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SYMMETRY AND MONOTONICITY OF SOLUTIONS TO SOME
VARIATIONAL PROBLEMS IN CYLINDERS AND ANNULI

FRIEDEMANN BROCK

Abstract. We prove symmetry and monotonicity properties for local mini-
mizers and stationary solutions of some variational problems related to semilin-
ear elliptic equations in a cylinder (−a, a)× ω, where ω is a bounded smooth

domain in RN−1. The admissible functions satisfy periodic boundary con-

ditions on {±a} × ω, and some other conditions. We show also symmetry
properties for related problems in annular domains. Our proofs are based on

rearrangement arguments and on the Moving Plane Method.

1. Introduction

Let ω be a bounded, smooth domain in RN−1 and Ω the finite cylinder (0, a)×ω,
(a > 0). Defining a functional J on W 1,2(Ω) by J(v) :=

∫
Ω
((|∇v|2/2) − F (v)) dx,

we look for minimizers of J subject to the integral constraint
∫
Ω
G(v) dx = 0 (and

possibly with respect to some further conditions), where F and G are smooth
functions satisfying suitable growth conditions. Problems of this type give rise to
elliptic equations in Ω subject to Neumann conditions on {0, a} × ω, which have
been extensively studied in modelling chemical processes in tubes; see e.g. [4], and
the references cited therein.

We are interested in solutions which are monotone in x1. It is well-known that
the variational problem has at least one global minimizer with this property [16].
The proof of this result is based on a rearrangement argument, which we recall
below:

Let u be a minimizer, and let u∗ denote its non-increasing rearrangement in the
x1-direction; for the definition see [16]. Then u∗ ∈ W 1,2(Ω),

∫
G(u) =

∫
G(u∗),∫

F (u) =
∫
F (u∗), and

∫
|∇u|2 ≥

∫
|∇u∗|2, by the very properties of the rearrange-

ment. Hence u∗ is a minimizer, too, and since (u∗)x1 ≤ 0, the assertion follows.
But this striking argument has also its disadvantages. We first observe that is

not clear from the above proof wether there exist other, nonmonotone minimizers.
Fortunately, this difficulty is of technical nature, and it can be overcome by a careful
study of the equality case in the rearrangement inequality above (see [2], compare
also Remarks 3.2 and 3.4 below). On the other hand, the above argument fails if
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one tries to show the monotonicity of local minimizers or stationary solutions of
the variational problem.

In this article we deal with global and local minimizers as well as with stationary
solutions for a problem of the above type (Section 3) with one or more integral
constraints and where the solutions satisfy a general nonlinear boundary condition
on (0, a)× ∂ω. We also investigate symmetry properties for some related problems
with periodicity in the infinite cylinder R×ω (Section 2) and in an annulus (Section
4), and we study similar problems with Dirichlet boundary conditions on R × ∂ω
(Section 5). In the case of the stationary solutions, (Lemmata 2.5 and 4.4), we use
the classical Moving Plane Method which exploits the Maximum Principle and the
reflection invariance of the equation (see e.g. [13, 3]). In this method, starting from
some initial stage, parallel hyperplanes are moved up to a critical position while it
is proved at each intermediate stage that the difference between the solution and its
reflection about the hyperplane is positive on one side of the hyperplane. However,
in order to make the method work, one first needs to establish the same property at
the initial stage. Thus we have to impose an additional condition on the solution
which takes the form of ’two-point inequalities’ with respect to reflection about
some unspecified hyperplane (see the conditions (2.21), respectively (4.8) below).
These inequalities cannot be deduced from the PDE, and they also rule out entire
classes of solutions, e.g. those periodic solutions with higher order periodicity. We
also emphasize that our Lemmata 2.5 and 4.4 contrast with the classical symmetry
results for problems with zero Dirichlet boundary conditions (see [13]) where the
role of the above mentioned two-point inequalities is played by the positivity of the
solution which is a natural physical assumption. On the other hand, our analysis
shows how far Moving Plane arguments reach in problems with periodicity.

Two further ingredients are used in the proof of symmetry (respectively mono-
tonicity) for the local and global minimizers. The first tool is based on properties
of a transformation which is often called two-point rearrangement in the literature.
Notice that this simple type of rearrangement has been proved particularly useful in
showing integral inequalities related to Steiner and cap symmetrizations (see [1, 7]).
But its flexibility, and in particular its continuity properties (see Lemma 2.2) make
it as well to an appropriate tool in proving qualitative properties of solutions to
variational problems. Notice that the author has used two-point rearrangements to
show the symmetry of local minimizers in a nonlocal model for equilibrium figures
of rotating liquids (see [5]).

The second tool is the Principle of Unique Continuation. We mention that
the idea to combine reflection arguments with this principle has been successfully
employed by O. Lopes. He proved the symmetry of global minimizers to some
variational problems in the entire space (see [20]) and in domains with rotational
symmetry (see [19], and Remark 4.7 below).

In case of the periodic problem and the problem in the annulus we show that local
minimizers are symmetric provided that they satisfy a ’weak version’ of the above
mentioned ’two-point inequality’ (Lemma 2.6, respectively Lemma 4.5). Further-
more, in case of the problem in the finite cylinder we show that any local minimizer
is monotone (Theorem 3.3). This result is however restricted to the case of only
one constraint.
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Finally we show that global minimizers of our problems are symmetric (respec-
tively monotone), without imposing further geometrical conditions on the solution.
(Theorems 2.7, 3.1 and 4.6).

2. Symmetry in periodic problems

Let us fix some notation. Let N ∈ N, (N ≥ 2), and let ω a bounded smooth
domain in RN−1. For some a > 0, let Ω = R × ω, Ωa = (−a, a) × ω and Ω+

a =
(0, a) × ω. For points x ∈ Ω we write x = (x1, x

′), where x1 ∈ R and x′ ∈ ω.
Furthermore, let F = F (x, t), Gi = Gi(t),H = H(t) functions defined on Ω × R,
and satisfying

• F is twice differentiable with respect to t.
• F (·, t), Ft(·, t), Ftt(·, t) are in L∞(Ω) for all t ∈ R, Gi and H are in C2(R)
• |Ft(x, t)|, |G′i(t)| ≤ c(1 + |t|p), and |H ′(t)| ≤ c(1 + |t|q)
• f := Ft, gi := G′i, h := H ′, (i = 1, . . . , n)
• f(x, t) = f(x1 ± ka, x′, t) for all (x, t) ∈ Ω× R

Furthermore, we assume:

1 ≤ p < (N + 2)/(N − 2) and 1 ≤ q < N/(N − 2), if N ≥ 3; (2.1)

and p, q are finite if N = 2;

f(x, t) is non-increasing in x1 for all (x, t) ∈ (0, a)× ω × R,
and for all k ∈ N.

(2.2)

If, for some constants α1, . . . , αn, the function
∑n

i=1 αigi(t) vanishes
on some interval c < t < d, then it vanishes everywhere on R.

(2.3)

Now, let

X = {v ∈W 1,2(Ωa) ∩W 1,2

loc(Ω) : v is (2a)-periodic in x1}

K = {v ∈ X :
∫

Ωa

Gi(v) dx = 0, i = 1, . . . , n}.

We investigate the variational problem:

Minimize J(v) ≡
∫

Ωa

(1
2
|∇v|2 − F (x, v)

)
dx+

∫
(−a,a)×∂ω

H(v) dS

over all v ∈ K .

(2.4)

We call u ∈ K a global minimizer of (2.4) if J(v) ≥ J(u) ∀v ∈ K, and we will say
that u ∈ K is a local minimizer of (2.4) if there exists a number ε > 0 such that
J(v) ≥ J(u) for all v ∈ K satisfying∫

Ωa

(
|∇(u− v)|2 + (u− v)2

)
dx ≤ ε.

In view of the non-degeneracy condition (2.3), standard arguments in the calculus
of variations show (see e.g. [22]) that any local minimizer satisfies

−∆u = f(x, u) +
n∑

i=1

αigi(u) in Ω, (2.5)

∂u/∂ν + h(u) = 0 on ∂Ω, (2.6)
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where ν s the exterior normal, and with αi ∈ R, i = 1, . . . , n, as Lagrange multipli-
ers. Furthermore, we have∫

Ωa

(
∇u∇ϕ− f(x, u)ϕ

)
dx+

∫
(−a,a)×∂ω

h(u)ϕdS = 0, (2.7)∫
Ωa

(
|∇ϕ|2 − (fu(x, u) +

n∑
i=1

αig
′
i(u))ϕ

2
)
dx+

∫
(−a,a)×∂ω

h′(u)ϕ2 dS ≥ 0, (2.8)

for every ϕ ∈ X satisfying ∫
Ωa

gi(u)ϕdx = 0. (2.9)

Also, the regularity assumptions on F , Gi, H, (i = 1, . . . , n), imply that

u ∈ X ∩W 2,N (Ωa) ∩ C(Ω). (2.10)

We will say that u is a stationary solution of (2.4) if u satisfies (2.5),(2.6) and
(2.10).
Our first result concerns the unconstrained case, K = X. It seems to be well-known,
but I could not find a reference.

Lemma 2.1. Let u a local minimizer of (2.4), where K = X, and F does not
depend on x1, that is F = F (x′, t). Then ux1(x) ≡ 0 in Ωa.

Proof. For ϕ ∈ X, ϕ 6≡ 0, we define I by

I(ϕ) :=
( ∫

Ωa

(
|∇ϕ|2 − fu(x′, u)ϕ2

)
dx+

∫
(−a,a)×∂ω

h′(u)ϕ2 dS
)( ∫

Ωa

ϕ2 dx
)−1

.

In view of (2.8), we have I(ϕ) ≥ 0. Assume that ux1 6≡ 0. Then I(ux1) = 0, and
since ux1 ∈ X, we have that

I(ux1) = 0 = min{I(ϕ) : ϕ ∈ X, ϕ 6≡ 0}.
Then it follows from a variant of Krein-Rutman’s Theorem that ux1 can have one
sign only. For the convenience of the reader, we give a simple proof: Assume that
M := {x ∈ Ωa : ux1(x) > 0} has positive measure, and set v := max{ux1 ; 0}. Since
I(v) = 0 we have then that also −∆v = fu(x′, u)v, and since ux1 and v coincide
on the open set M , the Principle of Unique Continuation (see Appendix) tells us
that ux1 ≡ v, which means that ux1(x) ≥ 0, and ux1(x) 6≡ 0 in Ω. But this is
impossible due to the periodicity of u. Analogously we can argue in the case that
{x ∈ Ωa : ux1(x) < 0} has positive measure. �

In view of the above proof, it seems tempting to use (2.8) for the purpose of
symmetry proofs under the presence of constraints. Let u a local minimizer of
(2.4), let F = F (x′, t), and let for ϕ ∈ X, ϕ 6≡ 0,

I(ϕ) :=
( ∫

Ωa

(
|∇ϕ|2 − z(x)ϕ2

)
dx+

∫
(−a,a)×∂ω

h′(u)ϕ2 dS
)( ∫

Ωa

ϕ2 dx
)−1

,

where z := fu(x′, u) +
∑N

i=1 αig
′
i(u). It is easy to see that∫
Ωa

gi(u)ux1 dx = 0.

Proceeding analogously as above, we have then that

I(ux1) = 0 = min
{
I(ϕ) : ϕ 6≡ 0,

∫
Ωa

gi(u)ϕdx = 0, i = 1, . . . , n
}
.
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Then a variant of Courant-Hilbert’s Theorem tells us that ux1 can have at most
n+ 1 nodal domains on the torus {(x1, x

′) : x1 ∈ R mod (2a), x′ ∈ ω}. However, it
is difficult to relate this information to symmetry properties of u, even not for only
one constraint, n = 1.

Given any λ ∈ R we now define the following two transformations:
Reflexion: Let xλ := (2λ− x1, x

′) and vλ(x) := v(xλ) ∀x ∈ Ω. For convenience,
we will sometimes also write σλv instead of vλ.

Two-point rearrangement: Let

Tλv(x) :=

{
max{u(x);u(xλ)} if x ∈ [λ, λ+ a]× ω

min{u(x);u(xλ)} if x ∈ [λ− a, λ]× ω

Tλv(x1 ± 2ka, x′) := Tλv(x) ∀x ∈ [λ− a, λ+ a]× ω, ∀k ∈ N.

(2.11)

The transformation Tλ given above is a ’periodic variant’ of the two-point rear-
rangements defined in the Euclidean space or on the Euclidean sphere (see [1, 7]).
Below we summarize some of its properties. The proofs are easy variants of those
given in [1, 7], and therefore omitted.

Lemma 2.2. (1) If v ∈ X, λ ∈ R, then Tλv ∈ X, and∫
Ωa

|∇v|2 dx =
∫

Ωa

|∇Tλv|2 dx. (2.12)

(2) If v ∈ C(Ω), λ ∈ R, then Tλv ∈ C(Ω), and if ψ ∈ C(R), then∫ a

−a

ψ(v(y, x′)) dy =
∫ a

−a

ψ(Tλv(y, x′)) dy ∀x′ ∈ ω. (2.13)

(3) Continuity of λ → Tλv : If v ∈ X and if λk, λ ∈ R, k = 1, 2, . . .,
limk→∞ λk = λ, then Tλkv → Tλv in W 1,2(Ωa).

Note that (2.12) and (2.13) follow from the fact that Tλ rearranges the values of
v and of |∇v| in the two corresponding points x, xλ for a.e. x ∈ [λ, λ+ a]× ω, and
3) follows from the continuity of the Lebesgue integral with respect to translations.

In the symmetry proof for minimizers we will need a rearrangement inequality.
Notice that some variant of it for the two-point rearrangement in RN has been
proved in [6].

Lemma 2.3. Let v ∈ X and λ ∈ [−a, a]. Then∫
Ωa

F (x, v) dx ≤
∫

Ωa

F (x, Tλv) dx if λ ≤ 0, (2.14)∫
Ωa

F (x, v) dx ≤
∫

Ωa

F (x, σλ(Tλv)) dx if λ ≥ 0. (2.15)

Proof. Let λ ∈ [−a, 0]. Then, if x ∈ [λ, λ + a] × ω, we have that |x1| ≤ |2λ − x1|.
In view of (2.1) it is then easy to see that

F (x, v(x)) + F (xλ, v(xλ)) ≤ F (x, Tλv(x)) + F (xλ, Tλv(xλ)) ∀x ∈ [λ, λ+ a]× ω.

Integrating this over [λ, λ + a] × ω gives (2.14) in view of the periodicity of v and
Tλv. The proof of (2.15) is similar and will be omitted. �
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Remark 2.4. 1) Assume that u is a stationary solution of (2.4), and suppose that
for some λ ∈ [−a, 0],

u(x) ≥ u(xλ) ∀x ∈ [λ, λ+ a]× ω. (2.16)

Setting vλ = u− uλ, we obtain from assumptions (2.2) and (2.1) that

−∆vλ ≥ cλ(x)vλ and vλ ≥ 0 in (λ, λ+ a)× ω,

vλ(x) = 0 on {λ, λ+ a} × ω,

∂vλ

∂ν
+ dλ(x)vλ = 0 on ∂Ω,

(2.17)

where

cλ =

{(
f(x, u)− f(x, uλ) +

∑n
i=1 αi(gi(u)− gi(uλ))

)
/vλ if vλ 6= 0

0 if vλ = 0
(2.18)

and

dλ =

{(
h(u)− h(uλ)

)
/vλ if vλ 6= 0

0 if vλ = 0
(2.19)

are bounded functions. Now the Strong Maximum Principle (see Appendix) implies
that either vλ ≡ 0 in (λ, λ+ a)× ω or vλ(x) > 0 in (λ, λ+ a)× ω. The latter also
implies (vλ)x1(λ, x

′) > 0 for all x′ ∈ ω. Thus the assumption (2.16) implies the
following alternative: Either

u(x) = u(xλ) ∀x ∈ [λ, λ+ a]× ω, or (2.20)

u(x) > u(xλ) ∀x ∈ (λ, λ+ a)× ω and ux1(λ, x
′) > 0 ∀x′ ∈ ω. (2.21)

2) Next assume that F is independent of x1, that is F = F (x′, t). Then we have
−∆vλ = cλ(x)vλ in (λ, λ+ a)× ω. Therefore, it is easy to see that the conclusions
of 1) hold for all λ ∈ R. Moreover, if ux1 6≡ 0, if u = uλ0 , and if ux1(x) ≤ 0 in
(λ0, λ0 + a)× ω, for some λ0 ∈ R, then (2.16) holds for every λ ∈ (λ0 − a, λ0). By
(2.20), (2.21) this implies that ux1(x) < 0 in (λ0, λ0 + a)× ω.
3) Assume that

f(0, x′0, t) > f(a, x′0, t) for some x′0 ∈ ω and ∀t ∈ R. (2.22)

Then, if ux1 6≡ 0, and if u = uλ0 for some λ0 ∈ [−a, 0], the elliptic equation for u
shows that either λ0 = 0 or λ0 = −a.

Using the classical Moving Plane Method, we now prove the following symmetry
result for stationary solutions:

Lemma 2.5. Let u be a stationary solution of (2.4), and assume that there exists
a number λ = λ0 ∈ [−a, 0] for which (2.21) holds. Then there exists a number
λ∗ ∈ [−a, a] such that

u(x) = u(xλ∗) and ux1(x) < 0 ∀x ∈ (λ∗, λ∗ + a)× ω. (2.23)

Furthermore, if f satisfies (2.22), then λ∗ = 0.

Proof. First assume that (2.22) holds, and that λ0 ∈ (−a, 0). Setting

M := {λ ∈ (−a, 0) : uλ(x) < u(x) ∀x ∈ (λ, λ+ a)× ω}, (2.24)
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we claim that M is open. To prove this, we will need some preliminary settings.
We choose C > 0 such that

C ≥ |ft(x, t) +
n∑

i=1

αig
′
i(t)| and C ≥ |h′(t)| ∀(x, t) ∈ Ω× R. (2.25)

Given any ε > 0, let

ωε := {x′ ∈ ω : |x′ − y′| > ε ∀y′ ∈ ∂ω}, (2.26)

and let Aε = Aε(x′), Bε = Bε(x′) defined by:

∆′Aε ≡
N∑

i=2

(Aε)xixi
= ∆′Bε = 0 in ω \ ωε,

Aε = Bε = 1 on ∂ω,

Aε = 2, Bε = 1/2 on ∂ωε.

Then Aε ∈ (1, 2), Bε ∈ ((1/2), 1) in ω\ωε, and since ∂ω is smooth, elliptic estimates
show that

− lim
ε→0

∂Aε

∂ν
(x′) = lim

ε→0

∂Bε

∂ν
(x′) = +∞

uniformly for all x′ ∈ ∂ω, (ν: exterior normal to ω \ωε). We fix ε > 0 small enough
such that

−∂Aε

∂ν
≥ C and

∂Bε

∂ν
≥ C on ∂ω, (2.27)

and such that

cos
√
Ct ≥ 1/2 for 0 ≤ t ≤ ε. (2.28)

Now let λ ∈ M . Setting vλ := u − uλ, we have that vλ > 0 in (λ, λ + a) × ω and
then (vλ)x1(λ, x

′) > 0 > (vλ)x1(λ+ a, x′) for all x′ ∈ ω, by Remark 2.4. We claim
that this implies

(vλ)x1(λ, x
′) > 0 > (vλ)x1(λ+ a, x′) ∀x′ ∈ ω. (2.29)

Let Uε := (λ, λ+ ε)×
(
ω \ ωε

)
. If κ > 0 is sufficiently small, we have that

vλ(x) ≥ κAε(x′)(e
√

Cx1 − 1) on ∂Uε \ ∂Ω. (2.30)

Setting w(x) := vλ(x)−κAε(x′)(e
√

Cx1 − 1), and using (2.18), (2.19), (2.25), (2.27)
and (2.30) we find that

−∆w ≥ cλw + κAε(x′)e
√

Cx1

(
C + cλ(1− e−

√
Cx1)

)
≥ cλw in Uε,

w ≥ 0 on ∂Uε \ ∂Ω,
∂w

∂ν
+ dλ(x)w = −κ(e

√
Cx1 − 1)

(
(Aε)ν + dλ

)
≥ 0 on ∂Uε ∩ ∂Ω.

(2.31)

Then we define

V (x) :=
w(x)

Bε(x′) cos
√
C(x1 − λ)

, (x ∈ Uε). (2.32)
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Note that Bε(x′) cos
√
C(x1 − λ) ∈ [(1/4), 1] in Uε, in view of (2.28). Using (2.31)

and (2.32) we obtain

−∆V + 2
√
CVx1 tan

√
C(x1 − λ)− 2

N∑
i=2

Vxi

(Bε)xi

Bε
≥ (cλ − C)V in Uε,

V ≥ 0 on∂Uε \ ∂Ω,
∂V

∂ν
+

(
dλ +

∂Bε

∂ν

)
V ≥ 0 on ∂Uε ∩ ∂Ω.

From (2.18) and (2.25) we have that cλ − C ≤ 0 in Uε, and by (2.19) and (2.27)
we have that dλ + (Bε)ν ≥ 0 on (λ, λ + ε) × ∂ω. The Weak Maximum Principle
(see Appendix) tells us that V ≥ 0 in Uε. This proves the first inequality in (2.29).
Similarly one shows the second inequality in (2.29). Having proved (2.29), we find
by continuity some δ > 0 such that vµ > 0 in (µ, µ + a) × ω ∀µ ∈ (λ − δ, λ + δ).
This shows that M is open.

Let M1 be the connected component of M containing λ0, and let λ∗ := sup{λ :
λ ∈ M1}. By continuity, we have uλ∗(x) ≤ u(x) in (λ∗, λ∗ + a) × ω. Assume
that λ∗ < 0. The Strong Maximum Principle tells us that either uλ∗(x) < u(x)
or uλ∗(x) = u(x) throughout (λ∗, λ∗ + a) × ω. The first of these two possibilities
is excluded due to the maximality of λ∗ and since M1 is open, and the second
possibility is impossible in view of Remark 2.4, part 3. Hence λ∗ = 0. Similarly
we show that inf{λ : λ ∈ M1} = −a. It follows that u(x) > uλ(x), and then
ux1(λ, x

′) > 0 ∀x ∈ (λ, λ+ a)× ω and ∀λ ∈ (−a, 0). This proves (2.23) in the case
under consideration.

Next assume that (2.22) holds and that λ0 = 0, or λ0 = −a, respectively. Then
we can prove similarly as above that uλ(x) < u(x) in (λ, λ+ a)×ω for λ ∈ (−δ, 0),
(respectively λ ∈ (−a,−a+δ)), provided that δ > 0 is small enough. Hence M 6= ∅,
and we may obtain (2.23) as in the previous case.

Assume finally that (2.22) is not satisfied. Then F is independent of x1, that is
F = F (x′, t). Setting now M := {λ ∈ R : uλ(x) < u(x) ∀x ∈ (λ, λ + a)}, we first
show as in the above cases that M is open. Letting M1 the connected component
of M containing λ0, we notice that M1 is bounded, since, if λ ∈M , then λ+a 6∈M ,
by periodicity. As before, this means that u = uλ∗ , where λ∗ = sup{λ : λ ∈ M1}.
Hence we have u(2λ∗ − 2λ + x1, x

′) = u(2λ − x1, x
′) < u(x) ∀x ∈ (λ, λ + a) × ω

and ∀λ ∈ (λ0, λ
∗), which means that ux1(x) ≤ 0 in [λ∗, λ∗ + a]× ω. As we already

know, the latter also implies ux1(x) < 0 in (λ∗, λ∗ + a) × ω. This completes the
proof. �

Lemma 2.6. Let u be a local minimizer of (2.4), and let ux1 6≡ 0. Furthermore,
assume that there exists a number λ = λ0 ∈ [−a, 0] such that (2.16) holds. Then
(2.23) holds with λ∗ = λ0 or with λ∗ = λ0 +a. Moreover, if f satisfies (2.22), then
λ∗ = λ0 = 0.

Proof. In view of Remark 2.4, either uλ0 = u or (2.21) holds with λ = λ0. In the
second case the assertions follow by Lemma 2.5. Thus it remains to consider the
case that u = uλ0 .

Since J(Tλu) ≤ J(u) for λ ∈ (−a, 0), by Lemma 2.3, and since Tλ → u in
W 1,2(Ωa), as λ → λ0, this implies that Tλu is a local minimizer for −δ < λ < 0,
provided that δ > 0 is small enough. Hence Tλu satisfies equation (2.5) for any
of these λ, with the αi’s replaced by (possibly different) Lagrangean multipliers
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α′i, (i = 1, . . . , n). Now let λ ∈ (−δ, 0), and assume that u 6≡ Tλu. Then U :=
{x ∈ (λ, λ + a) × ω : u(x) < u(xλ)} is open and nonempty. Assume then that
f(x, uλ(x)) 6≡ f(xλ, uλ(x)) in U . Since f(x, t) ≥ f(xλ, t) on (λ, λ+ a)× ω ×R, the
set U1 := {x ∈ U : f(x, uλ(x)) > f(xλ, uλ(x))} is open and nonempty. Hence,

F (x, u(x)) + F (xλ, u(xλ)) < F (x, uλ(x)) + F (xλ, uλ(xλ))

= F (x, Tλu(x)) + F (xλ, Tλu(xλ)) ∀x ∈ U1,

by (2.1). Integrating over (λ, λ+ a)× ω shows that∫
Ωa

F (x, u) dx <
∫

Ωa

F (x, Tλu) dx. (2.33)

But this implies that J(Tλu) < J(u), contradicting the minimality of u. Hence

f(x, uλ(x)) = f(xλ, uλ(x)) ∀x ∈ U.
Since uλ = Tλu in U , this implies

n∑
i=1

(α′i − αi)gi(Tλu(x)) = 0 ∀x ∈ U.

Since u = Tλu in
(
(λ, λ+ a)× ω

)
\ U , we furthermore obtain from this that

n∑
i=1

(α′i − αi)gi(Tλu(x)) = 0 ∀x ∈ (λ, λ+ a)× ω.

In view of the non-degeneracy condition (2.3), this implies that α′i = αi, (i =
1, . . . , n). Setting w := uλ − Tλu, we have then that −∆w = c(x)w in Ω, where
c is a bounded function. Since w ≡ 0 on U , the Principle of Unique Continuation
tells us that we must have uλ = Tλu throughout Ω. In other words, we have shown
that, if λ ∈ (−δ, 0), then u = Tλu or uλ = Tλu.

Now assume that there exists a strictly increasing sequence λk → λ0 such that
u = Tλku ∀k ∈ N. Then we have that u(2λ0 − 2λk + x1, x

′) = u(xλk) ≤ u(x)
∀x ∈ [λk, λk + a]× ω and ∀k ∈ N. Hence, ux1(x) ≤ 0 ∀x ∈ [λ0, λ0 + a]× ω.
If we furthermore assume, that F is independent of x1, then Remark 2.4 tells us
that we must have u(x) > uλ(x) in (λ, λ + a) × ω for λ ∈ (λ0 − a, λ0), in view of
ux1 6≡ 0. This also means ux1(x) < 0 in (λ0, λ0 + a)× ω.

If, on the other hand, f satisfies (2.22), then we obtain from the elliptic equation
for u and from the assumption ux1 6≡ 0 that we must have λ0 = 0, which also
means ux1(x) < 0 in (0, a)× ω. Next assume that there exists a strictly increasing
sequence λk → λ0 such that uλk = Tλku ∀k ∈ N. Arguing analogously as above we
then find that ux1(x) > 0 in (λ0, λ0 + a)× ω, and λ0 = 0 if f satisfies (2.22). �

Theorem 2.7. Let u a global minimizer of (2.4), and let ux1 6≡ 0. Then there
exists a number λ∗ ∈ [−a, a] such that (2.23) holds. Moreover, if f satisfies (2.22)
then λ∗ = 0.

Proof. If v ∈ X, then Lemma 2.3 shows that J(v) ≥ J(Tλv) ∀λ ∈ [−a, 0]. Pro-
ceeding as in the previous proof we find then that u = Tλu or uλ = Tλu, and
Tλu is a global minimizer of (2.4) for any of these λ. The periodicity of u shows
that, if λ ∈ R, then u = Tλu if and only if uλ+a = Tλ+au. By the continuity of
the mapping λ → Tλu in W 1,2(Ωa), we then find a value λ0 ∈ [−a, 0] such that
u = uλ0 , and the assertions follow as in the previous proof. �
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3. Monotonicity in Neumann problems

Let Ω+
a = (0, a)× ω and

K+ =
{
v ∈W 1,2(Ω+

a ) :
∫

Ω+
a

Gi(v) dx = 0, i = 1, . . . , n
}
.

then we study the problem:

Minimize J+(v) ≡
∫

Ω+
a

(1
2
|∇v|2 − F (x, v)

)
dx+

∫
(0,a)×∂ω

H(v) dS

over all v ∈ K+ .

(3.1)

Defining global and local minimizers of (3.1) analogously as those of (2.4), we
obtain that any local minimizer u of (3.1) satisfies

u ∈W 2,N (Ω+
a ) ∩ C(Ω+

a ), (3.2)

−∆u = f(x, u) +
n∑

i=1

αigi(u) in Ω+
a , (3.3)

∂u/∂ν + h(u) = 0 on (0, a)× ∂ω, (3.4)

ux1(0, x
′) = ux1(a, x

′) = 0 ∀x′ ∈ ω, (3.5)

with αi ∈ R, i = 1, . . . , n, as Lagrange multipliers. More generally, we call a
function u ∈W 1,2(Ω+

a ) satisfying (3.2)–(3.5) a stationary solution of (3.1).
Extending a function v ∈ K+ by reflection and periodic continuation to Ω,

v(x1 ± 2ka, x′) = v(−x1 ± 2ka, x′) = v(x1, x
′) ∀x ∈ Ω+

a , (3.6)

we see that v ∈ K. Then it is easy to see that (3.1) can be equivalently formulated
as:

minimize J(v) over all v in Ke, (3.7)
where Ke := {v ∈ K : v(−x1, x

′) = v(x) ∀x ∈ Ω}. Therefore, any local minimizer
u of (3.7) satisfies (2.5)–(2.10), where now the functions ϕ in (2.7)–(2.9) are in Ke.
Note that, using Lemma 2.1, we recover from the above equivalence the well-known
result that in case of the unconstrained problem, (n = 0), any local minimizer u of
(3.1) satisfies ux1(x) ≡ 0 in Ω+

a (see [8]).
On the other hand, under the presence of constraints, n ≥ 1, it seems difficult

to use (2.7), (2.8) for symmetric proofs of u, since ux1 6∈ Ke! Nevertheless, there
holds the following

Theorem 3.1. Let u be a global minimizer for (3.1) and ux1(x) 6≡ 0 in Ω+
a . Then

either ux1(x) > 0 or ux1(x) < 0 for all x ∈ (0, a) × ω. Furthermore, if f satisfies
(2.22) then ux1(x) < 0 in Ω+

a .

Proof. Since Ke ⊂ K, min{J(v) : v ∈ K} ≤ min{J(v) : v ∈ Ke}. On the
other hand, if ũ is a minimizer of (2.4), then ũλ∗ = ũ for some λ∗ ∈ [−a, 0].
Hence ũ(λ∗/2) ∈ Ke, J(ũ(λ∗/2)) ≤ J(u), which means that min{J(v) : v ∈ K} =
min{J(v) : v ∈ Ke}. Hence any global minimizer of (3.1) is a global minimizer of
(2.4). In view of Theorem 2.7, this proves the assertion. �

Remark 3.2. An alternative proof of Theorem 3.1 can be performed by using
the results of [2] mentioned in the introduction: Let u∗ denote the non-increasing
rearrangement of u in the variable x1. By the very properties of the rearrange-
ment we have then u∗ ∈ K+,

∫
Ω+

a
|∇u∗|2 dx ≤

∫
Ω+

a
|∇u|2 dx, and

∫
Ω+

a
F (x, u∗) dx ≥
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Ω+

a
F (x, u) dx. (The latter inequality is well-known, too. It also follows easily

from an analogous inequality for Steiner symmetrization given in [6].) Hence u∗ is
a minimizer, too. But this means that we must have equality in both inequalities
above. By a result, given in [2], it follows that, if x′ ∈ ω, then either ux1(x1, x

′) ≥ 0
for all x1 ∈ (0, a), or ux1(x1, x

′) ≤ 0 for all x1 ∈ (0, a). It is easy to see that this
implies u∗ = T−a/2u. We may now argue analogously as in the proof of Theorem
2.7: If F = F (x′, t), then this implies that u = T−a/2u or u−a/2 = T−a/2u, which
means that either u = u∗ or −u = (−u)∗ in this case. If f satisfies (2.22) then∫
F (x, T−a/2u) ≥

∫
F (x, u), with equality sign if and only if u = T−a/2u. This

implies u = u∗.

Theorem 3.3. Let F be independent of x1, that is F = F (x′, t). Let u be a local
minimizer for (3.1), where K+ has only one constraint, (n = 1), and let ux1 6≡ 0
in Ω+

a . Then either ux1(x) > 0 or ux1(x) < 0 for all x ∈ (0, a)× ω.

Proof. We first claim that there exists a δ ∈ (0, a) such that the following alternative
takes place:

Either
∫

Ω+
a

G1(uy) dx > 0 ∀y ∈ (0, δ],

or
∫

Ω+
a

G1(uy) dx < 0 ∀y ∈ (0, δ].
(3.8)

Suppose (3.8) is not true. Then there exist strictly decreasing sequences y′k → 0,
y′′k → 0, such that ∫

Ω+
a

G1(uy′k) dx ≥ 0 ≥
∫

Ω+
a

G1(uy′′k ) dx.

By continuity and since u is even in x1, we find then another strictly decreasing
sequence yk → 0, such that∫

Ω+
a

G1(uyk) dx = 0 =
∫

Ω+
a

G1(u−yk) dx.

By Lemma 2.2, and since u ∈ Ke, we have that

2J+(u) = J(u) = J(u−yk) = J+(u−yk) + J+(uyk).

Hence both uyk and u−yk are local minimizers, provided that k is large enough -
say k ≥ k0. This means that ux1(±yk, x

′) = 0 ∀x′ ∈ ω, for these k. We claim that
this actually implies

ux1(x) = 0 in (0, yk1)× ω, (3.9)

for some (large) number k1 ∈ N.
First note that ux1 ∈W 2,N (Ω+

a ) and

−∆ux1 =
(
fu(x′, u) + α1g

′
1(u)

)
ux1 in Ω+

a . (3.10)

Let C > 0, ε > 0 and Bε be chosen in such a way that (2.25)–(2.27) are satisfied.
Choose then k1 ∈ N such that cos

√
Cx1 ≥ 1

2 for all x1 ∈ [0, yk1 ]. Setting

V (x) :=
ux1(x)

Bε(x′) cos
√
Cx1

, (x ∈ (0, yk1)× ω),
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we find that

−∆V + 2
√
CVx1 tan

√
Cx1 − 2

N∑
i=2

Vxi

(Bε)xi

hε

=
(
fu(x′, u) + α1g

′
1(u)− C

)
V in (0, yk1)× ω,

V (0, x′) = V (yk1 , x
′) = 0 ∀x′ ∈ ω,

∂V

∂ν
+

(
h′(u) +

∂Bε

∂ν

)
V = 0 on (0, yk1)× ∂ω.

From (2.25) we obtain f ′(u)+α1g
′
1(u)−C ≤ 0 in (0, yk1)×ω, and h′(u)+(Bε)ν ≥ 0

on (0, yk1) × ∂ω. The Weak Maximum Principle then gives (3.9). In view of
(3.10), the Principle of Unique Continuation then shows that ux1 ≡ 0 in Ω+

a , a
contradiction. Having proved (3.8), we will assume from now on that∫

Ω+
a

G1(uy) dx > 0 ∀y ∈ (0, δ].

(The proof for the other case,
∫
Ω+

a
G1(uy) dx < 0 ∀y ∈ (0, δ], is similar and will be

omitted.) We have
∫
Ω+

a
G1(u−y) dx = −

∫
Ω+

a
G1(uy) dx < 0, and since Tλu → u in

W 1,2(Ω), as λ→ 0, we find numbers Λ(y) > 0 such that∫
Ω+

a

G1(σy(Tλu)) dx > 0 >
∫

Ω+
a

G1(σ−y(Tλu)) dx

for all λ ∈ [0,Λ(y)], and for all y ∈ (0, δ]. But then we find decreasing sequences
λk → 0, yk → 0, such that λk 6= 0 and∫

Ω+
a

G1(σyk
(Tλku) dx = 0 ∀k ∈ N. (3.11)

Hence, for large enough k - say k ≥ k2 - σyk
(Tλku) is a local minimizer, too. Now we

may argue as in the proof of Lemma 2.6: First one shows that both σyk
(Tλku) and

σyk
u(≡ uyk) satisfy the same elliptic equation as u. Using the Principle of Unique

Continuation, this means that for any k ≥ k2, either u = Tλku or uλk = Tλku.
Since u = u0, this finally implies that either ux1(x) > 0 or ux1(x) < 0 for all
x ∈ (0, a)× ω. �

Remark 3.4. 1) Using the equivalence of problem (3.1) with (3.7), Lemma 2.5
immediately yields the following result: Let u be a stationary solution of (3.1), and
let u be extended to Ω by (3.6). Furthermore, assume that there exists a number
λ = λ1 ∈ (−a, 0) such that (2.21) is satisfied. Then the conclusions of Theorem 3.1
hold.
2) Lachand-Robert [17, 18] studied (3.1) under the Dirichlet boundary conditions
u = 0 on (0, a) × ∂ω for one constraint G1(v) = |v|p+1, and for F (v) ≡ 0. He
showed among other things that local minimizers u are monotone in x1. He also
proved that ux1 ≡ 0 if Ω+

a has small width, that is if a is small, and that ux1 6≡ 0
if a is large. However, the monotonicity proof in [18] essentially depends on the
special form of the nonlinearity G1.

Also results analogous to [17, 18] have been obtained in [2] for certain critical
points of functionals J+ satisfying the conditions of the Mountain Pass Theorem.
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Kawohl [16] proved that the second eigenfunction of the Laplacian subject to Neu-
mann boundary conditions in Ω+

a is monotone in x1. This corresponds to problem
(3.1) with F ≡ 0, H ≡ 0, n = 2, G1(t) = t, and G2(t) = t2 − 1.
3) The author was not able to generalize Theorem 3.3 for potentials F that depend
on x1, or to cases with more than one constraint.
4) The problems (2.4) and (3.1) may also be formulated in a more general setting:
Let the gradient term |∇v|2 in the functionals J and J+ be replaced by

N∑
i,j=2

aij(x′)vxi
vxj

+ a11(x′)v2
x1
,

where a11, aij ≡ aji ∈ C1(ω), (i, j = 2, . . . , N),
∑N

i,j=2 aij(x′)ξiξj + a11ξ
2
1 ≥ c0|ξ|2,

(c0 > 0), and let the nonlinearities Gi,H, (i = 1, . . . , n), depend additionally on
x′, and satisfying suitable smoothness and growth conditions. The changes in the
formulation of the problems (2.4) and (3.1) are then obvious, and the results of
Section 2 and 3 remain valid. We leave the details to the reader.
5) We finally mention that elliptic problems in Ω+

a have been extensively inves-
tigated under Dirichlet conditions on {0, a} × ω, where the monotonicity of the
solutions often follows from moving plane and sliding arguments (see [3, 4] and the
references cited therein). A typical situation is the following one: Let g ∈ C(Ω+

a )
and strictly decreasing in the variable x1, and let u ∈ W 2,N (Ω+

a ) ∩ C(Ω+
a ) satisfy

−∆u = f(u) and g(0, x′) > u(x) > g(a, x′) in Ω+
a , and u = g on ∂Ω+

a , where f is
smooth. Then ux1 < 0 in Ω+

a . The same result holds if one replaces the Dirichlet
conditions on (0, a)× ∂ω by Neumann conditions.

4. Codimension one symmetry in an annulus

In this section, let Ω1 be the annulus BR2 \ BR1 in RN , (R2 > R1 > 0). Let
F,Gi,H be functions satisfying (2.2), (2.3), F = F (t), and

K1 =
{
v ∈W 1,2(Ω1) :

∫
Ω1

Gi(v) dx = 0, i = 1, . . . , n
}
.

We consider the variational problem:

Minimize J1(v) ≡
∫

Ω1

(1
2
|∇v|2 − F (v)

)
dx+

∫
∂Ω1

H(v) dS

over all v ∈ K1.

(4.1)

Defining global and local minimizers of (4.1) analogously as those for (2.4), we have
that any local minimizer of (4.1) satisfies

−∆u = f(u) +
n∑

i=1

αigi(u) in Ω1, (4.2)

∂u/∂ν + h(u) = 0 on ∂Ω1, (ν : is the exterior normal),∫
Ω1

(
∇u∇ϕ− f(u)ϕ

)
dx+

∫
∂Ω1

h(u)ϕdS = 0, (4.3)∫
Ω1

(
|∇ϕ|2 − (f ′(u) +

n∑
i=1

αig
′
i(u))ϕ

2
)
dx+

∫
∂Ω1

h′(u)ϕ2 dS ≥ 0 (4.4)

for every ϕ ∈ W 1,2(Ω1) satisfying
∫
Ω1
gi(u)ϕdx = 0, and u ∈ W 2,2(Ω1) ∩ C1(Ω1).
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with αi ∈ R, i = 1, . . . , n, as Lagrange multipliers. As before, we say that u is a
stationary solution of (P1) if u satisfies the conditions (4.2).

We first recall the well-known result that in case of the unconstrained problem,
n = 0, local minimizers u of (4.1) are radial, that is u = u(|x|). This statement has
been shown in [21] for the case of Dirichlet boundary conditions. But the argument
used in [21] is applicable in our case, too. For the convenience of the reader we give
a proof: We proceed similarly as in the proof of Lemma 2.1. Setting

I(ϕ) :=
( ∫

Ω1

(
|∇ϕ|2 − f ′(u)ϕ2

)
dx+

∫
∂Ω1

h′(u)ϕ2 dS

)( ∫
Ω1

ϕ2 dx
)−1

,

we find that I(ϕ) ≥ 0 for all ϕ ∈ W 1,2(Ω1) with ϕ 6≡ 0, by (4.4). Now fix any
coordinate system x = (x1, x2, x

′′), (x ∈ RN , x′′ ∈ RN−2), and let v := x1ux2 −
x2ux1 the angular derivative of u in the (x1, x2)-plane. We have that −∆v = f ′(u)v
in Ω1, and (∂v/∂ν) + h′(u)v = 0 on ∂Ω1. Assuming v 6≡ 0 we then find I(v) = 0.
As in the proof of Lemma 2.1, this means that v can have one sign only, which is
impossible since

∫
Ω1
v dx = 0. Hence u is radial.

In this connection we also mention the well-known result of Casten and Holland
[8] that in case of Neumann boundary conditions, that is H(v) ≡ 0, any local min-
imizer of the unconstrained problem is constant. This result has been generalized
by O. Lopes [19] to a related elliptic system.

Our aim now is to show that global minimizers - and, under some additional
assumption also local minimizers and stationary solutions - of (4.1) have some
partial symmetry (see the Definition below).

Definition 4.1. We say that v ∈W 1,2(Ω1) has codimension one symmetry if there
is a unit vector e ∈ RN such that v depends on r := |x| and θ := arccos

(
(x, e)/|x|

)
only, ((·, ·): Euclidean scalar product), that is, v(x) = ṽ(r, θ).

For the symmetry proofs below we will use an ’angular variant’ of the reflection
method of Section 2. If e ∈ RN , |e| = 1, then let H ≡ He the (open) half-space
{x ∈ RN : (x, e) > 0}. We write σH for reflection in ∂H, that is σHx := x−2(x, e)e
∀x ∈ RN .

We first establish a simple geometrical criterion.

Lemma 4.2. Let u ∈W 1,2(Ω1)∩C(Ω1) and assume that for any half-space H with
0 ∈ H we have either u(x) ≥ u(σHx) ∀x ∈ H ∩Ω1 or u(x) ≤ u(σHx) ∀x ∈ H ∩Ω1.
Then u has codimension one symmetry. Moreover, with the notations of Definition
4.1 we have (∂ũ/∂θ)(r, θ) ≤ 0 ∀(r, θ) ∈ (R1, R2)× [0, π].

Proof. Let l1, l2 be mutually orthogonal unit vectors. We fix a coordinate system
x = (x1, x2, x

′′), (x′′ ∈ RN−2), in which l1 = (1, 0, . . . , 0) and l2 = (0, 1, 0, . . . , 0).
Introducing polar coordinates in the (x1, x2)- plane, x1 = z cosϕ, x2 = z sinϕ,
(ϕ ∈ [−π, π], z ≥ 0), the function û(z, ϕ, x′′) := u(x) is (2π)- periodic in ϕ, on the
set {(z, ϕ, x′′) : R2

1 ≤ z2 + |x′′|2 ≤ R2
2, z ≥ 0, ϕ ∈ R}. Proceeding as in the proof

of Lemma 2.6 we find some value λ∗ ∈ [−π, π] such that û is either non-increasing
or nondecreasing in ϕ for ϕ ∈ (λ∗, λ∗+π), and writing e1 = (cosλ∗, sinλ∗, 0, . . . , 0)
and H1 = {x : (x, e1) > 0}, we also have that u(x) = u(σH1x) ∀x ∈ Ω1. Let S
denote the subspace of RN orthogonal to span{e1}. Fixing two mutually orthogonal
unit vectors l3, l4 in S we find another unit vector e2 ∈ span{l3, l4} such that
u(x) = u(σH2x) ∀x ∈ Ω1 where H2 = {x : (x, e2) > 0}. Letting S′ the orthogonal
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complement of span{e1, e2}, we then find a further unit vector e3 ∈ S′, such that
u(x) = u(σH3x) in Ω1, where H3 := {x : (x, e3)}. Continuing in this manner we
find N −1 mutually orthogonal unit vectors e1, . . . , eN−1 such that u(x) = u(σHix)
in Ω1, where Hi = {x : (x, ei) > 0}, (i = 1, . . . , N − 1). Now let e a unit vector
orthogonal to ei, (i = 1, . . . , N −1), and let H any halfspace with e ∈ ∂H. Then H
may be written as {x : (x, l) > 0}, where l is a unit vector in span{e1, . . . , eN−1}.
We claim that

u(x) = u(σHx) ∀x ∈ Ω1. (4.5)

Indeed, since −tl = σH(tl) = σHN−1 · · ·σH1(tl) for all t ∈ R, we have

u(tl) = u(σH(tl)) ∀t ∈ R.

In view of our assumption, this implies (4.5). With the notation of Definition 4.1
this implies that u = ũ(r, θ). After replacing e by (−e) if necessary - the latter also
implies (∂ũ/∂θ)(r, θ) ≤ 0 ∀(r, θ) ∈ (R1, R2) × [0, π], due to our considerations in
the (x1, x2)-plane. �

Remark 4.3. Assume that u is a stationary solution of (4.1), and suppose that
there is a half-space H with 0 ∈ ∂H such that

u(x) ≥ u(σHx) ∀x ∈ H ∩ Ω1. (4.6)

Using (4.2), we obtain, analogously as in Remark 2.4, that the following alternative
takes place: Either

u(x) = u(σHx) ∀x ∈ H ∩ Ω1, or (4.7)

u(x) > u(σHx) ∀x ∈ H ∩ Ω1 and (4.8)
∂u

∂ν
< 0 on ∂H ∩ Ω1, (ν is the exterior normal to H).

Lemma 4.4. Let u a stationary solution of (4.1), and assume that there is a half-
space H with 0 ∈ ∂H such that (4.8) holds. Then u has codimension one symmetry.
Moreover, if ũ is as in Definition 4.1, then

either
∂ũ

∂θ
(r, θ) ≡ 0,

or
∂ũ

∂θ
(r, θ) < 0 in [R1, R2]× (0, π).

(4.9)

Proof. Fix N mutually orthogonal unit vectors l1, . . . , lN such that H = Hl1 .
Choose a coordinate system x = (x1, x2, x

′′), (x′′ ∈ RN−2), so that l1 = (1, 0, . . . , 0)
and l2 = (0, 1, 0, . . . , 0). Now we proceed similarly as in the proof of Lemma 2.5:
For λ ∈ R, let Hλ denote the half-space {x = (z cosϕ, z sinϕ, x′′) : ϕ ∈ (λ, λ+π)} =
{x : (x, eλ) > 0}, where eλ := (cosλ, sinλ, 0, . . . , 0), and let uλ the reflection of u in
Hλ, that is uλ(x) := u(σHλ

x) ∀x ∈ Ω1. Defining M := {λ ∈ R : uλ(x) < u(x) ∀x ∈
Hλ ∩ Ω1}, we first claim that M is open.

Let C be defined by (2.25). Given any ε > 0, let Ωε
1 := BR2−ε \ BR1+ε, and let

Aε, Bε the solutions of the following boundary value problems:

∆Aε = ∆Bε = 0 in Ω1 \ Ωε
1,

Aε = Bε = 1 on ∂BR2 ∪ ∂BR1 ,

Aε = 2, Bε = 1/2 on ∂BR2−ε ∪ ∂BR1+ε.
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Then 1 ≤ Aε ≤ 2, 1/2 ≤ Bε ≤ 1, Aε = Aε(|x|), Bε = Bε(|x|), and

− lim
ε→0

Aε

∂ν
(x) = lim

ε→0

∂Bε

∂ν
(x) = +∞ on ∂Ω1.

We fix ε > 0 small enough such that

−∂Aε

∂ν
(x) ≥ C,

∂Bε

∂ν
(x) ≥ C on ∂Ω1, (4.10)

and we choose ε′ > 0 such that

ε′ ≤
√
C

3 sup{|∇Aε(x)| : x ∈ Ω1 \ Ωε
1}

and ε′ ≤ π

4
√
C
. (4.11)

Now let λ ∈ M . Setting vλ := u − uλ, we have that vλ > 0 in Hλ ∩ Ω1, and then
(∇vλ, eλ) > 0 on ∂Hλ ∩ Ω1, by Remark 4.3. We claim that this actually implies

(∇vλ, eλ) > 0 on ∂Hλ ∩ Ω1. (4.12)

Let Uε := {x ∈ Ω1 \ Ωε
1 : 0 < (x, eλ) < ε′}. If then κ > 0 is sufficiently small, we

have that
vλ(x) ≥ κAε(x)

(
e
√

2C(x,eλ) − 1
)

on ∂Uε \ ∂Ω1. (4.13)

Setting w(x) := vλ(x) − κAε(x)(e
√

2C(x,eλ) − 1), and using (2.17)-(2.19), (2.25),
(4.10), and (4.13), we find that

−∆w ≥ cλw + κAεe
√

2C(x,eλ)
(
2
√

2C
(∇Aε, eλ)

Aε
+ 2C + cλ(1− e−

√
2C(x,eλ))

)
≥ cλw in Uε

w ≥ 0 on ∂Uε \ ∂Ω,
∂w

∂ν
+ dλ(x)w = −κ(e

√
2Cx1 − 1)

(
(Aε)ν + dλ

)
≥ 0 on ∂Uε ∩ ∂Ω.

(4.14)
We then define

V (x) :=
w(x)

Bε(x) cos
√
C(x, eλ)

, (x ∈ Uε). (4.15)

Note that
Bε(x) cos

√
C(x, eλ) ∈ [(1/4), 1] in Uε,

in view of (4.11). Using (4.14) and (4.15) we obtain

−∆V + 2
√

2C(∇V, eλ) tan
√

2C(x, eλ)− 2
(∇V,∇Bε)

Bε

≥ (cλ − C)V in Uε,

V ≥ 0 on ∂Uε \ ∂Ω1,

∂V

∂ν
+

(
dλ +

∂Bε

∂ν

)
V ≥ 0 on ∂Uε ∩ ∂Ω.

As in the proof of Lemma 2.5, this implies V ≥ 0 in Uε, which shows (4.12). Hence
by continuity, we find some δ > 0 such that

vµ(x) > 0 in Hµ ∩ Ω1 ∀µ ∈ (λ− δ, λ+ δ). (4.16)

This implies that M is open.
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Recalling that 0 ∈M , let M1 the connected component of M containing 0. Since
then ±π 6∈ M1, we have that u = uλ∗ , where λ∗ := supM1

λ. Hence uν(x) > 0 on
∂Hλ ∩ Ω1 ∀λ ∈ (λ∗ − π, λ∗). With the notations of the previous proof this implies

û(z, ϕ, x′′) = û(z, 2λ∗ − ϕ, x′′),

∂û

∂ϕ
(z, ϕ, x′′) < 0 for ϕ ∈ [λ∗, λ∗ + π], R2

1 ≤ z2 + |x′′|2 ≤ R2
1, z ≥ 0.

(4.17)

We may repeat the above considerations in the (l1, li)-plane, (i = 3, . . . , N), to
obtain that for every half-space H with 0 ∈ ∂H we have either u(x) ≥ u(σHx) for
all x ∈ H ∩ Ω1 or u(x) ≤ u(σHx) for all x ∈ H ∩ Ω1. By Lemma 4.2 this implies
that u has codimension one symmetry. Finally, the inequality in (4.9) follows from
(4.17). �

The following statement is an analogue of Lemma 2.6.

Lemma 4.5. Let u a local minimizer of (4.1). Suppose that u is not radial, and
that there exists a half-space H ⊂ RN , with 0 ∈ ∂H, such that (4.6) holds. Then
the conclusions of Lemma 4.4 hold.

Proof. We use the notation of the previous proof. We also define two-point re-
arrangements Tλu with respect to the half-space Hλ = {x : (x, eλ) > 0)}, (λ ∈
[−π, π]), by

Tλu(x) :=

{
max{u(x);u(σHλ

x)} if x ∈ Hλ ∩ Ω1,

min{u(x);u(σHλ
x)} if x ∈ Ω1 \Hλ.

(4.18)

The properties of Lemma 2.2 hold for this type of rearrangement, too. Hence
we may argue analogously as in the proof of Theorem 3.1 to obtain that either
u = Tλu ∀λ ∈ [λ0, λ0 + π] or uλ = Tλu ∀λ ∈ [λ0, λ0 + π]. Since we may repeat
these considerations in any (l1, li)- plane, (i = 3, . . . , N), we then find as in the
previous proof, that u has codimension one symmetry. Finally the inequality in
(4.9) follows easily from the fact that u is non-radial and from Remark 4.3. �

Theorem 4.6. Let u be a global minimizer of (4.1), and assume that u is not
radial. Then the conclusions of Lemma 4.4 hold.

Proof. For any half-space H with 0 ∈ H, let σHu and THu denote reflection and
two-point rearrangement with respect to H, respectively, that is σHu(x) := u(σHx)
∀x ∈ Ω1, and

THu(x) :=

{
max{u(x);u(σHx)} if x ∈ H ∩ Ω1,

min{u(x);u(σHx)} if x ∈ Ω1 \H .
(4.19)

Arguing as in proof of Theorem 2.7 we find that either u = THu or σHu = THu.
Hence u has codimension one symmetry, by Lemma 4.2. The inequality in (4.9)
then follows as in the previous proof. �

Remark 4.7. 1) Homogeneous variational problems with one constraint in do-
mains with rotational symmetry under Neumann boundary conditions, that is,
F (v) = −(1/2)v2, n = 1, G1(v) = |v|p+1 and H ≡ 0, have been extensively studied
by Esteban and other authors (see [9, 10, 11, 12]). It turned out that the global
minimizers are not radially symmetric, but have the symmetry property of Lemma
4.4.
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2) O. Lopes [19] studied problem (4.1) for one constraint under Neumann con-
ditions. He also investigated a variational problem that is related to an elliptic
system,

E(v1, . . . , vK) :=
∫

Ω1

(
(1/2)

K∑
i=1

|∇vi|2 − F (|x|, v1, . . . , vK)
)
dx→ Inf !,

subject to

vi ∈W 1,2(Ω1), (i = 1, . . . ,K), and
∫

Ω1

G(|x|, v1, . . . , vK) dx = 1,

where the functions F and G satisfy appropriate smoothness and growth conditions.
He proved both in the scalar and in the vector case, that local minimizers are not
radial. Furthermore, he showed in the system case that any component of the
(vector-valued) global minimizer has codimension one symmetry (he did not prove
the inequality (4.9)). This result is surprising, since no cooperativity condition is
imposed on F .

We mention that the symmetry proofs in [19, 20] are based on a reflection device
in which the Principle of Unique Continuation plays a crucial role, too. However,
the transformations used in that method are different from ours: in particular,
they are not rearrangements. This fact restricts the applicability of the method to
problems with one constraint.
3) Lemmata 4.2, 4.4 and Theorem 4.6 remain valid if the nonlinearities F,Gi,H,
(i = 1, . . . , n), depend also on |x|, provided that they satisfy suitable smoothness
and growth conditions and/or if Ω1 is a ball BR, (R > 0).

5. Dirichlet boundary conditions

In this section we reconsider the problems (2.4), (3.1) and (4.1) when the solu-
tions u satisfy Dirichlet boundary conditions on ∂Ω, respectively on ∂Ω1.
1) Letting

X :=
{
v ∈W 1,2(Ωa) ∩W 1,2

loc(Ω) : v is (2a)-periodic in x1

and v = g on R× ∂ω
}
,

where g ∈W 1,2(Ωa)∩C(Ωa), g = g(x′), and omitting the boundary term in J and
J+, the results of Section 2 and 3 remain valid, except the fact that the derivative
ux1 is now positive only on (λ∗ − a, λ∗)× ω.

The proofs require only some minor modifications which we summarize below.
First observe that, if u satisfies (2.16), then we again obtain the alternative (2.20),
(2.21), except that the first condition in (2.21) is satisfied on the set (λ, λ+ a)× ω
only. Then, defining M by (2.24) as in the proof of Lemma 2.5, the proof of its
openness is modified as follows: Let Wε := {x ∈ (λ+ ε, λ+ a− ε)× ω : |x− y| >
ε ∀y ∈ ∂Ω}, and let λ ∈ M . Since vλ = u − uλ > 0 in (λ, λ + a) × ω, we find by
continuity some δ(= δ(ε)) > 0 such that vµ > 0 in Wε for any µ ∈ (λ − δ, λ + δ).
Then

−∆vµ ≥ cµvµ in
(
(µ, µ+ a)× ω

)
\Wε,

vµ ≥ 0 on ∂
(
(µ, µ+ a)× ω \W ε

)
,

(5.1)

where the coefficients cµ and dµ are defined by (2.18),(2.19) and satisfy the (uni-
form!) inequalities (2.25). Now the Maximum Principle in Small Domains (see
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Appendix) tells us that if ε is small enough then the solution vµ of (5.1) is nonneg-
ative ∀µ ∈ (λ− δ, λ+ δ). Applying the Strong Maximum Principle then gives that
vµ > 0 in (µ, µ+ a)× ω. This proves that M is open.
2) Replacing W 1,2(Ω1) by W 1,2

0 (Ω1) and omitting the boundary term in J1 in the
definition of problem (4.1), the results of Section 4 remain valid, except that the
angular derivative (∂ũ/∂θ)(r, θ) is now positive only on (R1, R2)× (0, π).
Observe first that if u satisfies (4.6) then we obtain the alternative (4.7),(4.8),
except that the first condition in (4.8) is satisfied on the set H ∩ Ω1 only. Then,
defining the set M as in the proof of Lemma 4.4, the proof of its openness can
be accomplished by using the Maximum Principle in Small Domains similarly as
above. We leave the details to the reader.

6. Appendix

In this Appendix let Ω be a domain in RN , and let aij ∈ C1(Ω), d ∈ C(Ω),
bi, c ∈ L∞(Ω), with aij = aji, aij(x)ξiξj ≥ c0|ξ|2 for all x ∈ Ω, for all ξ ∈ RN ,
c0 > 0, (i, j = 1, . . . , N).

Weak Maximum principle. (see [14]) Let ∂Ω = Γ0 ∪ Γ1, where Γ0 ∩ Γ1 = ∅, Γ1

open and smooth, c ≥ 0, d ≥ 0. Then, if u ∈W 2,N (Ω) ∩ C(Ω) satisfies

−aijuxixj + biuxi + cu ≥ 0 in Ω, (6.1)

u ≥ 0 on Γ0,
∂u

∂ν
+ du ≥ 0 on Γ1, (6.2)

it follows that u ≥ 0 in Ω.

Strong Maximum Principle. (see [14]) Let ∂Ω smooth in a neighborhood of
x0 ∈ ∂Ω, and let u ∈ W 2,N (Ω) ∩ C1(Ω ∪ {x0}) satisfy (6.1), u ≥ 0 in Ω, and
u(x0) = 0. Then

lim sup
t→+0

1
t

(
u(x0 − tν)− u(x0)

)
≥ 0, (νis the exterior normal),

where the equality sign is attained only if u ≡ 0 in Ω.

Maximum Principle in Small Domains. (see [3]) There exists a number δ > 0
depending only on diam Ω, N , c0 and on the L∞-bounds for the functions aij , bi
and c, such that if |Ω| < δ, and if u ∈W 2,N (Ω)∩C(Ω) satisfies (6.1) and u ≥ 0 on
∂Ω, then u ≥ 0 in Ω.

Principle of Unique Continuation. (see [15]) Let u ∈W 2,2(Ω) satisfy

−aijuxixj + biuxi + cu = 0 in Ω, (6.3)

and suppose that there is a nonempty open subset U of Ω such that u ≡ 0 in U .
Then u ≡ 0 in Ω.
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ouverts extérieurs. Compte-Rendus Acad. Sci. Paris Sér I. 308, Série 1 (1989), 281-286.
[12] M. Esteban, W. Strauss, Nonlinear bound states outside an insulated sphere. Comm. PDE.

19 (1994), 177-197.

[13] B. Gidas, W. M. Ni & L. Nirenberg, Symmetry and related properties via the maximum
principle. Comm. Math. Phys. 68 (1979), 209-243.

[14] D. Gilbarg, W. Trudinger, Elliptic PDE of Second Order. Springer-Verlag, Berlin,

Grundlehren d. Math. Wiss. 224 (1998).
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