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EXISTENCE AND STABILITY FOR SOME PARTIAL
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE

DELAY

KHALIL EZZINBI

Abstract. We study the existence, regularity, and stability of solutions for
some partial functional differential equations with infinite delay. We assume

that the linear part is not necessarily densely defined and satisfies the Hille-

Yosida condition on a Banach space X. The nonlinear term takes its values in
space larger than X, namely the extrapolated Favard class of the extrapolated
semigroup corresponding to the linear part. Our approach is based on the

theory of the extrapolation spaces.

1. Introduction

In this work, we consider the partial functional differential equation with infinite
delay:

d

dt
x(t) = Ax(t) + F (xt), for t ≥ 0,

x0 = ϕ ∈ B,
(1.1)

where A is a nondensely defined linear operator on a Banach space X and satisfies
the Hille-Yosida condition, this means that A satisfies the usual assumption of Hille-
Yosida’s theorem characterizing the generators of strongly continuous semigroups
except the density of D(A) in X: there exist N0 ≥ 0 and ω0 ∈ R such that
(ω0,+∞) ⊂ ρ(A) and

sup
{
(λ− ω0)n|(λ−A)−n| : n ∈ N, λ > ω0

}
≤ N0,

where ρ(A) is the resolvent set of A. B is a linear space of functions from (−∞, 0]
into X satisfying some axioms which will be described in the sequel. For every
t ≥ 0, the history function xt ∈ B is defined by

xt(θ) = x(t + θ), for θ ∈ (−∞, 0].

F is a continuous function from B with values in F0 larger space than X, namely
the extrapolated Favard class of the extrapolated semigroup corresponding to the
linear part A, (see section 2). Note that the non-density occurs in many situations
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due to the restrictions on the space where the equation is considered (for example,
periodic continuous functions, Hölder continuous functions) or due to boundary
conditions (for example, the space C1 with null value on the boundary is non dense
in the space of continuous functions) (see examples in [5]). In the literature devoted
to equations with finite delay, the state space is the space of continuous functions
on [−r, 0] with values in X, for more details we refer to the book by Wu [16]. When
the delay is unbounded, the selection of the state space B plays an important role
in the study of both quantitative and qualitative studies. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato
[10]. Concerning to the theory of functional differential equations with infinite
delay, we refer to the book by Hino, Murakami and Naito [12]. In recent years,
the theory of partial functional differential equations with infinite delay have been
the subject of considerable activity. In [11], it has been proved the existence and
regularity of solutions of Equation (1.1) when F takes its values in X and A is the
infinitesimal generator of analytic semigroup on X. This in particular contains the
density of the domain D(A) in X by Hille-Yosida’s theorem. More recently, it has
been shown in [1] that the density condition is not necessary to deal with partial
functional differential equations. In [3] and [4], it has been proved the existence,
regularity of solutions and stability for Equation (1.1) when F takes its values in
X and A is nondensely defined and satisfies the Hille-Yosida condition. There are
many approaches to deal with partial differential equations with non dense domain,
one of them is based on the extrapolation approach. For more details about the
extrapolation approach, we cite the book by Engel and Nagel [7] and [13]. This work
was motivated by [8] where the authors have proved the existence and regularity of
solutions for the following partial functional differential equation

d

dt
x(t) = Ax(t) + G(t, xt), for t ≥ 0

x0 = ϕ ∈ C([−r, 0];X),

where A generates a strongly continuous semigroup on X, C([−r, 0];X) is the space
of continuous function from [−r, 0] into X endowed with the uniform norm topology
and G is a continuous function on R+ × C([−r, 0];X) with values in F0.

The purpose of this work is to discuss the existence, regularity of the mild so-
lutions of Equation (1.1) and the asymptotic behavior of solutions near an equilib-
rium. In our context we will use the extrapolation approach. The obtained results
of this work would be an extension of the results in [3], [4], [11] and [8]. The
organization is as follows: In section 2, we recall some preliminary results about
the extrapolation spaces and Favard class which will be used in the whole of the
work. In section 3, we start with our main results, in which we prove the existence
and regularity of the mild solutions of Equation (1.1). In section 4, we prove the
linearized stability and finally we propose an application.

2. Extrapolation spaces and Favard class

Here and hereafter we assume that
(H1) A is a Hille-Yosida operator on a Banach space X.

Let A0 be the part of A in X0 = D(A) which is defined by

D(A0) =
{

x ∈ D(A) : Ax ∈ D(A)
}

A0x = Ax, for x ∈ D(A0).
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Lemma 2.1 ([7]). A0 generates a strongly continuous semigroup (T0(t))t≥0 on
X0 and |T0(t)| ≤ N0e

ωt, for t ≥ 0. Moreover ρ(A) ⊂ ρ(A0) and R(λ, A0) =
R(λ, A)/X0, for λ ∈ ρ(A).

For a fixed λ0 ∈ ρ(A), we introduce on X0 a new norm defined by

‖x‖−1 = |R(λ0, A0)x| for x ∈ D(A0) .

The completion X−1 of (X0, ‖.‖−1) is called the extrapolation space of X associated
with A Note that ‖.‖−1 and the norm on X0 given by |R(λ, A0)x| for λ ∈ ρ(A)
are equivalent. The operator T0(t) has a unique bounded linear extension T−1(t)
to the Banach space X−1 and (T−1(t))t≥0 is a strongly continuous semigroup on
X−1. (T−1(t))t≥0 is called the extrapolated semigroup of (T0(t))t≥0, we denote its
generator by (A−1, D(A−1). We have some fundamental results.

Lemma 2.2 ([8]). The following properties hold:
(i) |T−1(t)|L(X−1) = |T0(t)|L(X0)

(ii) D(A−1) = X0

(iii) A−1 : X0 → X−1 is the unique continuous extension of A0: D(A0) ⊂
(X0, |.|) → (X−1, ‖.‖−1) and (λ0 − A−1) is an isometry from (X0, |.|) to
(X−1, ‖.‖−1),

(iv) If λ ∈ ρ(A0), then (λ − A−1) is invertible and (λ − A−1)−1 ∈ L(X−1). In
particular λ ∈ ρ(A−1) and R(λ, A−1)/X0 = R(λ, A0).

(v) The space X0 = D(A) is dense in (X−1, ‖.‖−1). Hence the extrapolation
space X−1 is also the completion of (X, ‖.‖−1) and X ↪→ X−1.

(vi) The operator A−1 is an extension of A. In particular if λ ∈ ρ(A), then
R(λ, A−1)/X = R(λ, A) and (λ, A−1)X = D(A).

Next we introduce the Favard class corresponding to semigroup.

Definition 2.3 ([8]). Let (S(t))t≥0 be a strongly continuous semigroup with gen-
erator (B,D(B)) on a Banach space Z such that |S(t)| ≤ Neνt for some N ≥ 1
and ν ∈ R. The Favard class of (S(t))t≥0 is the Banach space

F =
{

x ∈ Z : sup
t>0

1
t
|e−νtS(t)x− x| < ∞

}
equipped with the norm

|x|F = |x|+ sup
t>0

1
t
|e−νtS(t)x− x|.

We can see that F is invariant under (S(t))t≥0 and D(B) ⊂ F. If Z is reflexive
then F = D(B). Furthermore if we denote by |.|B the graph norm of B, then |.|B
and |.|F are equivalent norms on D(B).

For the rest of the paper we denote by F1 ⊂ X0 the Favard class of the C0

semigroup (T0(t))t≥0 and F0 ⊂ X−1 the Favard class of (T−1(t))t≥0.

Lemma 2.4 ([8]). For the Favard classes F0 and F1 the following hold:
(i) (λ0 −A−1)F1 = F0

(ii) T−1(t)F0 ⊂ F0, t ≥ 0,
(iii) D(A0) ↪→ D(A) ↪→ F1 ↪→ X0 ↪→ X ↪→ F0 ↪→ X−1, where D(A) is equipped

with the graph norm.
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Proposition 2.5 ([13]). For f ∈ L1
loc(R+, F0), we define

(T−1 ∗ f)(t) =
∫ t

0

T−1(t− s)f(s)ds, t ≥ 0 .

Then
(i) (T−1 ∗ f)(t) ∈ D(A), for all t ≥ 0,

(ii) |(T−1 ∗ f)(t)| ≤ M
∫ t

0
ew(t−s)|f(s)|F0ds, for some M independent of f and

t,
(iii) limt→0 |(T−1 ∗ f)(t)| = 0.

Remark 2.6. Condition (iii) in Proposition 2.5 implies that the function t →∫ t

0
T−1(t− s)f(s)ds is continuous from R+ to X0.

3. Existence and regularity of solutions

We assume that the phase space B is a linear space of functions mapping (−∞, 0]
into X, endowed with a norm |.|B and satisfying the following fundamental axioms
introduced at first by Hale and Kato in [10]:

(A1) There exist a positive constant H and functions K, M : [0,+∞) → [0,+∞),
with K is continuous and M is locally bounded, such that for any σ ∈ R
and a > 0, if x : (−∞, σ+a] → X, xσ ∈ B and x is continuous on [σ, σ+a],
then for all t in [σ, σ + a] the following conditions hold:
(i) xt ∈ B,
(ii) |x(t)| ≤ H |xt|B,
(iii) |xt|B ≤ K(t− σ) supσ≤s≤t |x(s)|+ M(t− σ)|xσ|B.

(A2) For a function x satisfying (A1), t 7→ xt is a B-valued continuous function
for t in [σ, σ + a].

(B1) The space B is complete.
For the remaining of this work, we use the notations: for a > 0, we define

Ka = max0≤t≤a K(t) and Ma = max0≤t≤a M(t).
(H2) We assume that F takes its values in F0 and satisfies the Lipschitz condition

|F (ϕ1)− F (ϕ2)|F0 ≤ L|ϕ1 − ϕ2|B, for ϕ1, ϕ2 ∈ B.

Definition 3.1. A function x : (−∞,∞) → X is called a mild solution of (1.1) if
x is continuous on [0,∞) and satisfies

x(t) = T0(t)ϕ(0) +
∫ t

0

T−1(t− s)F (xs)ds, t ≥ 0

x0 = ϕ .

When F maps into X, the mild solution coincides with the integral solution
given in [3] and [4]. By Proposition 2.5, the mild solution (if it exists) takes values
in D(A) only if ϕ(0) ∈ D(A).

Theorem 3.2. Assume that (H1)–(H2) hold. Then for ϕ ∈ B such that ϕ(0) ∈
D(A), Equation (1.1) has a unique mild solution x(., ϕ) which is defined for all
t ≥ 0. Moreover for every a > 0, there exists β > 0 such that for ϕ1, ϕ2 ∈ B with
ϕ1(0), ϕ2(0) ∈ D(A), we have

|xt(., ϕ1)− xt(., ϕ2)|B ≤ β|ϕ1 − ϕ2|B, for t ∈ [0, a]. (3.1)
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Proof. Let ϕ ∈ B such that ϕ(0) ∈ D(A) and for a > 0, we introduce the set Za(ϕ)
by

Za(ϕ) := {y ∈ C([0, a];X) : y(0) = ϕ(0)} ,

provided with the uniform norm topology which will be denoted by

|y|∞ = sup
s∈[0,a]

|y(s)|, for y ∈ Za(ϕ).

For x ∈ Za(ϕ), the function x̃ : (−∞, a] → X is given by

x̃(t) =

{
x(t), t ∈ [0, a],
ϕ(t), −∞ < t ≤ 0.

By virtue of conditions (H2) and (A2), we deduce that the mapping s → F (x̃s) is
continuous from [0, a] to F0. Let P be defined on Za(ϕ) by

(Px)(t) = T0(t)ϕ(0) +
∫ t

0

T−1(t− s)F (x̃s)ds, t ∈ [0, a].

By Proposition 2.5, we get that the function t →
∫ t

0
T−1(t−s)F (x̃s)ds is continuous

from [0, a] to X, which implies that Px ∈ Za(ϕ), if x ∈ Za(ϕ). Therefore, by
Proposition 2.5, we have∣∣∣ ∫ t

0

T−1(t− s)(F (x̃s)− F (ỹs))ds
∣∣∣ ≤ M

∫ t

0

ew(t−s)|F (x̃s)− F (ỹs)|F0ds,

this implies by assumption (H2) that∣∣∣ ∫ t

0

T−1(t− s)(F (x̃s)− F (ỹs))ds
∣∣∣ ≤ ML

∫ t

0

ew(t−s)|x̃s − ỹs|Bds.

Without loss of generality we assume that ω > 0 and then by (A1) part (iii), we
obtain

|(Px)(t)− (Py)(t)| ≤ MLeωa

∫ t

0

K(s) sup
0≤ξ≤s

|x(ξ)− y(ξ)| ds

≤ MLeωaKa

∫ t

0

sup
0≤ξ≤s

|x(ξ)− y(ξ)|ds.

Arguing as above we can see that

|(P2x)(t)− (P2y)(t)| ≤ MLeωaKa

∫ t

0

sup
0≤ξ≤s

|(Px)(ξ)− (Py)(ξ)|ds,

≤ (MLeωaKa)2
∫ t

0

sup
0≤ξ≤s

∫ ξ

0

sup
0≤α≤p

|x(α)− y(α)|dp ds,

≤ (MLeωaKa)2
∫ t

0

∫ s

0

dp ds|x− y|∞,

≤ (MLeωaKa)2

2
a2|x− y|∞.

Then for every n ∈ N∗ we have

|(Pnx)(t)− (Pny)(t)| ≤ (MLeωaKa)n

n!
an|x− y|∞.
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Since there exists n ∈ N such that (MLeωaKa)n

n! an < 1, it follows that Pn is a
strict contraction on the closed subset Za(ϕ) of the Banach space C([0, a];X).
Consequently P has a unique fixed point in Za(ϕ), this holds for every a > 0.
We conclude that Equation (1.1) has a unique mild solution x(., ϕ) on (−∞,∞).
Moreover the solution depends continuously on the initial data. In fact, if we
consider two solutions x := x(., ϕ1) and y := y(., ϕ2) for ϕ1, ϕ2 ∈ B such that
ϕ1(0), ϕ2(0) ∈ D(A), then for every t ∈ [0, a] with a > 0 fixed, we have

|x(t)− y(t)| ≤ |T0(t)(ϕ1(0)− ϕ2(0))|+ MLeωa

∫ t

0

|xs − ys|Bds,

≤ N0e
ωa|ϕ1(0)− ϕ2(0)|

+ MLeωa

∫ t

0

(
K(s) max

0≤ξ≤s
|x(ξ)− y(ξ)|+ M(s)|ϕ1 − ϕ2|B

)
ds,

≤ HN0e
ωa|ϕ1 − ϕ2|B + MLeωaKa

∫ t

0

max
0≤ξ≤s

|x(ξ)− y(ξ)|ds

+ aMLeωaMa|ϕ1 − ϕ2|B.

By Gronwall’s lemma, it follows that

max
0≤s≤t

|x(s)− y(s)| ≤ β0|ϕ1 − ϕ2|B, for t ∈ [0, a],

where β0 = eωa(HN0 + aMLMa) exp(aMLKaeωa). Therefore, by (A1) part (iii),

|xt(., ϕ1)− xt(., ϕ2)|B ≤ K(t) sup
0≤s≤t

|x(s, ϕ1)− x(s, ϕ2)|+ M(t)|ϕ1 − ϕ2|B,

which implies the desired estimate (3.1). �

For the regularity of the mild solution, we need to compute the integral in B
from the integral in X. For that we suppose that B satisfies the condition:

(C1) If (φn)n≥0 is a Cauchy sequence in B and if (φn)n≥0 converges compactly
to φ on (−∞, 0], then φ is in B and |φn − φ|B → 0, as n →∞.

Lemma 3.3 ([14]). Let B satisfy (C1) and f : [0, a] → B, a > 0, be a continuous
function such that f(t)(θ) is continuous for (t, θ) ∈ [0, a]× (−∞, 0]. Then[ ∫ a

0

f(t)dt
]
(θ) =

∫ a

0

f(t)(θ)dt, θ ∈ (−∞, 0].

One can obtain the similar result, by assuming that B satisfies
(D1) For a sequence (φn)n≥0 in B, if |φn|B → 0, as n →∞, then |φn(θ)| → 0, as

n →∞, for each θ ∈ (−∞, 0].

Lemma 3.4. Let B satisfy (D1) and f : [0, a] → B be a continuous function. Then
for all θ ∈ (−∞, 0], the function f(.)(θ) is continuous and[ ∫ a

0

f(t)dt
]
(θ) =

∫ a

0

f(t)(θ)dt, θ ∈ (−∞, 0].

Proof. Since the function f is continuous, it follows that∫ a

0

f(t)dt = lim
n→+∞

a

n

∑
k = 1nf(

ka

n
) in B.
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By assumption (D1),[ ∫ a

0

f(t)dt
]
(θ) = lim

n→+∞

a

n

n∑
k=1

f(
kn

a
)(θ), θ ∈ (−∞, 0].

Moreover by (D1), the function f(.)(θ) is continuous on [0, a], from what we infer
that for all θ ∈ (−∞, 0], the function f(.)(θ) is integrable on [0, a] and∫ a

0

f(t)(θ)dt = lim
n→+∞

a

n

n∑
k=1

f(
kn

a
)(θ), θ ∈ (−∞, 0],

which implies [ ∫ a

0

f(t)dt
]
(θ) =

∫ a

0

f(t)(θ)dt, θ ∈ (−∞, 0].

�

Theorem 3.5. Assume that (H1) and (H2) hold and B satisfies (C1) or (D1).
Furthermore we assume that F : B → F0 is continuously differentiable and F ′ is
locally Lipschitz. Let ϕ ∈ B be continuously differentiable such that

ϕ′ ∈ B, ϕ(0) ∈ F1, ϕ′(0) ∈ D(A), and ϕ′(0) = A−1ϕ(0) + F (ϕ).

Then the mild solution x of (1.1) belongs to C1(R+, X) ∩ C(R+, F1) and satisfies
d

dt
x(t) = A−1x(t) + F (xt), t ≥ 0

x0 = ϕ.
(3.2)

The proof of this theorem is based on the following Lemma.

Lemma 3.6 ([13]). For u0 ∈ F1 and h ∈ W 1,1(R+, F0) such that A−1u0 + h(0) ∈
D(A), the equation

d

dt
u(t) = A−1u(t) + h(t), t ≥ 0

u(0) = u0

(3.3)

has a unique solution u ∈ C1(R+, X) ∩ C(R+, F1).

Remark 3.7. The mild solution of (3.3) is given by

u(t) = T0(t)u0 +
∫ t

0

T−1(t− s)h(s)ds, t ≥ 0

Using Lemma 3.6 we can deduce that u ∈ C1(R+, X)∩C(R+, F1) and satisfies (3.3)
for every t ≥ 0.

Proof of Theorem 3.5. Set a > 0 and let x be the mild solution of (1.1) on [0, a].
Consider the equation

y(t) = T0(t)ϕ′(0) +
∫ t

0

T−1(t− s)F ′(xs)ysds, for t ∈ [0, a]

y0 = ϕ′.

(3.4)

Then using the same reasoning as in the proof of Theorem 3.2 we get that Equation
(3.4) has a unique solution y on (−∞, a]. Let z : (−∞, a] → X be defined by

z(t) =

{
ϕ(0) +

∫ t

0
y(s) ds, for t ∈ [0, a]

ϕ(t), for t ∈ (−∞, 0].
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By Lemma 3.3 or Lemma 3.4, we deduce that

zt = ϕ +
∫ t

0

ys ds, for t ∈ [0, a]. (3.5)

We will show that x = z on [0, a]. From (3.4),∫ t

0

y(s)ds =
∫ t

0

T0(s)ϕ′(0)ds +
∫ t

0

∫ s

0

T−1(s− σ)F ′(xσ)yσdσds. (3.6)

On the other hand t → zt is differentiable from [0, a] to B, then by differentiability
of F , we get that t → F (zt) is differentiable from [0, a] to F0, since F0 ↪→ X−1, it
follows that t → F (zt) is differentiable from [0, a] to X−1 and then for t ∈ [0, a], we
have

d

dt

∫ t

0

T−1(t− s)F (zs)ds = T−1(t)F (ϕ) +
∫ t

0

T−1(t− s)F ′(zs)ysds,

which implies∫ t

0

T−1(s)F (ϕ)ds =
∫ t

0

T−1(t−s)F (zs)ds+
∫ t

0

∫ s

0

T−1(s−σ)F ′(zσ)yσdσds. (3.7)

It follows that

z(t)

= ϕ(0) +
∫ t

0

T0(s)(A−1ϕ(0) + F (ϕ))ds +
∫ t

0

∫ s

0

T−1(s− σ)F ′(xσ)yσdσds

= ϕ(0) +
∫ t

0

T−1(s)(A−1ϕ(0) + F (ϕ))ds +
∫ t

0

∫ s

0

T−1(s− σ)F ′(xσ)yσdσds

= T−1(t)ϕ(0) +
∫ t

0

T−1(s)F (ϕ)ds +
∫ t

0

∫ s

0

T−1(s− σ)F ′(xσ)yσdσds

Using (3.7) we obtain

z(t) = T−1(t)ϕ(0) +
∫ t

0

T−1(t− s)F (zs)ds

+
∫ t

0

∫ s

0

T−1(s− σ)(F ′(xσ)− F ′(zσ))yσdσds.

On the other hand ϕ(0) ∈ F1 which gives that T−1(t)ϕ(0) = T0(t)ϕ(0), for all t ≥ 0.
Then

x(t)− z(t)

=
∫ t

0

T−1(t− s)(F (xs)− F (zs))ds−
∫ t

0

∫ s

0

T−1(s− σ)(F ′(xσ)− F ′(zσ))yσdσds.

Using the local Lipschitz condition on F ′ we get that there exists a positive constant
b0 such that

sup
0≤s≤t

|x(s)− z(s)| ≤ b0

∫ t

0

|xs − zs|Bds.

Since x0 = z0 = ϕ, axiom (A1) part (iii) implies

|xt − zt|B ≤ Ka sup
0≤s≤t

sup |x(s)− z(s)|.
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Then

|xt − zt|B ≤ Kab0

∫ t

0

|xs − zs|B ds.

Using Gronwall’s lemma, we conclude that |xt−zt|B = 0 for t ∈ [0, a]. Consequently,
x(t) = z(t) for all t ∈ (−∞, a]. Hence, t → xt is continuously differentiable on [0, a],
for every a > 0. We deduce that F (x.) ∈ C1(R+, F0) and by Lemma 3.6 we deduce
that x belongs to C1(R+, X) ∩ C(R+, F1) and satisfies (3.2). �

4. The solution semigroup and linearized stability

Let H be the phase space of Equation (1.1) which is given by

H =
{

ϕ ∈ B : ϕ(0) ∈ D(A)
}

.

For t ≥ 0, we define the continuous operator U(t) on H by U(t)ϕ = xt(., ϕ),
where x(., ϕ) is the mild solution of (1.1). Then we can see that (U(t))t≥0 is a
strongly continuous semigroups on H. We are interested in studying the behavior
of solutions of Equation (1.1) near an equilibrium . We mean by an equilibrium
a constant mild solution x∗ of (1.1). Without loss of generality we suppose that
x∗ = 0 and F (0) = 0.

(H3) F is differentiable at zero.
Then the linearized equation at zero is given by

d

dt
y(t) = Ay(t) + L(yt), for t ≥ 0,

y0 = ϕ ∈ B,
(4.1)

where L = F ′(0). Let (T (t))t≥0 be the solution semigroup associated to Equation
(4.1) that is defined by T (t)ϕ = yt(., ϕ), ϕ ∈ H, where y(., ϕ) is the mild solution
of Equation (4.1).

Theorem 4.1. Assume that conditions (H1)–(H3) hold. Then for t ≥ 0, the
derivative at zero of U(t) is T (t).

Proof. Let x(., ϕ) and y(., ϕ) be respectively the mild solutions of (1.1) and (4.1).
By assumption (A1) part (iii), we have for all t ≥ 0

|U(t)ϕ− T (t)ϕ|B ≤ K(t) sup
0≤σ≤t

|x(σ, ϕ)− y(σ, ϕ)|

≤ K(t) sup
0≤σ≤t

∣∣∣ ∫ σ

0

T−1(σ − s)(F (U(s)ϕ)− L(T (s)ϕ))ds
∣∣∣,

≤ K(t)Meωt

∫ t

0

e−ωs|F (U(s)ϕ)− L(T (s)ϕ)|F0ds,

≤ K(t)Meωt
( ∫ t

0

e−ωs|F (U(s)ϕ)− L(U(s)ϕ)|F0ds

+
∫ t

0

e−ωs|L(U(s)ϕ)− L(T (s)ϕ)|F0ds
)
.

By virtue of the differentiability of F at 0 and from (3.1) of Theorem 3.2, we deduce
that for ε > 0, there exists δ > 0 such that∫ t

0

e−ωs|F (U(s)ϕ)− L(U(s)ϕ)|F0ds ≤ ε|ϕ|B, for |ϕ|B ≤ δ.
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On the other hand, one has∫ t

0

e−ωs|L(U(s)ϕ)− L(T (s)ϕ)|F0ds ≤ |L|L(B,F0)

∫ t

0

e−ωs|U(s)ϕ− T (s)ϕ|Bds.

Consequently,

|U(t)ϕ− T (t)ϕ|B ≤ K(t)Meωt
(
ε|ϕ|B + |L|L(B,F0)

∫ t

0

e−ωs|U(s)ϕ− T (s)ϕ|Bds
)
.

By Gronwall’s lemma,

|U(t)ϕ− T (t)ϕ|B ≤ K(t)Mε|ϕ|B exp
(
(|L|L(B,F0)K(t)M + ω)t

)
, t ≥ 0.

Hence, we conclude that U(t) is differentiable at 0 and (DϕU(t))(0) = T (t). �

Theorem 4.2. Assume that conditions (H1)–(H3) hold. If the zero equilibrium of
(T (t))t≥0 is exponentially stable, then the zero equilibrium of (U(t))t≥0 is locally
exponentially stable in the sense that there exist δ > 0 µ > 0, k ≥ 1 such that

|U(t)ϕ| ≤ ke−µt|ϕ|, for |ϕ| ≤ δ t ≥ 0.

Moreover if H can be decomposed as H = H1 ⊕ H2 where Hi are T -invariant
subspaces of H and H1 is finite-dimensional and with ω0 = limh→∞

1
h log |T (h)/H2|

we have
inf {|λ| : λ ∈ σ(T (t)/H1)} > eω0t.

Then zero is not stable in the sense that there exist ε > 0 and sequence (ϕn)n

converging to 0 and (tn)n of positive reals such that |U(tn)ϕn| > ε.

The proof of this theorem is based on Theorem 4.1 and on the following result.

Theorem 4.3 ([6]). Let (V (t))t≥0 be a nonlinear strongly continuous semigroup
on a subset Ω of a Banach space Z and assume that x0 ∈ Ω is an equilibrium of
(V (t))t≥0 such that V (t) is differentiable at x0 for each t ≥ 0, with W (t) the deriv-
ative at x0 of V (t), t ≥ 0. Then (W (t))t≥0 is a strongly continuous semigroup of
bounded linear operators on Z. If the zero equilibrium of (W (t))t≥0 is exponentially
stable, then x0 is locally exponentially stable of (V (t))t≥0. Moreover if Z can be
decomposed as Z = Z1 ⊕ Z2 where Zi are W -invariant subspaces of Z and Z1 is
finite-dimensional and with ω0 = limh→∞

1
h log |W (h)/Z2| we have

inf
{
|λ| : λ ∈ σ(W (t)/Z1)

}
> eω0t.

Then the equilibrium x0 is not stable in the sense that there exist ε > 0 and sequence
(xn)n converging to x0 and (tn)n of positive reals such that |V (tn)xn − x0| > ε.

5. Applications

To apply our abstract result, we consider the partial functional differential equa-
tions with infinite delay,

∂

∂t
v(t, ξ) = − ∂

∂ξ
v(t, ξ) + m(ξ)

∫ 0

−∞
K(θ, v(t + θ, ξ))dθ, for ξ ∈ [0, 1], t ≥ 0,

v(t, 0) = 0, t ≥ 0,

v(θ, ξ) = v0(θ, ξ), for ξ ∈ [0, 1] θ ∈ (−∞, 0],
(5.1)

where K is a continuous function from (−∞, 0] × R into R and v0 : (−∞, 0] ×
[0, 1] → R is an appropriate function. Here and hereafter we suppose that m is not
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necessarily continuous on [0, 1] and m ∈ L∞(0, 1). Let A be the operator defined
on X = C([0, 1]; R) by

D(A) = {g ∈ C1([0, 1]; R) : g(0) = 0}, Ag = −g′.

Then D(A) = C0([0, 1]; R) = {g ∈ C([0, 1]; R) : g(0) = 0}.

Lemma 5.1 ([13]). The operator A is a Hille-Yosida operator on X. The part
A0 of A in C0([0, 1]; R) generates a strongly continuous semigroup (T0(t))t≥0 on
C0([0, 1]; R) which is given for g ∈ C0([0, 1]; R) by

(T0(t)g)(ξ) =

{
g(ξ − t), if t ≤ ξ

0, if t > ξ.

Let Lip0[0, 1] be the space of Lipschitz continuous function on [0, 1] vanishing at
zero.

Lemma 5.2 ([13]). The following properties hold:
(i) The Favard class F0 of the extrapolated semigroup (T−1(t))t≥0 is given by

F0 = L∞(0, 1).
(ii) The Favard class F1 of semigroup (T0(t))t≥0 is given by F1 = Lip0[0, 1],

where the norm is given by

|g|Lip = sup
0≤x1<x2≤1

|g(x1)− g(x2)|
x1 − x2

.

(iii) The extrapolated operator A−1 coincides on F1 with the a.e. derivative.

Set γ > 0. For the phase space, we choose B to be defined by

B = Cγ =
{
φ ∈ C((−∞, 0];X) : lim

θ→−∞
eγθφ(θ) exists in X

}
with the norm |φ|γ = supθ≤0 eγθ|φ(θ)|, φ ∈ Cγ .

Lemma 5.3 ([12]). The space Cγ satisfies Assumptions (A1), (A2), (B1), (C1),
and (D1).

We assume the following:
(a) K is measurable in (θ, z), K(., 0) is integrable on (−∞, 0] and there exists

a positive function G such that

|K(θ, z1)−K(θ, z2)| ≤ G(θ)|z1 − z2|, for θ ∈ (−∞, 0] z1, z2 ∈ R.

(b) G(.)e−γ. is integrable on (−∞, 0],
(c) v0 ∈ C((−∞, 0]× [0, 1]; R, v0(0, 0) = 0 and limθ→−∞ eγθv0(θ, .) exists in X.

By making the following change of variables:

x(t)(ξ) = v(t, ξ), t ≥ 0, ξ ∈ [0, 1],

ϕ(θ)(ξ) = v0(θ, ξ), θ ≤ 0, ξ ∈ [0, 1],

F (φ)(ξ) = m(ξ)
∫ 0

−∞
K(θ, φ(θ)(ξ))dθ, ξ ∈ [0, 1], φ ∈ Cγ ,

Equation (5.1) takes the abstract form
dx

dt
(t) = Ax(t) + F (xt), t ≥ 0,

x0 = ϕ ∈ Cγ .
(5.2)
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Proposition 5.4. Assume that (a)–(c) above hold. Then (5.2) has a unique mild
solution on (−∞,∞).

Proof. Since m ∈ L∞(0, 1), it follows that F doesn’t take its values in X. However
F takes its values in L∞(0, 1). In fact if φ1 ∈ Cγ , then

|F (φ1)|L∞(0,1) ≤ ess sup
x∈[0,1]

|m(x)| sup
0≤ξ≤1

∫ 0

−∞
G(θ)|φ1(θ)(ξ)|dθ

+ ess sup
x∈[0,1]

|m(x)|
∫ 0

−∞
|K(θ, 0)|dθ.

Moreover,

sup
0≤ξ≤1

∫ 0

−∞
G(θ)|φ1(θ)(ξ)|dθ ≤

∫ 0

−∞
e−γθG(θ)dθ sup

−∞<θ≤0, 0≤ξ≤1
eγθ|φ1(θ)(ξ)|.

It follows that for every φ1 ∈ Cγ , F (φ1) ∈ L∞(0, 1). Moreover for φ1, φ2 ∈ Cγ , we
have

|F (φ1)− F (φ2)|L∞(0,1)

= ess sup
x∈[0,1]

|m(x)| sup
0≤ξ≤1

∫ 0

−∞
G(θ)|φ1(θ)(ξ)− φ2(θ)(ξ)|dθ

≤ |m|L∞(0,1) sup
0≤ξ≤1

∫ 0

−∞
e−γθG(θ)(eγθ|φ1(θ)(ξ)− φ2(θ)(ξ)|)dθ,

≤ |m|L∞(0,1)

( ∫ 0

−∞
e−γθG(θ)dθ

)
sup

−∞<θ≤0, 0≤ξ≤1
eγθ|φ1(θ)(ξ)− φ2(θ)(ξ)|.

Then F is Lipschitzian from Cγ to L∞(0, 1). Assumption (c) implies that ϕ ∈
Cγ and ϕ(0) ∈ D(A). As a consequence, (5.2) has a unique mild solution v on
(−∞,∞). �

For the regularity, we assume that F is continuously differentiable from Cγ to
L∞(0, 1) and F ′ is locally Lipschitz. Let v0 ∈ C((−∞, 0]× [0, 1]; R) be such that:

(d) ∂v0
∂θ exists and continuous on (−∞, 0] × [0, 1], limθ→−∞

(
eγθ

(
∂
∂θv0(θ, .)

))
exists in X and v0(0, .) ∈ Lip0[0, 1],

(e) ∂
∂θv0(0, ξ) = − ∂

∂ξ v0(0, ξ) + m(ξ)
∫ 0

−∞K(θ, v0(θ, ξ))dθ, for a.e. ξ ∈ [0, 1],
(f) ∂

∂θv0(0, 0) = 0.

Proposition 5.5. Assume that (a)–(f) above hold. Let v be the mild solution of
(5.2). Then v belongs to C1(R+, C([0, 1], R)) ∩ C(R+,Lip0[0, 1]) and satisfies

∂

∂t
v(t, ξ) = − ∂

∂ξ
v(t, ξ) + m(ξ)

∫ 0

−∞
K(θ, v(t + θ, ξ))dθ,

for a.e. ξ ∈ [0, 1], t ≥ 0

v(t, 0) = 0, t ≥ 0

v(θ, ξ) = v0(θ, ξ), for (θ, ξ) ∈ (−∞, 0]× [0, 1].

(5.3)

Proof. Conditions (d), (e), and (f) imply that ϕ is continuously differentiable and

ϕ′ ∈ Cγ , ϕ(0) ∈ F1, ϕ′(0) ∈ D(A), ϕ′(0) = A−1ϕ(0) + F (ϕ).
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Since all assumptions of Theorem 3.5 are satisfied, we deduce that the mild solution
v belongs to C1(R+, C0([0, 1], R)) ∩ C(R+,Lip0[0, 1]) and satisfies (5.3). �
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