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A REMARK ON THE EXISTENCE OF LARGE SOLUTIONS VIA
SUB AND SUPERSOLUTIONS

JORGE GARCÍA-MELIÁN

Abstract. We study the boundary blow-up elliptic problem ∆u = a(x)f(u)

in a smooth bounded domain Ω ⊂ RN , with u|∂Ω = +∞. Under suitable
growth assumptions on a near ∂Ω and on f both at zero and at infinity, we

prove the existence of at least a positive solution. Our proof is based on the
method of sub and supersolutions, which permits on the one hand oscillatory
behaviour of f(u) at infinity and on the other hand positive weights a(x) which

are unbounded and/or oscillatory near the boundary.

1. Introduction

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded domain. In this work we consider
the boundary blow-up elliptic problem

∆u = a(x)f(u) in Ω
u = +∞ on ∂Ω ,

(1.1)

where a is a Hölder continuous positive function defined in Ω and f is locally
Hölder in (0,+∞). We are interested in the existence of positive classical solutions
to (1.1), that is solutions u ∈ C2(Ω) to ∆u = a(x)f(u) such that u(x) → +∞ as
d(x) := dist(x, ∂Ω) → 0+.

Boundary blow-up problems like (1.1) have received a great deal of attention in
the recent years. Without being exhaustive with the references, let us quote [2] (as
the starting point for these problems), [7], [1], [4], [9], [10], [11], [12] and [5] (see
also references therein).

In the reference situation f(u) = up (see hypotheses (1.3) below), existence and
uniqueness of positive solutions to problem (1.1) have been obtained before under
different kinds of assumptions on the weight a(x). For instance in [1] and [11] when
a is bounded and bounded away from zero, [5] when a is bounded, but is zero
on ∂Ω, with a prescribed behaviour or [12] and [3] where a goes to +∞ also in
a completely determined way. Our existence result (Theorem 1.1) covers all these
situations, and also more general weights which can behave as the three cases above
in different parts of ∂Ω. The advantage of our approach is that all possible cases
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are treated together with a very simple proof, based on the case a(x) ≡ 1. Also,
at the best of our knowledge, this seems to be the first time where the method of
sub and supersolutions is used to prove existence of solutions to boundary blow-up
problems.

We start by quoting our hypotheses on a and f . We will assume that a ∈ Cν(Ω)
for some 0 < ν < 1, a > 0 in Ω, and that f ∈ Cν(0,+∞). In addition there exist
constants C1, C2 > 0 and γ2 ≥ γ1 > −2 such that

C2d(x)γ2 ≤ a(x) ≤ C1d(x)γ1 , x ∈ Ω. (1.2)

Note that γ1 and γ2 can have different signs, and so a is permitted to be bounded
in some parts of ∂Ω, and to go to +∞ or even oscillate in some others (it can also
go to zero).

For the nonlinearity f we further assume that there exist p1 ≥ p2 > 1 such that

f(u) ≤ C1u
p1 u ∈ R+, f(u) ≥ C2u

p2 for large u . (1.3)

Note that we can take the constants C1 and C2 to be the same as in (1.2). These
assumptions allow f(u) to be oscillating for large u, i.e. f does not need to be
increasing at infinity. We remark that γ2 ≥ γ1 and p1 ≥ p2 are nothing else
but compatibility conditions, and γ1 > −2 is necessary in order to have positive
solutions to (1.1) (compare with [3] in the radial case and f(u) = up). We now
state our Theorem.

Theorem 1.1. Assume a and f verify hypotheses (1.2) and (1.3). Then problem
(1.1) has at least a positive solution u which verifies

D1d(x)−α1 ≤ u(x) ≤ D2d(x)−α2 in Ω, (1.4)

where αi = (2 + γi)/(pi − 1), and D1, D2 are positive constants.

Remark 1.2. (a) Note that p1 ≥ p2, γ1 ≤ γ2 imply that α1 ≤ α2, and thus (1.4)
makes sense.
b) In the light of the possible oscillatory behaviour of a and f , according to hy-
potheses (1.2) and (1.3), one would expect that estimates (1.4) can not be improved
in general, even if p1 = p2 and γ1 = γ2 (α1 = α2), in contrast with the case when
a has a prescribed asymptotics near ∂Ω and f near +∞.
c) If f(u) = up, p > 1, uniqueness of positive solutions verifying (1.4) can be
achieved for positive weights a satisfying (1.2) with γ1 = γ2, through an adaptation
of the proof of Theorem 3.4 in [8].
d) The regularity assumptions on a and f can of course be relaxed to continuity,
obtaining weak solutions to (1.1) in that case.
e) Theorem 1.1 can be adapted to nonlinearities with a different type of growth,
for instance exponential:

f(u) ≤ C1e
p1u u ∈ R+, f(u) ≥ C2e

p2u for large u, (1.5)

and we obtain the existence of at least a classical solution u such that 2λ2 log d+C ≤
u ≤ 2λ1 log d + C ′, where λi = (γi + 2)/pi.

2. Results

This section is devoted to the proof of Theorem 1.1 and the method of sub and
supersolutions. First we state and prove an adaptation of the method of sub and
supersolutions to problem (1.1) (Lemma 2.1 below is indeed a slight generalization



EJDE–2003/110 EXISTENCE OF LARGE SOLUTIONS VIA SUB AND SUPERSOLUTIONS 3

of Lemma 4 in [5], which was not proved there), then we introduce an auxiliary
problem which will turn out to be very important for our purposes, and we finally
will proceed to the proof of Theorem 1.1.

A function u ∈ C2(Ω) is a (classical) subsolution to problem (1.1) if u = +∞ on
∂Ω and ∆u ≥ a(x)f(u) in Ω. Similarly, ū is a supersolution if ū = +∞ on ∂Ω and
∆ū ≤ a(x)f(ū) in Ω. When u and ū are ordered we have the next result.

Lemma 2.1. Assume there exist a subsolution u and a supersolution ū to the
problem (1.1) such that u ≤ ū. Then there exists at least a classical solution u such
that u ≤ u ≤ ū.

Proof. For n ∈ N, we introduce the domain Ωn := {x ∈ Ω : d(x) > 1/n}, and
consider the problem

∆u = a(x)f(u) in Ωn

u = u on ∂Ωn .
(2.1)

Since u is a subsolution and ū a supersolution, this problem has at least a positive
classical solution un such that u ≤ un ≤ ū. This in particular gives local bounds
for the sequence {un} which in turn leads to local bounds in C2,ν (cf. [6]). Thus
for every k ∈ N, we can select a subsequence {uk

n} which converges in C2(Ωk). A
diagonal procedure gives a subsequence (denoted again by {un}) which converges
to a function u in C2

loc(Ω). Passing to the limit in (2.1) we see that u is a classical
solution of the equation in (1.1), verifying u ≤ u ≤ ū. In particular, we deduce that
u = +∞ on ∂Ω. This proves the Lemma. �

As already remarked, a fundamental role in our approach is played by the well-
known blow-up problem:

∆U = Uri in Ω
U = +∞ on ∂Ω ,

where ri = 1 + 2/αi > 1. This problem has a unique positive solution Ui such that
Cd(x)−αi ≤ Ui(x) ≤ C ′d(x)−αi , for some positive constants C and C ′ (see [1]).

Proof of Theorem 1.1. The proof consists in choosing adequate ordered sub and
supersolutions in terms of the functions U1 and U2 defined above. Indeed, we set
u = λU1. Then u will be a subsolution provided that

λUr1
1 ≥ a(x)f(λU1) .

By hypothesis (1.3) on f , this is a consequence of λ ≤ (C1 supΩ a(x)U1(x)p1−r1)−
1

p1−1 ,
which holds for small λ if the supremum is finite. But note that a(x)Up1−r1

1 ≤
Cd(x)γ1−α1(p1−r1) = C in virtue of hypotheses (1.2), and the claim follows. In a
similar way we can see that ū = ΛU2 is a supersolution for large Λ. Since α1 ≤ α2,
it also follows that λU1 ≤ ΛU2, and Lemma 2.1 shows that there exists at least
a positive classical solution to (1.1), which in addition verifies the estimates (1.4).
This proves the Theorem. �
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