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OPTIMAL IMPULSIVE HARVEST POLICY FOR
TIME-DEPENDENT LOGISTIC EQUATION WITH PERIODIC

COEFFICIENTS

LING BAI & KE WANG

Abstract. We study a time-dependent logistic equation with periodic coef-
ficients. First, we show that the impulsive harvest population equation has
impulsive periodic solutions for constant effort harvest and for proportional

harvest. Second, we investigate the optimal harvest effort that maximizes
the sustainable yield per unit of time. Then we determine the corresponding

optimal population levels. Our results generalize the results presented in [10].

1. Introduction

Most of the models for a single species dynamics have been derived from a
differential equation of the form

ẋ = xf(x, t)− g(t, x), (1.1)

where the solution x = x(t) is the density (size, or biomass) of the resource pop-
ulation at time t > 0, the function f = f(t, x) is characterized by the population
change at the moment t, the function g = g(t, x) describes the continuous influences
of outside factors, such as hunting, cutting down the space available, etc.. Various
choices of the functions f and g lead us to various models. When we only consider
an isolated population without any perturbations, namely g(t, x) = 0, the classical
model is the logistic equation

ẋ = rx(1− x

K
)

x(0) = x0 ,
(1.2)

or
ẋ = r(t)x(1− x

K(t)
)

x(t0) = x0 ,
(1.3)
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where (1.2) is an autonomous evolutionary model, and (1.3) is treated as the non-
autonomous evolutionary model because the coefficients of (1.3) are dependent on
the time t.

In a real evolutionary processes of the population, the perturbation or the in-
fluence from outside occurs “immediately” as impulses, and not continuously. The
duration of these perturbations is negligible compared to the duration of the whole
process. For instance, as we know, fisherman can not fish day and night in 24
hours. Instead, they only fish in some time every day. Furthermore, the seasons
also decide the fishing period. So the problem of impulsive harvest is more prac-
tical and realistic compared to the continuous harvest. However, to the best of
our knowledge, there no results on impulsive harvest for renewable resources in the
literature. In this paper, we research optimal impulsive harvest policy for a single
population resource.

The organization of this article is as follows: In the next section, we establish
the mathematical model for impulsive time harvest for the well known logistic
equation. We also obtain the maximum of increasing density of population per unit
time. In subsequent portions of this paper, the main results on the existence and
the stability of impulsive periodic solution for the impulsive equation are proved.
Then the optimal impulsive harvest policies are determined for both constant effort
harvest and for harvest proportional to the size of the population.

2. The impulsive harvest model

Considering the feasible operation, we suppose that we harvest once every time
T for the population X which obeys the logistic growth law. We shall establish the
mathematical model of impulsive time harvest for the logistic equation:

dN

dt
= r(t)N

(
1− N

K(t)
)
− δ(s(t))Eh(N(t))

N(t0) = N0 .

(2.1)

Here, assume that r and K are both positive T -periodic functions with respect to t.
h(N(t)) is the function of general harvest; δ is the Dirac impulsive function, which
satisfies δ(0) = ∞ and δ(s) = 0 for s 6= 0 and

∫∞
−∞ δ(s)ds = 1, and

s(t) =

{
0 if t = nT, n ∈ N,

−1 otherwise.

From this explanation, it is obvious that the population X will increase according to
logistic increasing curve without exploitation and the management of the resource
will harvest Eh(N(t)) every time T . For explaining the latter, we discuss the
impulse function δ deliberately. As is well known, the Heaviside function satisfies

θ(t) =

{
1 if t ≥ 0,

0 if t < 0.

Using generalized derivatives, θ′ = δ. Thus, if t 6= nT , s(t) = −1 and θ(s(t)) = 0,
namely, the management does not harvest. If t = nT , s(t) = 0 and θ(s(t)) = 1,
namely, in nT , the management harvests Q(nT ), which satisfies

Q(nT ) =
∫ nT

−∞
δ(s(t))Eh(x(t))dt−

∫ (n−1)T

−∞
δ(s(t))Eh(x(t))dt = Eh(x(nT )).
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Clearly, the general solution of (1.3) may be written in the form

x(t, t0, x0) =
( 1

x0
exp

{
−

∫ t

t0

r(s)ds
}

+
∫ t

t0

r(s)
K(s)

exp
{
−

∫ t

s

r(τ)dτ
}
ds

)−1

.

For convenience, denote x(t, t0, x0) = 1
1

x0
A(t)+B(t)

= x0
A(t)+B(t)x0

, where

A(t) = exp
{
−

∫ t

t0

r(s)ds
}
, B(t) =

∫ t

t0

r(s)
K(s)

exp
{
−

∫ t

s

r(τ)dτ
}
ds. (2.2)

For biological considerations, we are interested only in positive solutions. In this
paper, we always need x0 > 0. After time T , the increase of population in (1.3)
without harvest is x(T, 0, x0)− x0 =: f(x0). Then

f(x0) =
x0

A(T ) + B(T )x0
− x0 . (2.3)

In the following, our objective is to find an x0 such that f(x0) reaches its maximum
at x̄0. Let f ′(x0) = 0, so we have

x1
0 =

−A(T ) +
√

A(T )
B(T )

> 0 , x2
0 =

−A(T )−
√

A(T )
B(T )

< 0 .

Furthermore, f ′′(x1
0) < 0, then x̄0 = x1

0. Thus the maximum of increasing density
of population is

ω =: max f(x0) = f(x̄0) =

(
1−

√
A(T )

)2

B(T )
, (2.4)

and the maximum of increasing density of population per unit of time is

max
f(x0)

T
=

f(x̄0)
T

=

(
1−

√
A(T )

)2

B(T )T
. (2.5)

3. Optimal impulsive harvest policy for constant effort harvest

Now, we consider single population X of size N(t), which obeys the logistic
growth law, is impulsively harvested by means of a constant effort, h(N) ≡ 1,
namely, every time T , the management harvest constant is E. Equation of the
impulsively harvested population reads

dN

dt
= r(t)N

(
1− N

K(t)

)
− δ(s(t))E ,

N(t0) = N0 .

(3.1)

We always denote the solution of (3.1) by N(t, t0, N0), while represent x(t, t0, x0)
as the solution of (1.3) without harvest. It is known that the solution of a nonauto-
mated system with T-periodic coefficients has the property of periodic translation,
we can denote x(t, t0, x0) and x(t−nT, t0−nT, x0) as the same solution of a system.
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Theorem 3.1. (1) If 0 < E < ω =

(
1−
√

A(T )
)2

B(T ) , there exist two positive impulsive
periodic solutions ξ1(t) and ξ2(t) of (3.1) with

ξ1(nT ) =
1−A(T )− EB(T ) +

√
(1−A(T )− EB(T ))2 − 4EA(T )B(T )

2B(T )
,

ξ2(nT ) =
1−A(T )− EB(T )−

√
(1−A(T )− EB(T ))2 − 4EA(T )B(T )

2B(T )
,

for all n ∈ N .

(2) If E = ω =

(
1−
√

A(T )
)2

B(T ) , there exists a unique positive impulsive periodic
solution ξ(t) of (3.1) with

ξ3(nT ) =
1−A(T )− EB(T )

2B(T )
, ∀n ∈ N .

Proof. Let
F (y) =: f(y)− E =

y

A(T ) + B(T )y
− y − E,

where f(y) is defined by (2.3). If 0 < E < ω, we know that

(1−A(T )− EB(T ))2 − 4EA(T )B(T ) > 0,

meanwhile, it is easy to see that the equation F (y) = 0 has two roots, that is

y1 =
1−A(T )− EB(T )−

√
(1−A(T )− EB(T ))2 − 4EA(T )B(T )

2B(T )
, n ∈ N,

y2 =
1−A(T )− EB(T ) +

√
(1−A(T )− EB(T ))2 − 4EA(T )B(T )

2B(T )
, n ∈ N.

It follows that y2 > y1 > 0. Next, we prove that N(t, 0, y1) and N(t, 0, y2) are
T -periodic solutions. It is obvious that

N(T, 0, y1) = x(T, 0, y1)− E = x(T, 0, y1)− y1 − E + y1

= f(y1)− E + y1 = F (y1) + y1 = y1 = N(0, 0, y1),

and

N(2T, 0, y1) = N(2T, T,N(T, 0, y1)) = x(2T, T, y1)− E = x(T, 0, y1)− E = y1 .

Therefore. we obtain inductively

N(nT, 0, y1) = y1 for all n ∈ N.

Similarly, we have

N(nT, 0, y2) = y2 = N(0, 0, y2) for all n ∈ N.

Let N(t, 0, y1) = ξ1(t), N(t, 0, y2) = ξ2(t). Then ξ1(t) and ξ2(t) are impulsive
periodic solutions of (3.1) with ξ1(nT ) = y1, ξ2(nT ) = y2 for all n ∈ N .

If E = ω, then F (y) = 0 has one and only one root with y3 = 1−A(T )−EB(T )
2B(T ) , so

(3.1) has only one impulsive periodic solution ξ3(t) with

ξ3(nT ) =
1−A(T )− EB(T )

2B(T )
, ∀n ∈ N.

The proof is completed. �
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Theorem 3.2. (1) If E < ω, then N(t, 0, N0) → ξ2(t) as t → +∞ for N0 > y1

and N(t, 0, N0) → 0 for 0 < N0 < y1.
(2) If E = ω, then N(t, 0, N0) → ξ3(t) as t → +∞ for N0 > y3 and N(t, 0, N0) → 0
for 0 < N0 < y3.
(3) If E > ω, then N(t, 0, N0) → 0 as t → +∞ for all N0 > 0.

Proof. First, we know that F (y) > 0 for y1 < y < y2 and F (y) < 0 for y < y1 or
y > y2. Suppose E < ω and N0 > y2. For convenience, denote Nn = N(nT, 0, N0).
We can write

N1 = N(T, 0, N0) = x(T, 0, N0)− E = f(N0) + N0 − E = F (N0) + N0 < N0.

On the other hand, N0 > y2 implies

N1 = x(T, 0, N0)− E > x(T, 0, y2)− E = N(T, 0, y2) = ξ2(T ) = y2.

Similarly, we have

N2 = N(2T, 0, N0) = N(2T, T,N1)

= x(2T, T,N1)− E = x(T, 0, N1)− E

= f(N1) + N1 − E = F (N1) + N1 < N1

and
N2 = x(T, 0, N1)− E > x(T, 0, y2)− E = ξ2(T ) = y2 .

Therefore, by the same arguments we can obtain a monotone decreasing sequence
{Nn} with a lower bound y2. It is obvious that the sequence {Nn} has a limit,
suppose it is β, then β ≥ y2.

If β > y2, then

Nn+1 −Nn = N((n + 1)T, 0, N0)−Nn = N((n + 1)T, nT,Nn)−Nn

= x((n + 1)T, nT,Nn)−Nn = x(T, 0, Nn)− E −Nn = F (Nn) .

Therefore, F (β) = 0 as n → ∞. Because F (y) = 0 has only two roots y1 or y2,
we get a contradiction. Thus β = y2, that is limn→∞Nn = β = y2. According to
the continuous dependence of solution on initial value in finite time, for any given
ε > 0 there is a δ ∈ (0, ε), such that |x0−y2| < δ implies |x(t, 0, x0)−x(t, 0, y2)| < ε
for t ∈ [0, T ). In addition, we know that limn→∞Nn = β, for the previous δ, there
exists a natural number N̄ such that n ≥ N̄ implies that 0 < Nn − y2 < δ, and
then for any n ≥ N̄ and t ∈ [nT, (n + 1)T ), we have

|N(t, 0, N0)− ξ2(t)| = |N(t, 0, N0)−N(t, 0, y2)|
= |N(t, nT, Nn)−N(t, nT, y2)|
= |x(t, nT, Nn)− x(t, nT, y2)|
= |x(t− nT, 0, Nn)− x(t− nT, 0, y2)| < ε

for t ∈ [nT, (n + 1)T ), which implies

|N(t, 0, N0)− ξ2(t)| < ε for t ≥ N̄T.

It is proved that if E < ω,N(t, 0, N0) → ξ2(t) as t → ∞ for N0 > y2. If y1 <
N0 < y2, we can get a monotone increasing sequence {Nn} with upper bound y2;
furthermore, limt→∞Nn = y2. The other argument is the same as the previous,
so E < ω,N(t, 0, N0) → ξ2(t) as t → ∞ for N0 > y2 or y1 < N0 < y2. The other
conclusions of Theorem 3.2 can be proved by similar methods, we omit them here.
The proof is complete. �
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From Theorem 3.1, we know that if 0 < E < ω :=

(
1−
√

A(T )
)2

B(T ) = maxf(y),
there exist two positive impulsive periodic solutions ξ1(t) and ξ2(t) of (3.1). From
Theorem 3.2, it follows that ξ2(t) is stable and that ξ1(t) is unstable. In the case of
0 < E < ω, if the initial population is N0 > y2 or y1 < N0 < y2, then N(t, 0, N0)
will converge to ξ2(t) asymptotically under constant harvest. But if the initial
population N0 is less than y1, then N(t, 0, N0) will approach 0 as time tends to
infinity.

If E > ω, the population approaches 0 for any initial level N0 in a finite time.
If E = ω, there exists a unique positive impulsive periodic solution ξ3(t) of (3.1)

with ξ3(nT ) = 1−A(T )−EB(T )
2B(T ) , which is “semi-stable” in the sense that N(t, 0, N0)

approaches ξ3(t) if N0 > y3 = ξ3(T ), but N(t, 0, N0) approaches 0 if N0 < y3.

4. Optimal impulsive harvest policy for proportional harvest

The assumption in section 3 that the harvesting effort is a constant implies that
we cannot control exploitation for dangerous region. In this section, we will use
the phrase catch-per-unit-effort hypothesis to describe an assumption that catch-
per-unit-effort is proportional to the stock level, or that h(x) = x, where E denotes
effort and satisfies 0 ≤ E < 1. In other words, the management harvests Q(nT ) =
Ex(nT ) in nT . Equation of the impulsively harvested population reads

dN

dt
= r(t)N

(
1− N

K(t)
)
− δ(s(t))EN,

N(t0) = N0 .

(4.1)

In this section, the solution of (4.1) is still denoted by N(t, t0, N0).
Now we investigate the optimal impulsive harvest policy, namely, the optimal

harvesting effort, the maximum sustainable yield and the corresponding optimal
population level.

Definition [9]. A solution ξ(t) of (4.1) is globally attractive for positive initial
value if any other solution of (4.1) N(t, 0, N0) with N0 > 0 satisfies:

lim
t→+∞

|N(t, 0, N0)− ξ(t)| = 0.

Theorem 4.1. If 0 < E < 1−A(T )
B(T ) , there exists a unique positive impulsive periodic

solution ξ(t) of (4.1), which satisfies ξ(nT ) = 1−E−A(T )
B(T ) . In addition, ξ(t) is

globally attractive for positive initial value.

Proof. Let

G(y) = (1− E)x(T, 0, y)− y = (1− E)(f(y) + y)− y

= (1− E)f(y)− Ey

= (1− E)
( y

A(T ) + B(T )y
− y

)
− Ey.

It is easy to prove that when 0 < E < 1 − A(T ), the unique positive root for
G(y) = 0 is

ỹ =
1− E −A(T )

B(T )
. (4.2)
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We have also G(y) > 0 for 0 < y < ỹ, and G(y) < 0 for y > ỹ. Next we prove that
N(t, 0, ỹ) is impulsive periodic solution of (4.1). It is easy to see that

N(T, 0, ỹ) = (1− E)x(T, 0, ỹ) = G(ỹ) + ỹ = ỹ

and

N(2T, 0, ỹ) = N(2T, T,N(T, 0, ỹ)) = N(2T, T, ỹ)

= (1− E)x(2T, T, ỹ) = (1− E)x(T, 0, ỹ) = ỹ.

Inductively, we prove that N(nT, 0, ỹ) = ỹ for all n ∈ N . Therefore, (4.1) has
unique impulsive periodic solution N(t, 0, ỹ) := ξ(t) with ξ(nT ) = ỹ for ∀n ∈ N .

Next, we prove the global attractiveness of ξ(t). Suppose that N0 > ỹ, and
Nn := N(nT, 0, N0), n ∈ N . We have

N1 = N(T, 0, N0) = (1− E)x(T, 0, N0) = G(N0) + N0 < N0

and

N1 = N(T, 0, N0) = (1− E)x(T, 0, N0) > (1− E)x(T, 0, ỹ) = N(T, 0, ỹ) = ỹ.

Similarly, we can prove that ỹ < N2 < N1. Thus we get a monotone decreasing
sequence {Nn} with a lower bound ỹ. Assume that the sequence {Nn} has a limit
β̃, it is obvious β̃ ≥ ỹ. Using the similar method with the section 3, suppose β̃ > ỹ,
then

Nn+1 −Nn = N((n + 1)T, 0, N0)−Nn

= N((n + 1)T, nT,Nn)−Nn

= (1− E)x((n + 1)T, nT,Nn)−Nn

= (1− E)x(T, 0, Nn)−Nn = G(Nn),

which implies that G(β̃) = 0, this contradicts with the fact that the equation
G(y) = 0 has a unique root ỹ. Thus β̃ = ỹ and we have proved that

lim
n→+∞

Nn = β̃ = ỹ.

Therefore, for any given ε > 0, there is a δ ∈ (0, ε) such that n > Ñ implies
0 < Nn − ỹ < δ, then according to continuous dependence of solution to initial
value, we have |x(t, 0, Nn)−x(t, 0, ỹ)| < ε for t ∈ [0, T ). Then notice 1−E < 1, for
n ≥ Ñ and t ∈ [nT, (n + 1)T ),

|N(t, 0, N0)− ξ(t)| = |N(t, nT, Nn)−N(t, nT, ỹ)|
= |1− E||x(t, nT, Nn)− x(t, nT, ỹ)|
< |x(t− nT, 0, Nn)− x(t− nT, 0, ỹ)| < ε.

That is,
lim

t→∞
|N(t, 0, N0)− ξ(t)| = 0 for N0 > ỹ.

By a similar argument, we can prove

lim
t→∞

|N(t, 0, N0)− ξ(t)| = 0 for 0 < N0 < ỹ.

Therefore, we have proved that the impulsive periodic solution ξ(t) is globally
attractive for positive initial value. The proof is complete. �

Note that if E = 1− A(T ), we obtain ξ(nT ) = 1−A(T )−E
B(T ) = 0. So the following

statement is valid.
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Theorem 4.2. If E ≥ 1−A(T ) > 0, the size of population X tends to extinction.

In real life, fishers would like to make a decision how to obtain maximum harvest.
From Theorem 4.1, when T is a fixed constant, the sustainable yield per unit time
is

Y (E) = E
1− E −A(T )
B(T )T (1− E)

. (4.3)

Our objective is to find an E∗ such that Y (E) reaches its maximum at E = E∗.
This is the optimization of a function. The derivative of Y (E) is written as

Y ′(E) =
E2 − 2E + 1−A(T )

TB(T )(1− E)2
,

then the equation E2 − 2E − A(T ) + 1 = 0 has two roots, which are E1 = 1 +√
A(T ) > 1 and E2 = 1−

√
A(T ) < 1. Furthermore, we can obtain

Y ′′(E) =
2A(T )

TB(T )(−1 + E)3
< 0, ∀0 < E < 1.

So we have
E∗ = E2 = 1−

√
A(T ). (4.4)

Then Y (E) reaches its maximum at E = E∗. Substituting (4.4) into (4.2), we have

x∗(T ) =

√
A(T )

(
1−

√
A(T )

)
B(T )

. (4.5)

Substituting (4.4) into (4.3), we can get the maximum sustainable yield per unit
time Y (E∗):

Y (E∗) =

(
1−

√
A(T )

)2

TB(T )
. (4.6)

So we obtain the optimal harvest effort E∗ that maximizes the sustainable yield
per unit time Y (E∗), the corresponding optimal population level x∗(T ).

At last, we want to point out that our results are compatible to the conclusion
by Clark. As is well known, the Logistic equation which is subjected to continuous
exploitation reads

ẋ = rx(1− x

K
)− Ex,

x(0) = x0

(4.7)

The maximum sustainable yield is Y = Kr/4 corresponding to the optimal harvest-
ing effort E∗ = r/2 and the optimal population level x∗ = K/2. If the coefficients
of (4.1) become constant K and r, we will consider the following impulsive equation
[10].

Ṅ = rN(1− N

K
)− δ(s(t))EN,

N(0) = N0

(4.8)

Obviously, (2.2) becomes

A(T ) = exp
{
−

∫ T

0

rds
}

= e−rT ,

B(T ) =
∫ T

0

r

K
exp

{
−

∫ T

s

r(τ)dτ
}
ds =

1− e−rT

K
.

(4.9)
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Substitute (4.9) into (4.2), we obtain the result in [10]:

ŷ =
(erT (1− E)− 1)K

erT − 1
is a global attractive impulsive periodic solution. Using the same technique, (4.4)-
(4.6) also are the corresponding results in [10]: When T is fixed value, the optimal
harvest effort Ê∗ = 1− e−rT/2, the optimal population level x̂∗(T ) = K

erT/2 +1, the
maximum sustainable yield per unit time

Ŷ (E∗) =
K(erT/2 − 1)2

T (erT − 1)
.

T is harvesting time interval in (4.8), if T → 0, Ŷ (E∗) → Kr/4, which implies
that the less is time interval T of impulsive harvest, the nearer is the maximum
yield (4.7) and (4.8), namely, the optimal impulsive harvesting policy is continuous
harvest.
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