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DOUBLY NONLINEAR PARABOLIC EQUATIONS RELATED TO
THE p-LAPLACIAN OPERATOR: SEMI-DISCRETIZATION

FATIHA BENZEKRI & ABDERRAHMANE EL HACHIMI

Abstract. We study the doubly nonlinear parabolic equation

∂β(u)

∂t
−4pu + f(x, t, u) = 0 in Ω× R+,

with Dirichlet boundary conditions and initial data. We investigate a time-

discretization of the continuous problem by the Euler forward scheme. In

addition to proving existence, uniqueness and stability questions, we study
the long time behavior of the solution to the discrete problem. We prove
the existence of a global attractor, and obtain its regularity under additional
conditions.

1. Introduction

In this paper we study a doubly nonlinear parabolic partial differential equation
related to the p-Laplacian operator estudied in [7]. We examine the validity of
numerical solutions as approximations to solutions for long times. This work is
inspired, on one hand by the results of El Hachimi and El Ouardi [7], and, on the
other hand, by the work of Eden, Michaux and Rakotoson [4]. It is a generalization
in different directions of several results.

The problem under consideration has the form
∂β(u)
∂t

−4pu+ f(x, t, u) = 0 in Ω×]0,∞[,

u = 0 on ∂Ω×]0,∞[,

β
(
u(., 0)

)
= β(u0) in Ω,

(1.1)

where ∆pu = div
(
|∇u|p−2∇u

)
, 1 < p < +∞, β is a nonlinearity of porous medium

type, and f is a nonlinearity of reaction-diffusion type. The continuous problem
(1.1) has been extensively treated in [7] for p > 1, and for the case p = 2 in [3].
Here, we shall discretize (1.1) and replace it by

β(Un)− τ4pU
n + τf(x, nτ, Un) = β(Un−1) in Ω,

Un = 0 on ∂Ω,

β(U0) = β(u0) in Ω.
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The case p = 2 of this equation is studied in [4]. Here, we study the case p >
1 to obtain existence, uniqueness and stability results. Furthermore, we obtain
existence of absorbing sets and of a global attractor. Under some conditions on f
and p, additional regularity result for the global attractor and, as a consequence, a
stabilization result are obtained when β(u) = u.

This paper is organized as follows: In section 2, we give some preliminaries.
In section 3, we show the existence and uniqueness of solutions of problem (2.1).
The question of stability is studied in section 4, while the semi-discrete dynamical
system study is done in section 5. finally, section 6 is dedicated to obtaining some
regularity for the attractor.

2. Preliminaries

2.1. Notations and useful lemmas. Let β be a continuous function with β(0) =
0. For t ∈ R, define

ψ(t) =
∫ t

0

β(s)ds.

The Legendre transform is defined as ψ∗(τ) = sups∈R{τs− ψ(s)}. Let Ω stand for
a regular open bounded set of Rd, d ≥ 1 and ∂Ω be it’s boundary.

The norm in a space X will be denoted by

• ‖.‖r if X = Lr(Ω), 1 ≤ r ≤ +∞;
• ‖.‖1,q if X = W 1,q(Ω), 1 ≤ q ≤ +∞;
• ‖.‖X otherwise

and 〈., .〉 denotes the duality between W 1,p
0 (Ω) and W−1,p′(Ω).

For p ≥ 1 we define it’s conjugate p′ by 1
p + 1

p′ = 1. In this paper, Ci and C will
denote various positive constants. We shall use the following results.

Lemma 2.1 ([11]). If u ∈ W 1,p
0 (Ω) is a solution to the equation

−τ∆pu+ F (x, u) = T,

where T ∈ W−1,r(Ω) and F satisfies ξF (x, ξ) ≥ 0 in Ω × R, then we have the
following estimates

(a) If r > d
p−1 , then u ∈ L∞(Ω) and ‖u‖∞ ≤ C

(‖T‖−1,r

τ

)p′/p.

(b) If p′ ≤ r < d
p−1 , then u ∈ Lr∗(Ω) and ‖u‖r∗ ≤ C

(‖T‖−1,r

τ

)p′/p, where
1
r∗ = 1

(p−1)r −
1
d .

(c) If r = d
p−1 and r ≥ p′ then u ∈ Lq(Ω) for any q, 1 ≤ q < ∞ and

‖u‖q ≤ C
(‖T‖−1,r

τ

)p′/p.

Lemma 2.2. Let g(x, s, ξ) be a Caratheodory function such that sign ξ g(x, s, ξ) ≥
−C1 and |g(x, s, ξ)| ≤ b(|s|)(|ξ|p + c(x)), where b is a continuous and increasing
function with (finite) values on R+, c ∈ L1 (Ω), c ≥ 0 and C1 is a nonnegative
real. Also let h ∈ W−1,p′(Ω). Then the problem

−∆pu+ g(x, u,∇u) = h in D′(Ω),

u ∈W 1,p
0 (Ω),

has at least one solution.
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Remark 2.3. Since in [1], C1 = 0, a slight modification has to be introduced in
the proof therein. Indeed, we consider uε ∈W 1,p

0 (Ω) such that

−∆puε + gε(x, uε,∇uε) = h,

where gε = g/(1 + ε|g|). Thanks to the sign condition, it is easy to obtain a
W 1,p

0 (Ω)-estimate on uε. By extracting a subsequence, uε tends to u in W 1,p
0 (Ω)

weak. The problem will be solved whenever the convergence is proved to be strong
in W 1,p

0 (Ω), and this follows the same lines as in [1] provided we replace h by h+C1.

2.2. Assumptions and definition of solution. For (1.1), we consider the Euler
forward scheme

β(Un)− τ4pU
n + τf(x, nτ, Un) = β(Un−1) in Ω,

Un = 0 on ∂Ω,

β(U0) = β(u0) in Ω,

(2.1)

where Nτ = T , T a fixed positive real, and 1 ≤ n ≤ N . We shall be concerned
with one of the following two cases:
case 1 u0 ∈ L∞(Ω), and we assume the following hypotheses:

(H1) The function β is an increasing and continuous from R to R, and β(0) = 0.
(H2) For ξ ∈ R, the map (x, t) 7→ f(x, t, ξ) is measurable and, a.e. in Ω × R+,

ξ 7→ f(x, t, ξ) is continuous. Furthermore we assume that there exists
C1 > 0, such that for a.e. (x, t) ∈ Ω× R+ sign ξf(x, t, ξ) ≥ −C1.

(H3) There is C2 > 0, such that for almost (x, t) ∈ Ω×R+, ξ 7→ f(x, t, ξ)+C2β(ξ)
is increasing.

Case 2 u0 ∈ L2(Ω), and we assume the following hypotheses:

(H1’) The function β is increasing and continuous from R to R, β(0) = 0, and for
some C3 > 0, C4 > 0, β(ξ) ≤ C3|ξ|+ C4 for all ξ ∈ R.

(H2’) For any ξ in R, the map (x, t) 7→ f(x, t, ξ) is measurable and, a.e, in Ω×R+,
ξ 7→ f(x, t, ξ) is continuous. Furthermore we assume that there exist q >
sup(2, p) and positives constants C5, C6 and C7 such that

sign ξf(x, t, ξ) ≥ C5|ξ|q−1 − C6.

Also assume that |f(x, t, ξ)| ≤ a(|ξ|) where a : R+ → R+ is increasing and

lim sup
t→0+

|f(x, t, ξ)| ≤ C7(|ξ|q−1 + 1).

(H3’) There is C2 > 0 such that for almost all (x, t) ∈ Ω × R+, ξ 7→ f(x, t, ξ) +
C2β(ξ) is increasing.

Remark 2.4. In the hypothesis (H2’), the monotonicity condition on a is not
restrictive since we can replace a by the increasing function ã(s) = sup0≤t≤s a(t).

Definition 2.5. By a weak solution to the discretized problem, we mean a sequence
(Un)0≤n≤N such that β(U0) = β(u0), and Un is defined by induction as a weak
solution of the problem

β(U)− τ4pU + τf(x, nτ, U) = β(Un−1) in Ω,

U ∈ W 1,p
0 (Ω).
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3. Existence and uniqueness result

Case 1: u0 ∈ L∞(Ω). Assume (H1)–(H3), we derive an a priori estimate.

Lemma 3.1. The function Un is in L∞(Ω) for n = 0, . . . , N .

Proof. In this case U0 ∈ L∞(Ω). To show that U1 ∈ L∞(Ω), we can write (2.1)
as

−τ4pU
1 + F1(x,U1) = β(u0) + C1 sign(U1) = ϕ1

U1 ∈ W 1,p
0 (Ω) ,

where F1(x, ξ) = τf(x, τ, ξ) + β(ξ) + C1 sign(ξ), and ϕ1 ∈ L∞(Ω). According
to (H1) and (H2), ξF1(x, ξ) ≥ 0 for all ξ ∈ R. By lemma 2.1 we can conclude
that U1 ∈ L∞(Ω). By a simple induction, we deduce that Un ∈ L∞(Ω) for all
n = 0, . . . , N . �

Theorem 3.2. For n = 1, . . . , N , there exists a unique solution Un of (2.1) in
W 1,p

0 (Ω) ∩ L∞(Ω) provided that 0 < τ < 1
C2

.

Proof. We can write (2.1) as

−τ4pU + F (x,U) = h,

U ∈W 1,p
0 (Ω),

where U = Un, h = β(Un−1) and F (x, ξ) = τf(x, nτ, ξ) + β(ξ). According to (H1)
and (H2),

sign ξ F (x, ξ) ≥ −τC1 and h ∈ W−1,p′(Ω).
Hence the existence follows from lemma 2.2.

Next, we obtain uniqueness. For simplicity, we set

w = Un, f(x,w) = f(x, nτ, Un), and g(x) = β(Un−1)

Then problem (2.1) reads

−τ4pw + τf(x,w) + β(w) = g(x),

w ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

(3.1)

If w1 and w2 are two solutions of (3.1), then

−τ∆pw1 + τ∆pw2 + τ(f(x,w1)− f(x,w2)) + β(w1)− β(w2) = 0. (3.2)

Multiplying (3.2) by w1 − w2 and integrating over Ω, gives

〈−τ∆pw1 + τ∆pw2, w1 − w2〉+ τ

∫
Ω

(
f(x,w1)− f(x,w2)

)
(w1 − w2)dx

+
∫

Ω

(
β(w1)− β(w2)

)
(w1 − w2)dx = 0. (3.3)

Applying (H3) yields∫
Ω

(
f(x,w1)−f(x,w2)

)
(w1−w2)dx ≥ −C2

∫
Ω

(
β(w1)−β(w2)

)
(w1−w2)dx. (3.4)

Using this equation and the monotonicity condition of the p-Laplacian operator,
(3.3) reduces to

(1− τC2)
∫

Ω

(
β(w1)− β(w2)

)
(w1 − w2) dx ≤ 0.
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Then by (H1), if τ < 1/C2, we get w1 = w2. �

Uniqueness can be also obtained under the following assumption:
(H3”) For all M > 0, there exists CM > 0 such that, if |ξ|+ |ξ′| ≤M then

|f(t, x, ξ)− f(t, x, ξ′)|α ≤ CM

(
β(ξ)− β(ξ′)

)
(ξ − ξ′)

where α =

{
2 if 1 < p ≤ 2,
p′ if p ≥ 2.

Proposition 3.3. Assume in the case 1 that (H1), (H2) and (H3”) hold, and that
p ≥ 2d/(d + 2). Then the solution of (2.1) is unique provided that 0 < τ < τ1,
where τ1 is a prescribed constant.

Proof. Let w1 and w2 be two solutions of (3.1). Using the stability result which we
will establish below (see theorem 4.1), we have

‖w1‖∞ + ‖w2‖∞ ≤M and τ1/p(‖w1‖1,p + ‖w2‖1,p) ≤ K, (3.5)

where M and K are positive constants which do not depend on N . Now, let us
recall the relations verified by the p-Laplacian (see [8] or [12] for example). For
every u and v in W 1,p

0 (Ω), we have

〈−∆pu+ ∆pv, u− v〉 ≥ Cp‖u− v‖p
1,p if p ≥ 2 (3.6)

〈−∆pu+ ∆pv, u− v〉 ≥ Cp

‖u− v‖21,p

(‖u‖1,p + ‖v‖1,p)2−p
if 1 < p ≤ 2 (3.7)

(i) If p ≥ 2 , then from (3.3), (3.6), (H3”), Young’s and Poincare’s inequalities, we
get

λ1Cpτ‖w1 − w2‖p
p +

∫
Ω

(β(w1)− β(w2)) (w1 − w2)dx

≤ 1
p′CM

‖f(x,w1)− f(x,w2)‖p′

p′ +
τpC

p/p′

M

p
‖w1 − w2‖p

p

≤ 1
p′

∫
Ω

(β(w1)− β(w2)) (w1 − w2)dx+
τpC

p/p′

M

p
‖w1 − w2‖p

p,

where λ1 is the first eigenvalue of −∆p. Then, from (H1), we obtain(
λ1Cpτ −

τpC
p/p′

M

p

)
‖w1 − w2‖p

p ≤ 0.

Therefore, when 0 < τ <
(pλ1Cp

C
p/p′
M

)1/(p−1), we get w1 = w2.

(ii) If 2d
d+2 ≤ p ≤ 2, then from (3.3), (3.7), (H3”) and Young’s inequality, we obtain

τ2/p Cp

K2−p
‖w1 − w2‖21,p +

∫
Ω

(β(w1)− β(w2)) (w1 − w2)dx

≤ 1
2CM

‖f(x,w1)− f(x,w2)‖22 +
τ2CM

2
‖w1 − w2‖22

≤ 1
2

∫
Ω

(β(w1)− β(w2)) (w1 − w2)dx+
τ2CM

2
‖w1 − w2‖22.
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Since p ≥ 2d
d+2 , we have ‖w1−w2‖2 ≤ C ′p‖w1−w2‖1,p. Then, from (H1), we obtain

τ2/p

(
Cp

K2−p
− 1

2
τ2/p′CMC ′p

2
)
‖w1 − w2‖21,p ≤ 0.

Therefore, when 0 < τ < ( 2Cp

CM C′p
2K2−p )p′/2, we obtain w1 = w2. �

Case 2. The function u0 is in L2(Ω).

Theorem 3.4. We assume the hypotheses (H1’)–(H3’) and p ≥ 2d
d+2 , then for each

n = 1, · · · , N there exists a unique solution Un of (2.1) in W 1,p
0 (Ω) provided that

0 < τ < 1/C2.

The proofs of existence and uniqueness are the same as those of Theorem 3.2,
with h = β(Un−1) in L2(Ω) ⊂ W−1,p′(Ω) for p ≥ 2d/(d + 2). Therefore, we omit
it.

4. stability

Case 1. The function u0 in L∞(Ω).

Theorem 4.1. Assume (H1)–(H3). Then there exists C(T, u0) > 0 depending on
T , u0, β , g and Ω, but not on N , such that for all n = 1, · · · , N ,

‖Un‖∞ ≤ C(T, u0), (4.1)∫
Ω

ψ∗(β(Un))dx+ τ
n∑

k=1

‖Uk‖p
1,p ≤ C(T, u0), (4.2)

n∑
k=1

‖β(Uk)− β(Uk−1)‖22 ≤ C(T, u0). (4.3)

Proof. (a) From lemma 3.1, Un ∈ L∞(Ω). Then, multiplying the first equation
of (2.1) by |β(Un)|kβ(Un), using Hölder’s inequality and the hypotheses on f , we
obtain

‖β(Un)‖k+2
k+2 ≤ ‖β(Un)‖k+1

k+2‖β(Un−1)‖k+2 + Cτ‖β(Un)‖k+1
k+1.

Since ‖β(Un)‖k+1 ≤ C‖β(Un)‖k+2, it follows that

|β(Un)‖k+2 ≤ ‖β(Un−1)‖k+2 + Cτ,

and, by induction, we deduce that

‖β(Un)‖k+2 ≤ ‖β(u0)‖k+2 +NCτ.

Finally, as k →∞ , we obtain ‖Un‖∞ ≤ C(T, u0). Thus (4.1) is satisfied.
(b) Multiplying the first equation of (2.1) (with k instead of n) by Uk, and using
(H2) and the relation∫

Ω

ψ∗(β(Uk))dx−
∫

Ω

ψ∗(β(Uk−1))dx ≤
∫

Ω

(
β(Uk)− β(Uk−1)

)
Ukdx,

we obtain∫
Ω

ψ∗(β(Uk))dx−
∫

Ω

ψ∗(β(Uk−1))dx+ τ‖Uk‖p
1,p ≤ C1τ‖Uk‖1. (4.4)
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Now, summing (4.4) from k = 1 to n, gives∫
Ω

ψ∗(β(Un)) dx+ τ

n∑
k=1

‖Uk‖p
1,p ≤ Cτ

n∑
k=1

‖Uk‖1 +
∫

Ω

ψ∗(β(u0))dx. (4.5)

¿From (4.5) and Lemma 3.1, we deduce (4.2).
(c) Multiplying the first equation of (2.1) (with k instead of n) by β(Uk) and using
(H2), we have∫

Ω

(
β(Uk)− β(Uk−1)

)
β(Uk)dx+ τ〈−∆pU

k, β(Uk)〉 ≤ C1τ

∫
Ω

|β(Uk)|dx. (4.6)

With the aid of the identity 2a(a− b) = a2 − b2 + (a− b)2, from (4.6) we obtain

‖β(Uk)‖22 − ‖β(Uk−1)‖22 + ‖β(Uk)− β(Uk−1)‖22 ≤ Cτ‖β(Uk)‖1. (4.7)

Now summing (4.7) from k = 1 to n, yields

‖β(Un)‖22 +
n∑

k=1

‖β(Uk)− β(Uk−1)‖22 ≤ ‖β(u0)‖22 + Cτ
n∑

k=1

‖β(Uk)‖1. (4.8)

Hence, by (4.8) and Lemma 3.1, we conclude (4.3). �

Case 2: The function u0 is in L2(Ω).

Theorem 4.2. We assume hypotheses (H1’)–(H3’) and p ≥ 2d/(d+2). Then there
exists a positive constant C(T, u0) such that, for all n = 1, · · · , N ,∫

Ω

ψ∗(β(Un))dx+ τ
n∑

k=1

‖Uk‖p
1,p + Cτ

n∑
k=1

‖Uk‖q
q ≤ C(T, u0) (4.9)

max
1≤k≤n

‖β(Uk)‖22 +
n∑

k=1

‖β(Uk)− β(Uk−1)‖22 ≤ C(T, u0). (4.10)

Proof. Since the proof is nearly the same as that of theorem 4.1, we just sketch it.
(a) As for (4.5) , we obtain∫

Ω

ψ∗(β(Un))dx+τ
n∑

k=1

‖Uk‖p
1,p +Cτ

n∑
k=1

‖Uk‖q
q ≤ Cτ

n∑
k=1

‖Uk‖1 +
∫

Ω

ψ∗(β(u0))dx.

Thanks to Young’s inequality, for all ε > 0 there exists Cε(T, u0) such that∫
Ω

ψ∗(β(Un))dx+ τ
n∑

k=1

‖Uk‖p
1,p + Cτ

n∑
k=1

‖Uk‖q
q ≤ ετ

n∑
k=1

‖Uk‖p
p + Cε(T, u0).

Now for a suitable choice of ε, we have

ετ
n∑

k=1

‖Uk‖p
p ≤ Cε(T, u0).

Therefore, (4.9) is satisfied.
(b) From (4.8), (H1’) and (H2’), we obtain

‖β(Un)‖22 +
n∑

k=1

‖β(Uk)− β(Uk−1)‖22 ≤ ‖β(u0)‖22 + Cτ
n∑

k=1

‖β(Uk)‖1

As in (a), we conclude (4.10). �
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5. The semi-discrete dynamical system

In the remainder sections, we assume u0 ∈ L2(Ω) and the hypotheses (H1’)–
(H3’), we fix τ such that 0 < τ < min(1, 1

C2
), and assume that p > 2d/(d + 2).

Theorem 3.4 allows us to define a map Sτ on L2(Ω) by setting

SτU
n−1 = Un.

Since Sτ is continuous, we have Sn
τ U

0 = Un.
Our aim is to study the discrete dynamical system associated with (2.1). We

begin by showing the existence of absorbing balls in L∞(Ω). (We refer to [13] for
the definition of absorbing sets and global attractor).

5.1. Absorbing sets in L∞(Ω).

Lemma 5.1. If p > 2d/(d+ 1), then there exists n(d, p) ∈ N∗ depending on d and
p, and C > 0 depending on d,Ω and the constants in (H1’)–(H3’) such that

Un ∈ L∞(Ω) for all n ≥ n(d, p), (5.1)

‖Un(d,p)‖∞ ≤ C

τα+α2+···+αn(d,p)

(
‖u0‖αn(d,p)

2 + 1
)
, (5.2)

where α = p′/p. Moreover, if d = 1, d = 2 or d < 2p then n(d, p) = 1.

Proof. The proof follows from a repeated application of lemma 2.1. We can write
(2.1) as

−τ4p(Um) + Fm(x,Um) = β(Um−1) + C6sign(Um) = Tm in Ω,

Um = 0 on ∂Ω,

where Fm(x, ξ) = τf(x,mτ, ξ) + β(ξ) + C6sign(ξ). Note that by (H1’) and (H2’)
we have ξFm(x, ξ) ≥ 0 for all ξ and Tm ∈W−1,p′(Ω).

Now, applying lemma 2.1, we can find an increasing sequence
(
α(m)

)
m≥1

such
that

α(m) ≥ p′,
1

α(m+ 1)
=

1
(p− 1)α(m)

− 1
d
, (5.3)

‖Um‖α(m) ≤
Cm

τα+α2+···+αm

(
‖u0‖αm

2 + 1
)
. (5.4)

We shall stop the iteration on m once we have α(m− 1) > d/p. Indeed, if q > d/p,
then there exists r > d/(p − 1) such that Lq(Ω) ⊂ W−1,r(Ω). Then we have
Tm ∈ W−1,r(Ω) and thus Um ∈ L∞(Ω). n(d, p) will be the first integer m such
that α(m− 1) > d/p. Then (5.2) follows from (5.4) and lemma 2.1. �

Remark 5.2. (i) If d = 1 or d = 2, then for all q > 1, we have L2(Ω) ⊂W−1,q(Ω),
in particular for q > d

p−1 . If d ≥ 3 and d < 2p, we can choose q > 1 to be such
that d

p−1 < q < 2d
d−2 . In the two cases, T1 ∈W−1,q(Ω) for some q > d

p−1 and, from
lemma 2.1, U1 ∈ L∞(Ω). We have then n(d, p) = 1.
(ii) If α(m) ≤ d

p for all m, then l = limm→∞ α(m) exists and equals 2−p
p−1d. Con-

sequently, for p > 2d/(d + 1), we have l < p′ , which contradicts the fact that
α(m) ≥ p′. Hence, the existence of n(d, p) is justified.

In the remaining of this article, we set n0 = n(d, p) and C1 = C
(
‖u0‖αn0

2 + 1
)
.
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Lemma 5.3. Let k be such that 1 < k < q − 1 and k ≤ 1 + 1
n0

. Then, there
exist γ > 0, δ > 0 depending on the data of (H1’)–(H3’) and µ > 0 depending on
n0, q, γ, δ, k such that, for all n ≥ n0, we have

‖β(Un)‖∞ ≤
( δ
γ

)1/(q−1) +
C1 + µ(

τβ(n− n0 + 1)
)1/(k−1)

,

where β =

{
1 if α ≤ 1,
αn0 if α ≥ 1.

Proof. From lemma 5.1, for n ≥ n0, we have

Un ∈ L∞(Ω) and ‖Un0‖∞ ≤ C1/τ
α+α2+···+αn0

.

Multiplying the first equation of (2.1) by |β(Un)|mβ(Un) for some positive integer
m, we derive from (H1’) and (H2’), after dropping some positive terms, that

‖β(Un)‖m+2
m+2 ≤

∫
Ω

|β(Un)|m+1β(Un−1)dx+ Cτ |β(Un)‖m+1
m+1 − Cτ‖β(Un)‖m+q

m+q.

By setting
yn

m = ‖β(Un)‖m+2 and zn = ‖β(Un)‖∞,
and using Hölder’s inequality, we deduce the existence of two constants γ > 0, δ > 0
(not depending on m nor on Un) such that

yn
m + γτ(yn

m)q−1 ≤ δτ + yn−1
m .

As m approaches infinity, we then obtain

zn + γτzq−1
n ≤ δτ + zn−1,

with zn0 ≤ C1/τ
α+α2+···+αn0 .

(i) If α ≤ 1, then α+ α2 + · · ·+ αn0 ≤ n0. So, we have

zn0 ≤ C1/τ
n0 ,

zn + γτzq−1
n ≤ δτ + zn−1.

Then we can apply [4, Lemma 7.1] to obtain

zn ≤
( δ
γ

)1/(q−1)

+
C1 + µ(

τ(n− n0 + 1)
) 1

k−1
≡ cα(n).

(ii) If α ≥ 1, then α+ α2 + · · ·+ αn0 ≤ n0α
n0 . By setting τ1 = ταn0 , we have

zn0 ≤ C1/τ
n0
1 ,

zn + γ′τ1z
q−1
n ≤ δ′τ1 + zn−1,

where γ′ = τ1−αn0
γ and δ′ = τ1−αn0

δ. Then, once again, we can apply [4, lemma
7.1] to obtain

zn ≤
( δ
γ

)1/(q−1)

+
C1 + µ(

τ1(n− n0 + 1)
) 1

k−1
≡ cα(n).

�
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Remark 5.4. In the case α ≥ 1, a slight modification has to be introduced in the
proof of [4, lemma 7.1], since µ depends on δ′ and γ′ and hence on τ . In fact, with
the same notation, it suffices to choose µ such that

γ

(
δ

γ

)1− k
q−1

µk−1 ≥ 2
1

k−1 /(k − 1).

and to remark that γ′ ≥ γ.

Consequently, lemma 5.3 implies that there exist absorbing sets in Lq(Ω) for all
q ∈ [1,∞]. Indeed, this is due to the fact that

‖Un‖∞ ≤ max
(
β−1(cα(n)), |β−1(−cα(n))|

)
,

for all n ≥ n0, with cα(n) →
(

δ
γ

)1/(q−1)
as n→∞.

5.2. Absorbing sets in W 1,p
0 (Ω), existence of the the global attractor. Mul-

tiplying equation (2.1) by δn = Un − Un−1, we obtain

〈β(Un)− β(Un−1)
τ

, δn〉+
∫

Ω

|∇Un|p−2∇Un.(∇Un −∇Un−1)dx

+ 〈f(x, nτ, Un), δn〉 = 0. (5.5)

By setting

Fβ(u) =
∫ u

0

(
f(x, nτ, w) + C2β(w)

)
dw,

we deduce from (H3’) that F ′β(u)(u− v) ≥ Fβ(u)− Fβ(v), and then

〈f(x, nτ, Un), δn〉 = 〈f(x, nτ, Un) + C2β(Un), δn〉 − C2〈β(Un), δn〉

≥
∫

Ω

(
Fβ(Un)− Fβ(Un−1)

)
dx− C2〈β(Un), δn〉.

Now, using (H1’), we get ψ′(v)(u− v) ≤ ψ(u)− ψ(v). Therefore,∫
Ω

β(Un)(Un − Un−1)dx

=
∫

Ω

(
β(Un)− β(Un−1)

)
(Un − Un−1)dx+

∫
Ω

β(Un−1)(Un − Un−1)dx

≤
∫

Ω

(
β(Un)− β(Un−1)

)
(Un − Un−1)dx+

∫
Ω

(
ψ(Un)− ψ(Un−1)

)
dx.

With the aid of the inequality

|a|p−2a.(a− b) ≥ 1
p
|a|p − 1

p
|b|p, (5.6)

we obtain∫
Ω

|∇Un|p−2∇Un.(∇Un −∇Un−1)dx ≥ 1
p
‖Un‖p

1,p −
1
p
‖Un−1‖p

1,p. (5.7)

Since τ < 1/C2, from (5.5) we obtain

1
p
‖Un‖p

1,p +
∫

Ω

Fβ(Un)dx ≤ C2

∫
Ω

(
ψ(Un)− ψ(Un−1)

)
dx+

∫
Ω

Fβ(Un−1)dx. (5.8)
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Now, setting F (u) =
∫ u

0
f(x, nτ, w)dw yields∫

Ω

Fβ(u)dx =
∫

Ω

F (u)dx+ C2

∫
Ω

ψ(u)dx.

Hence, from (5.8), we get

1
p
‖Un‖p

1,p +
∫

Ω

F (Un)dx ≤ 1
p
‖Un−1‖p

1,p +
∫

Ω

F (Un−1)dx.

By setting

yn =
1
p
‖Un‖p

1,p +
∫

Ω

F (Un)dx,

we get yn ≤ yn−1. And by choosing Nτ = 1, using the boundedness of Un and the
stability analysis, there exists nτ > 0 such that

τ

n0+N∑
n=n0

yn ≤ a1, for all n ≥ nτ .

Then we apply the discrete version of the uniform Gronwall lemma [4, Lemma 7.5]
with hn = 0 to obtain

1
p
‖Un‖p

1,p +
∫

Ω

F (Un)dx ≤ C for all n ≥ nτ .

On the other hand, since Un is bounded, we deduce that ‖Un‖1,p ≤ C. We have
then proved the following result.

Proposition 5.5. If τ < 1/C2, there exist absorbing sets in L∞(Ω) ∩W 1,p
0 (Ω).

More precisely, for any u0 ∈ L2(Ω), there exists a positive integer nτ such that

‖Un‖∞ + ‖Un‖1,p ≤ C, ∀n ≥ nτ , (5.9)

where C does not depend on τ .

For the nonlinear map Sτ to satisfy the properties of the semi-group, namely
Sn+p

τ = Sn
τ oS

p
τ , we need (2.1) to be autonomous. So, we assume that f(x, t, ξ) ≡

f(x, ξ). Thus, Sτ defines a semi-group from L2(Ω) into itself and possesses an
absorbing ball B in L∞(Ω) ∩W 1,p

0 (Ω). Setting

Aτ =
⋂
n∈N

∪m≥nSm
τ (B),

Aτ is a compact subset of L2(Ω) which attracts all solutions. That means that for
all u0 ∈ L2(Ω),

dist
(
Aτ , S

n
τ u0

)
7→ 0 as n 7→ ∞.

Therefore, we have proved the following result.

Theorem 5.6. Assuming that u0 ∈ L2(Ω) and (H1’)–(H3’), the discrete problem
(2.1) has an associated solution semi-group Sτ that maps L2(Ω) into L∞(Ω) ∩
W 1,p

0 (Ω). This semi-group has a compact attractor which is bounded in L∞(Ω) ∩
W 1,p

0 (Ω).
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6. Additional regularity for the attractor

In this section, we shall show supplementary regularity estimates on the solutions
of problem (2.1) in the particular case where β(ξ) = ξ. We obtain therefore more
regularity for the attractor obtained in section 5. The assumptions are similar to
those used for the continuous problem in [7]; namely uo ∈ L2(Ω) and f verifying
the following assumption

(H4’) f(x, t, ξ) = g(ξ) − h(x) where h ∈ L∞(Ω) and g satisfying the conditions
(H1’)–(H3’).

The problem (2.1) becomes

δn −4pU
n + g(Un) = f, (6.1)

where δn = Un−Un−1

τ . First, we state the following lemma which we shall use to
prove the main result of this section.

Lemma 6.1. There exists a positive constant C such that for all n0 ≥ nτ , and all
N in N, we have

τ

n0+N∑
n=n0

‖δn‖22 ≤ C. (6.2)

Proof. Multiplying (6.1) by δn, using (5.7), (5.9), (H4’) and Young’s inequality, we
get after some simple calculations

1
4
τ‖δn‖22 +

1
p
‖Un‖p

1,p −
1
p
‖Un−1‖p

1,p ≤ Cτ. (6.3)

Summing (6.3) from n = n0 to n = n0 +N , yields

1
4
τ

n0+N∑
n=n0

‖δn‖22 +
1
p
‖Un0+N‖p

1,p ≤
1
p
‖Un0‖p

1,p + CNτ. (6.4)

Now, if n0 ≥ nτ , Un0 is in an W 1,p
0 (Ω)-absorbing ball, and Choosing Nτ = 1, we

therefore obtain (6.2) from (6.4). �

Theorem 6.2. For all n ≥ nτ , we have ‖δn‖2 ≤ C, where C is a positive constant.

Proof. By subtracting equation (6.1) with n − 1 instead of n, from equation (6.1)
and multiplying the difference by δn, we deduce from the monotonicity of the p-
Laplacian operator, Young’s inequality and (H3’) that

1
2
‖δn‖22 ≤

1
2
‖δn−1‖22 + Cτ‖δn‖22.

Setting yn = 1
2‖δn‖

2
2 and hn = C‖δn‖22, and using [4, lemma 7.5] and lemma 6.1,

we deduce that
yn+N ≤ C

Nτ
+ C.

If n ≥ nτ and Nτ = 1, then we get the desired estimate. �

Using this theorem, we have the following regularizing estimates.

Corollary 6.3. If p > 2d/(d+ 2) and p 6= 2, then there exists some σ, 0 < σ < 1,
such that

‖Un‖B1+σ,p
∞ (Ω) ≤ C for all n ≥ nτ ,

where Bα,p
∞ (Ω) denotes a Besov space defined by real interpolation method.
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If p = 2, then ‖Un‖W 2,2(Ω) ≤ C for all n ≥ nτ .

Proof. (i) If 2d/(d+ 2) < p < 2 then there exists some σ′, 0 < σ′ < 1 such that

L2(Ω) ↪→W−σ′,p′(Ω) (6.5)

By (6.1), (6.5), (H4’) and theorem 6.2 we get

‖ −∆pU
n‖

B−σ′,p′
∞ (Ω)

≤ C for all n ≥ nτ .

Therefore, Simon’s regularity result in [12] yields

‖Un‖
B

1+(1−σ′)(p−1)2,p
∞ (Ω)

≤ C for all n ≥ nτ .

(ii) If p > 2, then, by (6.1), (H4’) and theorem 6.2, we get ‖−∆pU
n‖p′ ≤ C for all

n ≥ nτ . Therefore, Simon’s regularity result in [12] yields

‖Un‖
B

1+ 1
(p−1)2

,p

∞ (Ω)

≤ C for all n ≥ nτ .

(iii) For p = 2, see [4]. �
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