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MULTI-POINT BOUNDARY-VALUE PROBLEMS FOR THE
P-LAPLACIAN AT RESONANCE

XIAOHONG NI & WEIGAO GE

Abstract. In this paper, we consider multi-point boundary-value problems

for the p-laplacian at resonance. Applying an extension of Mawhin’s continu-
ation theorem, we show the existence of at least one solution.

1. Introduction

Let f : [0, 1]×R2 → R be a continuous function and 0 < ξ1 < ξ2 < · · · < ξn−2 <
1, 0 < η1 < η2 < · · · < ηm−2 < 1, αj ∈ R (1 ≤ j ≤ n− 2), βi ∈ R (1 ≤ i ≤ m− 2)
be given. In this paper, we study the differential equation

(φp(x′))′ = f(t, x(t), x′(t)) (1.1)

subject to one of the following boundary-value conditions:

x′(0) = 0, φp(x′(1)) =
m−2∑
i=1

βiφp(x′(ηi)) (1.2)

or

φp(x′(0)) =
n−2∑
j=1

αjφp(x′(ξj)), x′(1) = 0 (1.3)

where φp(s) = |s|p−2s, p > 1,
∑m−2

i=1 βi =
∑n−2

j=1 αj = 1.
Mawhin [2] proved a continuation theorem for the abstract equation Lx = Nx

with L being a non-invertible linear operator. Since then, there has been much
attention on the study of boundary-value problems at resonance (cf [1, 7, 8]). Re-
cently, Liu [4, 5, 6] considered differential equation (1.1) with p = 2 and obtained
some results. However, the p-laplacian operator is not linear. Our approach is
different and based on an extension of Mawhin’s continuation theorem in [3]. We
provide sufficient conditions to guarantee the existence of solution for (1.1), (1.2)
and for (1.1), (1.3). Moreover, some examples are given to demonstrate our results.

For the convenience of the reader, we first recall some notation.
Let X and Z be Banach spaces with norms ‖ · ‖X and ‖ · ‖Z , respectively. A

continuous operator M : X ∩ dom M → Z is said to be quasi-linear if
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(i) Im M = M(X ∩ dom M) is a closed subset of Z;
(ii) KerM = {x ∈ X ∩ dom M : Mx = 0} is linearly homeomorphic to Rn,

n < ∞.
Let P : X → X1 and Q : Z → Z1 be two projectors such that Im P = KerM ,
KerQ = Im M and X = X1 ⊕X2, Z = Z1 ⊕ Z2, where X1 = KerM , Z2 = Im M
and X2, Z1 are respectively the complement space of X1 in X, Z2 in Z. If Ω is an
open and bounded subset of X such that dom M ∩Ω 6= Φ, the continuous operator
Nλ : Ω → Z, λ ∈ [0, 1] will be called admissibly compact in Ω with respect to M if

(iii) There is a subset Z1 of Z with dim Z1 = dim X1 and an operator K :
Im M → X2 with Kθ = θ such that for λ ∈ [0, 1],

(I −Q)Nλ(Ω̄) ⊂ Im M ⊂ (I −Q)Z, (1.4)

(I −Q)N0 is a zero operator, and QNλx = 0 ⇔ QNx = 0, λ ∈ (0, 1), (1.5)

KM = I − P, K(I −Q)Nλ : Ω → X2 ⊂ X is compact, (1.6)

M [P + K(I −Q)Nλ] = (I −Q)Nλ. (1.7)

Theorem 1.1 ([3]). Let X and Z be two Banach spaces with the norms ‖ · ‖X and
‖·‖Z , respectively, and Ω ⊂ X an open and bounded set. Suppose M : X∩dom M →
Z is a quasi-linear operator and Nλ : Ω → Z is admissibly compact with respect to
M . In addition, if

(C1) Mx 6= Nλx, λ ∈ (0, 1), x ∈ ∂Ω
(C2) deg{JQN, Ω ∩ KerM, 0} 6= 0, where N = N1 and J : Z1 → X1 is a

homeomorphism with J(0) = 0;
then the abstract equation Mx = Nx has at least one solution in Ω.

2. General Results

2.1. Results for boundary-value problem (1.1), (1.2). Let X = {x ∈ C[0, 1] :
x′(0) = 0, φp(x′(1)) =

∑m−2
i=1 βiφp(x′(ηi))} with norm ‖x‖1 = max{‖x‖, ‖x′‖} and

Z = C[0, 1] with norm ‖w‖ = maxt∈[0,1] |w(t)|. Let M be the operator from
dom M ⊂ X to Z with

dom M = {x ∈ C1[0, 1] : φp(x′) ∈ C1[0, 1]}

and Mx = (φp(x′))′. For any open and bounded Ω ⊂ X, we define Nλ : Ω → Z by

(Nλx) = λf(t, x(t), x′(t)), t ∈ [0, 1]

Then (1.1), (1.2) can be written as

Mx = Nx, where N = N1.

Lemma 2.1. If 0 < η1 < η2 < · · · < ηm−2 < 1, then there exists integer k ∈
{1, 2, . . . ,m− 1} such that

∑m−2
i=1 βiη

k
i 6= 1.

Proof. If this were not the case, we have
η1 η2 . . . ηm−2

η2
1 η2

2 . . . η2
m−2

...
...

. . .
...

ηm−1
1 ηm−1

2 . . . ηm−1
m−2




β1

β2

...
βm−2

 =


1
1
...
1

 .
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This implies 
η1 η2 . . . ηm−2 1
η2
1 η2

2 . . . η2
m−2 1

...
...

. . .
...

...
ηm−1
1 ηm−1

2 . . . ηm−1
m−2 1




β1

β2

...
βm−2

−1

 =


0
0
...
0
0

 .

Putting

A =


η1 η2 . . . ηm−2 1
η2
1 η2

2 . . . η2
m−2 1

...
...

. . .
...

...
ηm−1
1 ηm−1

2 . . . ηm−1
m−2 1


we have

detA = η1η2ηm−2

∣∣∣∣∣∣∣∣∣
1 1 . . . 1 1
η1 η2 . . . ηm−2 1
...

...
. . .

...
...

ηm−2
1 ηm−2

2 . . . ηm−2
m−2 1

∣∣∣∣∣∣∣∣∣ 6= 0.

Hence, (β1, β2, . . . , βm−2,−1)T = (0, 0, . . . , 0, 0)T , which leads to a contradiction,
−1 = 0. �

Lemma 2.2. If
∑m−2

i=1 βi = 1, then the operator M : dom M ∩X → Z is a quasi-
linear and Nλ : Ω → Z is admissibly compact in Ω with respect to M .

Proof. Obviously, X1 = KerM = { x = A, A ∈ R} and

Z2 = Im M =
{
y ∈ Z,

m−2∑
i=1

∫ 1

ηi

βiy(s)ds = 0
}
.

We have dim KerM = 1 < ∞ and M(X ∩ dom M) ⊂ Z closed. Hence, M is a
quasi-linear operator. Define projectors P : X → X1 as Px = x(0) for all x ∈ X
and Q : Z → Z1 as

Qy =
[ k

1−
∑m−2

i=1 βiηk
i

m−2∑
i=1

βi

∫ 1

ηi

y(s)ds
]
tk−1, ∀y ∈ Z.

where Z1 is the complement space of Z2 in Z. (Indeed, Z1
∼= R). Thus dimX1 =

dim Z1 = 1.
Taking K : Im M → X2 as follows:

K(I −Q)h(t) =
∫ t

0

φ−1
p

( ∫ s

0

((I −Q)h(τ)dτ
)
ds, ∀h(t) ∈ Z.

here X2 is the complement space of X1 in X. It is clear that Kθ = θ and (1.4),
(1.5) hold. For for all x ∈ X ∩ dom M , we have

M [P + K(I −Q)Nλ]x = (I −Q)Nλx

and

KMx = K(I −Q)Mx =
∫ t

0

φ−1
p (

∫ s

0

(φp(x′(τ)))′dτ)ds = x(t)− x(0) = (I − P )x.
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For any open and bounded set Ω ⊂ X, λ ∈ [0, 1], by using the Ascoli-Arzela The-
orem, we can prove that [K(I − Q)Nλ](Ω) is relatively compact and continuous.
This implies that (1.6), (1.7) are valid. Hence, Nλ is admissibly compact in Ω with
respect to M . �

For the next theorem we have the assumptions:
(H1) There exist functions a, b, r ∈ C([0, 1], [0,+∞)) such that for all (x, y) ∈ R2,

t ∈ [0, 1],
|f(t, x, y)| ≤ φp[a(t)|x|+ b(t)|y|+ r(t)].

(H2) There exists a constant C > 0 such that for any x ∈ X, if |x(t)| > c, for all
t ∈ [0, 1], one has

sgn(x(t))
m−2∑
i=2

βi

∫ 1

ηi

f(t, x(t), x′(t))dt < 0 (2.1)

or

sgn(x(t))
m−2∑
i=2

βi

∫ 1

ηi

f(t, x(t), x′(t))dt > 0 (2.2)

Theorem 2.3. Suppose f : [0, 1]×R2 → R is a continuous function and 0 < η1 <
η2 < · · · < ηm−2 < 1, βi ∈ R (1 ≤ i ≤ m− 2) are given. Under Assumptions (H1)
and (H2), the boundary-value problem (1.1), (1.2) with

∑m−2
i=1 βi = 1 has at least

one solution provided that ‖a‖+ ‖b‖ < 1.

Proof. Set Ω1 = {x ∈ X ∩ dom M, Mx = Nλx, λ ∈ (0, 1)}, then for x ∈ Ω1,
Mx = Nλx. Thus, we have Nx ∈ Im M = KerQ and

m−2∑
i=2

βi

∫ 1

ηi

f(t, x(t), x′(t))dt = 0.

By (H2), there exists t0 ∈ [0, 1] such that |x(t0)| ≤ C. Hence, we have ‖x‖ ≤
C + ‖x′‖, in view of the relation x(t) = x(t0) +

∫ t

t0
x′(s)ds. At the same time,

|x′(t)| ≤ φ−1
p (‖Nx‖) ≤ ‖a‖‖x‖+ ‖b‖‖x′‖+ ‖r‖.

Noticing ‖a‖ + ‖b‖ < 1, we know the set Ω1 is bounded. Let ‖x‖1 ≤ C∗ for all
x ∈ Ω1.

If (2.1) holds, taking H(x, λ) = −λIx + (1− λ)JQNx, λ ∈ [0, 1] and

Ω2 = {x ∈ KerM, H(x, λ) = 0},

where J : Im Q → KerM is a homomorphism such that J(Atk−1) = A, for all
A ∈ R. We claim that for any x ∈ Ω2, ‖x‖1 ≤ C. In fact, if this were not the
case, there exist λ0 ∈ [0, 1] and |x0| > C such that H(x0, λ0) = 0. Without loss of
generality, suppose x0 > C and

∑m−2
i=1 βiη

k
i < 1. If λ0 = 1, then x0 = 0 otherwise,

it implies that

0 ≤ λ0x0 = (1− λ0)
k

1−
∑m−2

i=1 βiηk
i

m−2∑
i=2

βi

∫ 1

ηi

f(t, x0, 0)dt < 0,

which leads to a contradiction, 0 < 0.
When (2.2) holds, putting H(x, λ) = λIx+(1−λ)JQNx. By a similar argument,

we can obtain the same conclusion.
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Next, we shall prove that all conditions of Theorem 1.1 are satisfied. Let Ω be

an open bounded subset of X such that
2⋃

i=1

Ωi ⊂ Ω. Clearly, we have

Mx 6= Nλx, λ ∈ (0, 1), x ∈ ∂Ω

and

H(x, λ) 6= 0, λ ∈ [0, 1], x ∈ ∂Ω ∩KerM.

In view of the homotopy property of degree,

deg{JQN, Ω ∩KerM, 0} = deg{−I,Ω ∩KerM, 0} = −1.

Theorem 1.1 can be generalized to obtain the existence of at least one solution for
(1.1), (1.2) with

∑m−2
i=2 βi = 1. �

2.2. Results for Problem (1.1), (1.3). Let X = {x ∈ C[0, 1] : φp(x′(0)) =∑n−2
j=1 αjφp(x′(ξj)), x′(1) = 0}. Z,M,dom M and Nλ be defined as above.

Lemma 2.4. If
∑n−2

j=1 αj = 1 and
∑n−2

j=1 αjξj 6= 0 then operator M : dom M∩X →
Z is a quasi-linear and Nλ : Ω → Z is admissibly compact in Ω with respect to M .

Note that KerM = {x = A,A ∈ R} and Im M = {y ∈ Z,
∑n−2

j=1 αj

∫ ξj

0
y(s)ds =

0}. We define P : X → X1, and Q : Z → Z1 as follows:

(Px)(t) = x(0), (Qy)(t) =
1∑n−2

j=1 αjξj

n−2∑
j=1

αj

∫ ξj

0

y(s)ds.

Let K(I−Q)h(t) = −
∫ t

0
φ−1

p

[ ∫ 1

s
((I−Q)h(τ)dτ

]
ds, for h(t) ∈ Z. Using the method

in the proof of Lemma 2.2, we can show the theorem bellow. However, we need the
assumption:

(H3) There exists a constant D > 0 such that for all x ∈ X, if |x(t)| > D for
some t ∈ [0, 1], one has

sgn(x(t))
n−2∑
j=1

αj

∫ ξj

0

f(t, x(t), x′(t))dt < 0 (2.3)

or

sgn(x(t))
n−2∑
j=1

αj

∫ ξj

0

f(t, x(t), x′(t))dt > 0 (2.4)

Theorem 2.5. Suppose that f : [0, 1]×R2 → R is continuous, 0 < ξ1 < ξ2 < · · · <
ξn−2 < 1, and αj ∈ R (1 ≤ j ≤ n− 2) are given. Under Assumptions (H1), (H3),
the boundary-value problem (1.1), (1.3) with

∑n−2
j=1 αj = 1,

∑n−2
j=1 αjξj 6= 0 has at

least one solution provided that ‖a‖+ ‖b‖ < 1.

The proof of this theorem is similar to that of Theorem 2.3; therefore, we omit
it here.
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3. Examples

Example 3.1. Consider the boundary-value problem, at resonance,

(φp(x′))′ =
1
3
x +

(cos(x′))2

2(t + 1)
− 3t2, t ∈ [0, 1]

x′(0) = 0, φp(x′(1)) =
m−2∑
i=1

βiφp(x′(ηi))
(3.1)

where p > 2, 0 < η1 < η2 < · · · < ηm−2 < 1,
∑m−2

i=1 βi = 1,
∑m−2

i=1 βiηi 6= 1 and
βi(1 ≤ i ≤ m− 2) ≥ 0.

Let f(t, x, y) = 1
3x + (cos(x′))2

2(t+1) − 3t2, then |f(t, x, y)| ≤ 1
3 |x| + 1

2 |y| + 3t2 ≤
φp( 1

3 |x|+
1
2 |y|+ 3). Clearly, there exists a constant C > 0 such that if |x(t)| > C,

for any t ∈ [0, 1], one has

sgn(x(t))
m−2∑
i=2

βi

∫ 1

ηi

f(t, x(t), x′(t))dt > 0.

Applying Theorem 2.3, we obtain that (3.1) has at least one solution.

Example 3.2. Consider the boundary-value problem

(φp(x′))′ =
1
4
x +

1
12

x sin(x′) + t

φp(x′(0)) = 3φp(x′(
1
4
))− 2φp(x′(

1
2
)), x′(1) = 0,

(3.2)

where p > 2, ξ1 = 1
4 , ξ2 = 1

2 , α1 = 3, α2 = −2. Taking f(t, x, y) = 1
4x +

1
12x sin(x′)+ t, then |f(t, x, y)| ≤ 1

12 |x|+
1
4 |x|+1 ≤ φp( 1

3 |x|+1) and for any A ∈ R,

3
∫ 1

4

0

f(t, A, 0)dt− 2
∫ 1

2

0

f(t, A, 0)dt = −A3

4
− 5

32
.

Hence, there exists a constant D > 0 such that for t ∈ [0, 1]
n−2∑
j=1

αj

∫ ξj

0

f(t, D, 0)dt < 0 <
n−2∑
j=1

αj

∫ ξj

0

f(t,−D, 0)dt.

From Theorem 2.5, Problem (3.2) has at least one solution.
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