic space of sectional
curvature equals to −1.

Lemma 2.5. Let ε > 0, β > 0 and λ constants, then there exists a positive and
increasing function φε such that the function Vε(x) = φε(r(x)), defined on the
geodesic ball B(ε) ⊂ Hn(−1) satisfies

∆pVε + λV p−1
ε − βV q

ε ≤ 0,

Vε

∣∣
∂B(ε)

= ∞.

Here r(x) is the distance function on the ball B(ε)

Proof. In polar coordinates, the metric of Hn(−1) is

ds2 = dr2 + sinh2(r)W 2

where W 2 is the metric on the sphere Sn−1. We get easily

∆Hn(−1) =
∂2

∂r2
+ (n− 1) coth(r)

∂

∂r
+

1
sinh2(r)

∆Sn−1

where ∆M is the Laplace-Beltrami operator on the manifold M . and

∆pu = |∇u|p−2∆Mu+
〈
∇u,∇|∇u|p−2

〉
.

For p ∈ (1, n), let ∆M
p u = div

(
|∇u|p−2∇u

)
be the p-Laplacian operator of u on the

manifold M . For q > p− 1 we consider the function φ : (0, ε) → R,

φ(r) =
(
sinh2(

ε

2
)− sinh2(

r

2
)
)−α

,
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with α = p
q−p+1 . Setting

a(r) = sinh2(
ε

2
)− sinh2(

r

2
), V (x) = φ (r(x)) ,

we obtain
∆Hn(−1)

p V = φ′p−2∆Hn(−1)V + (p− 2)φ′p−2φ′′. (2.2)
A direct computation shows that

∆Hn(−1)V =
1
4
α (α+ 1) a(r)−(α+2) sinh2(r) +

1
2
nαa(r)−(α+1) cosh(r)

Therefore,

∆Hn(−1)
p V + λV p−1 =

(α
2

)p−1

a(r)−αp+α−p
[1
2

(p− 1) (α+ 1) sinhp(r)

+ (n+ p− 2)a(r) sinhp−2(r) cosh(r) + λa(r)p
]
.

Taking

C (ε, λ, p, q) =
1
2
(p− 1) (α+ 1)

(α
2

)p−1

sinhp (ε)

+ (n+ p− 2)
(α

2

)p−1

a (0) cosh (ε) + λ (a(0))p
,

we obtain ∆Hn(−1)
p V + λV p−1 ≤ CV q and putting

ψ =
(C
β

)1/(q−p+1)
φ , (2.3)

we obtain the desired function. �

Lemma 2.6. Let Ω be a bounded domain. Suppose that there exists a compact
domain X ⊂ Ω such that K

∣∣
∂X

> 0, then there exists a constant C > 0 such that
for any positive regular solution u of (1.1) on Ω, we have u

∣∣
∂X

≤ C, where ∂X is
the boundary of X.

Proof. Since X ⊂ Ω is compact, it follows that there exist a positive constant ε > 0
less than the injectivity radius of X and a positive constant β > 0 such that the
ε-neighborhood of ∂X, Uε(∂X) is contained in Ω and

K
∣∣

Uε(∂X)
≥ β > 0. (2.4)

Let x0 ∈ ∂X and let ro(x) = dist(x0, x) be the distance function on the geodesic
ball B(x0, ε). Let ∆M

p be the p-lapalcian operator on the manifold M . Let λ =
supx∈Ω k(x). By Lemma 2.5, there exists a positive and increasing function V (x) =
φε(ro(x)) defined on the geodesic ball B(ε) ⊂ Hn(−1) satisfying

∆Hn(−1)
p Vε + λV p−1

ε ≤ βV q
ε . (2.5)

Since Ω is bounded, by rescaling the metric if necessary, we can assume that

Ricci
∣∣
Ω
≥ −(n− 1).

Knowing that the gradient of the distance function satisfies |∇r| = 1, we have

∆M
p r = ∆Mr .

By a geometric comparison argument, we have

∆M
p r ≤ ∆Hn(−1)

p r. (2.6)
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On the other hand,

∆MVε = div (∇φε(r(x))) = φ′ε∆Mr + φ′′ε .

Then
∆M

p Vε = φε
′p−2∆MVε + (p− 2)φ′

p−2

ε φ′′ε
and

∆M
p Vε = φ

′p−1

ε ∆Mr + (p− 1)φ
′p−2

ε φ′′ε .

By the inequality (2.6), we have

∆M
p Vε ≤ ∆Hn(−1)

p Vε

and from the inequalities (2.4) and (2.5), we deduce that

∆M
p Vε + kV p−1

ε −KV q
ε ≤ ∆Hn(−1)

p Vε + λV p−1
ε − βV q

ε ≤ 0.

which implies that Vε is a positive supersolution of the equation(1.1) on B(x0, ε).
Since Vε

∣∣
∂B(x0,ε)

= ∞, Lemma 2.4 shows that for any solution u of the equation
(1.1), we have

u(x) ≤ Vε(x) ∀x ∈ B(x0, ε)
hence

u(x0) ≤ Vε(x0) = φε(0) = C,

where C is a positive constant independent of x0 and u. �

Lemma 2.7. Let Ω ⊂M be a bounded domain. Suppose that K
∣∣
∂Ω

> 0 and there
is a positive and bounded solution v ∈ Hp

1 (Ω) ∩ L∞(Ω) of the equation (1.1) such
that v is bounded from below by a positive constant. Then there exists a positive
weak solution u of the boundary-value problem

∆pu+ kup−1 −Kuq = 0 on Ω
u = ∞ on ∂Ω

and u ≥ v on Ω. Moreover u ∈ C1,α(X) on each compact X ⊂ Ω, and some
α ∈ (0, 1).

Proof. Let C = infΩ v (which is positive by hypothesis). Since v is bounded from
above on Ω then there exists n0 ∈ N∗ such that supΩ v ≤ n0C. Consider the
boundary-value problem

∆pu+ kup−1 −Kuq = 0 on Ω
u = nC , n ≥ n0 on ∂Ω .

(2.7)

Obviously, v ∈ Hp
1 (Ω) ∩ L∞(Ω) and nv ∈ Hp

1 (Ω) ∩ L∞(Ω) are respectively positive
sub and supersolutions of problem (2.7), and hence by the sub and supersolutions
method, the problem (2.7) has for each n ≥ n0 a positive solution vn ∈ Hp

1 (Ω) ∩
L∞(Ω) such that v ≤ vn ≤ nv. Since (vn+1 − vn)

∣∣
∂Ω

= C > 0, it follows from
Lemma 2.4 that {vn}n≥n0 in an increasing sequence of positive solutions of the
equation (1.1) on Ω. Consider the set

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}
and setting X = Ωε ⊂ Ω, which is compact, then by Lemma 2.6 there exists for
each ε > 0 (small enough) a constant C (ε) > 0 such that

sup
∂Ωε

vn ≤ C (ε) ∀n ≥ n0. (2.8)
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Consider the function u = C (ε)C−1v and take C (ε) such that C (ε)C−1 > 1, so
that u is a positive supersolution of the equation (1.1). Since (u− vn) |∂Ωε

≥ 0,
it follows from Lemma 2.4 that vn ≤ C (ε)C−1v on Ωε for all n ≥ n0, and then
{vn}n≥n0

is uniformly bounded on compact subsets of Ω. Hence{vn}n≥n0
, converges

in the distribution sense to a weak positive solution u of the equation (1.1) on Ω.
By the regularity theorem u ∈ C1,α(Ωε) for some α ∈ (0, 1). It obvious that
u|∂Ω = ∞. �

Proof of Theorem 2.3. Let u ∈ Hp
1,loc(M)∩L∞(M)∩Co(M) a positive subsolution

of the equation (1.1) on M . Since K is permissible then there exists an increasing
sequence of compact domains {Ωi}i≥0 such that M = ∪iΩi and K

∣∣
∂Ωi

> 0 for
all i ≥ 0 and a positive supersolution ui ∈ Hp

1 (Ωi) ∩ Co(Ωi) on each Ωi. Since
αu (where α is a constant greater than 1) is again a positive supersolution of the
equation (1.1) on Ωi, we can assume that ui ≥ u on Ωi. Hence by the method
of sub and supersolutions there exists a positive solution ui ∈ C1,α(Ωi) of the
equation (1.1) such that u ≤ ui ≤ ui. Since ui is bounded from below by u and Ωi

is compact, then ui is bounded from below by a positive constant, thus it follows
from Lemma 2.7 that there exists a positive C1,α(Ωi)-solution still denoted by ui

of the boundary-value problem

∆pui + kup−1
i −Kuq

i = 0 in Ωi

ui = ∞ on ∂Ωi .

Since for each i0 ≥ 1 we have (ui+1−ui)
∣∣
∂Ωi0

≤ 0, Lemma 2.4 implies that {ui}i≥i0

is a decreasing sequence of positive solutions of the equation (1.1) on Ωi0 . More-
over, all ui are bounded from below by u, thus the sequence {ui}i≥i0

converges in
distribution sense to a weak solution of (1.1). By regularity theorem u ∈ C1,α(Ωi)
for some α ∈ (0, 1).

Now, if v is an other solution of the equation (1.1) on M = ∪
i
Ωi, then for x0 ∈M

there exist i0 ≥ 1 such that x0 ∈ Ωi for all i ≥ i0 , as ui|∂Ωi
= ∞, Lemma 2.4 implies

that v ≤ ui for all i ≥ i0. In particular v ≤ lim
i→∞

ui = u. Thus u is maximal. �

3. Existence of supersolution

Let K ≥ 0 and k be smooth functions on the manifold M . In this section we
show that the existence or the nonexistence of a positive supersolution on a bounded
domain Ω ⊂ M is completely determined by the sign of the first eigenvalue of the
non linear operator Lpu = −∆pu−k|u|p−2u on the zero set Z = {x ∈ Ω : K(x) = 0}
of the function K. Let us recall some definitions first.

Definition 3.1. Let Ω ⊂ M be a bounded and smooth open set. The first eigen-
value of the non linear operator Lpu = −∆pu− k|u|p−2u on Ω is

λΩ
1,p = inf

( ∫
Ω

(|∇u|p − k|u|p) dvg

)
(3.1)

where the infimum is taken over all functions u ∈ Hp
1,0 (Ω) such that

∫
Ω
|u|pdvg = 1.

Definition 3.2. Let S ⊂M be a bounded subset. The first eigenvalue of the non
linear operator Lpu = −∆pu− k|u|p−2u on Ω is

λS
1,p = supλΩ

1,p (3.2)
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where the sup is taken over all smooth open sets Ω containing S. In particular
λφ

1,p = +∞ .

Definition 3.3. Let S ⊂ M be an unbounded subset. The first eigenvalue of the
non-linear operator Lpu = −∆pu− k|u|p−2u on Ω is

λS
1,p = lim

r→+∞
λΩr

1,p (3.3)

where Ωr = S ∩B (o, r) for all r > 0 and o ∈M a fixed point.

Let Ω be a bounded domain. It is known that there exists a unique C1,α(Ω)-
eigenfunction satisfying

∆pφ+ kφp−1 + λΩ0
1,pφ

p−1 = 0 in Ω
φ > 0 in Ω
φ = 0 on ∂Ω
∂φ

∂ν
< 0 on ∂Ω .

Let Z = {x ∈ M : K(x) = 0} the zero set of the smooth function K and λZ∩Ω
1,p be

the first eigenvalue of the non-linear operator Lpu = −∆pu− k|u|p−2u on Ω ∩ Z.

Theorem 3.4. Let K ≥ 0 be a smooth function on a bounded domain Ω. If λZ∩Ω
1,p >

0, then there exists a positive supersolution u ∈ Hp
1 (Ω) ∩ L∞ (Ω) of the equation

(1.1) on Ω. Conversely if there exists a positive supersolution u ∈ Hp
1 (Ω) ∩ L∞(Ω)

of the equation (1.1) then λZ∩Ω
1,p ≥ 0.

Proof. Let Ω ⊂ M be a bounded domain. Suppose that λZ∩Ω
1,p > 0, it follows from

the continuity of the first eigenvalue with respect to C0 deformation of the domain
that there exists a bounded domain Ω0 such that Z ∩ Ω ⊂ Ω0 ⊂ Ω and λΩ0

1,p > 0.
On Ω0 there exists a unique positive eigenfunction φ ∈ C1,α

(
Ω0

)
such that

∆pφ+ kφp−1 + λΩ0
1,pφ

p−1 = 0 in Ω0

φ > 0 in Ω0

φ = 0 on ∂Ω0

∂φ

∂ν
< 0 on ∂Ω0 .

Writting Ω = (Ω\Ω0) ∪ (Ω ∩ Ω0) and setting

u = χΩ0φ+ C (1− χΩ0)

where χΩ is the characteristic function,

χΩ =

{
1 if x ∈ Ω
0 if x /∈ Ω

and C is a positive constant large enough so that u = C, on Ω − Ωo, is a positive
supersolution of (1.1). On Ω ∩ Ω0, u = φ, but

∆pu+ kup−1 −Kuq = −λΩ0
1,pu

p−1 −Kuq ≤ 0

because λΩ0
1,p > 0. Therefore, u ∈ Hp

1 (Ω) ∩ L∞ (Ω) is positive supersolution of the
equation (1.1) on Ω.
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Conversely, suppose that there exists a positive supersolution u ∈ Hp
1 (Ω) ∩

L∞ (Ω) of (1.1) and λZ∩Ω
1,p < 0. It follows again from the continuity of the first eigen-

value with respect to C0-deformation of the domain that there exists a bounded
domain Ω1 such that Z ∩ Ω ⊂ Ω1 ⊂ Ω and λΩ1

1,p < 0. By the same way as
above, we can find a decreasing sequence {Ωi}i≥0 of bounded domains such that
Ωi ⊂ Ω, Z ∩ Ω = ∩iΩi and λΩi

1,p < 0. On Ωi there exists a positive eigenfunction
φi ∈ C1,α(Ωi) and ∂φi

∂ν < 0 on ∂Ωi satisfying

∆pφi + kφp−1
i + λΩi

1,pφ
p−1
i = 0 in Ωi

φi = 0 on ∂Ωi .

Consider the boundary-value problem, with q > p− 1,

∆pui + kup−1
i −Kuq−1

i = 0 in Ωi

ui = 0 on ∂Ωi .
(3.4)

One can check that for ε > 0 small and C > 0 large, εφi and Cu are respectively
positive sub and supersolutions of the boundary-value problem (3.4) and εφi ≤ Cu.
Therefore, by the sub and supersolutions method there exists a positive C1,α solu-
tion ui of the problem (3.4) such that εφi ≤ ui ≤ Cu, we have also ∂ui

∂ν < 0 on ∂Ωi.
Thus φi

ui
and ui

φi
∈ L∞(Ωi). Consider now the set Ωi,C = {x ∈ Ωi : Cφi(x) < ui(x)},

It follows from [1, Lemma 2] that

0 ≤
∫

Ωi,C

( ∆p(Cφi)
(Cφi)p−1

+
−∆pui

up−1
i

)
(up

i − (Cφi)
p) dvg

= −
∫

Ωi,C

(
λΩi

1,p +Kuq−p+1
i

)
(up

i − (Cφi)
p) dvg .

For i large enough this contradicts the fact that λΩi
1,p + K < 0 and completes the

proof. �

Theorem 3.5. Let K ≥ 0 be a smooth function on a bounded domain Ω. If
λZ∩Ω

1,p > 0, then there exists a positive supersolution u ∈ C1,α(Ω) of the equation
(1.1) on Ω for some α ∈ (0, 1).

Proof. Let Ωo, Ω1 be bounded domains such that Z ∩ Ω ⊂ Ωo ⊂ Ω1 such that
λZ∩Ω

1,p > 0. Let v ∈ C1,α (Ω1) be the first eigenfunction on Ω1 and 0 ≤ φ ≤ 1 a
smooth function such that φ = 1 on Ωo, 0 outside Ω1. We can check easily as in [2,
Theorem 2.1] that the function u = φv + (1 − φ)C, where C is a suitably chosen
constant, is a positive C1,α(Ω) supersolution of the equation (1.1). �

Corollary 3.6. Let Z be the zero set of the function K. Suppose that the first
eigenvalue λZ

1,p of the operator Lpu = −∆pu−k(x)|u|p−2u is strictly positive. Then
the function K is permissible. In particular if K > 0 on M , K is permissible

4. Example

Consider the cylinder M = R+ × N where (N,h) is a compact manifold with
Riemannian metric h and of scalar curvature Sh ≥ 0. We endows M with the
metric

g = dr2 + f(r)2h
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where f is smooth positive function. Denote by Γl
i,j , Sg,R

k

ijl and Rk
ijl 1 ≤ i, j, k, l ≤

n respectively the Christofell symbols, the scalar curvature, the curvature tensor
on M and the curvature tensor on N .

¿From the local expression of Γα
ij ,

Γα
ij =

1
2
gαl

(∂gjl

∂xi
+
∂gil

∂xj
− ∂gij

∂xl

)
,

we have

Γ1
ij = −f(r)f ′(r)hij , 2 ≤ i, j ≤ n

Γ1
i1 = 0, 1 ≤ i ≤ n

Γα
11 = 0, 1 ≤ α ≤ n

Γα
1j = −f(r)/f ′(r)δα

j , 2 ≤ α, j ≤ n

Γα
ij =

1
2
gαl(

∂gjl

∂xi
+
∂gil

∂xj
− ∂gij

∂xl
), 2 ≤ i, j, α ≤ n .

A direct computation gives

R
α

1α1 = −f ′′(r)/f(r), 2 ≤ α ≤ n

R
1

i1j = −f(r)f ′′(r)hij , 2 ≤ i, j ≤ n

R
α

iαα = 0, 1 ≤ i, α ≤ n

R
α

iαj = Rα
iαj − f ′(r)2hij , 2 ≤ i, j, α ≤ n, j 6= α

so

Sg = −2(n− 1)f ′′(r)/f(r)− (n− 1)(n− 2)f ′(r)2/f(r)2 +
Sh

f(r)2
.

When we take f(r) = exp r2,

f ′(r) > 0 (4.1)

lim
r→∞

f(r) = lim
r→∞

lim f ′(r)/f(r) = lim
r→∞

f ′′(r)/f(r) = ∞ (4.2)

For r > 0 large enough, by inequalities (4.1) and (4.2) we obtain Sg ≤ −ε. By
re-parametrizing, we can assume that

Sg ≤ −ε for any r > 0 . (4.3)

Let K = ε+4(n−1)(1+nr2) then k = −Sg ≤ K. Now consider on M the equation

∆pu− Sgu
p−1 −Kup∗−1 = 0 (4.4)

with 2 < p < n and p∗ = (pn/(n − p). Note that the positive function K is
permissible by Corollary 3.6. Let

φ =

{
(δr/r21)

α if 0 < r < r1

(δ/r)α if r ≥ r1,
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where α ≥ 2/(p∗ − p), δ and r1 are constants which will be suitably chosen. For
0 < r < r1 we have

∆pφ− Sgφ
p−1 − [4(n− 1)(1 + 4n2r2) + ε]φp∗−1

≥
(
δr

r21

)(p−1)α [
ε+ (

α

r
)p−1∆r + (p− 1)(α− 1)αp−1(

1
r
)p

− (4(n− 1)(1 + nr2) + ε)(
δr

r21
)(p

∗−p)α
]
.

Letting δ be small, and r1 large, and using that

∆r = f ′(r)/f(r) = 2(n− 1)r ,

we obtain that the left-hand side of (4.4) is positive. In the case r ≥ r1, the same
computations yield

∆pφ− Sgφ
p−1 − (4(n− 1)(1 + 4n2r2) + ε)φp∗−1

≥ (
δ

r
)α(p−1)

[
ε− 2(n− 1)αp−1(

1
r
)p−2 + (p− 1)(α+ 1)αp−1(

1
r
)p

− (4(n− 1)(1 + 4n2r2) + ε))(
δ

r
)α(p∗−p)

]
.

The same arguments as above show that the left-hand side of (4.4) is positive in this
case. Therefore, φ is a positive subsolution of the equation (4.4) and by Theorem
2.3, there exists a positive weak solution to this equation on the manifold M .
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