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ON INTEGRAL INEQUALITIES FOR FUNCTIONS OF SEVERAL
INDEPENDENT VARIABLES

HASSANE KHELLAF

Abstract. This paper presents some non-linear integral inequalities for func-
tions of n independent variables. These results extend the Gronwall type

inequalities obtained for two variables by Dragomir and Kim [2]

1. Introduction

Integral inequalities play a significant role in the study of differential and integral
equations. One of the most useful inequalities of Gronwall type is given in the
following lemma (see [1, 2]).

Lemma 1.1. Let u(t) and k(t) be continuous, a(t) and b(t) Riemann integrable
function on J = [α, β] ⊂ R and t ∈ R with b(t) and k(t) nonnegative on J . If
u(t) ≤ a(t) + b(t)

∫ t

α
k(s)u(s)ds for t ∈ J , then

u(t) ≤ a(t) + b(t)
∫ t

α

a(s)k(s) exp
( ∫ t

s

b(τ)k(τ)dτ
)
ds, t ∈ J, (1.1)

If u(t) ≤ a(t) + b(t)
∫ β

t
k(s)u(s)ds for t ∈ J , then

u(t) ≤ a(t) + b(t)
∫ β

t

a(s)k(s) exp
( ∫ s

t

b(τ)k(τ)dτ
)
ds, t ∈ J. (1.2)

In the past few years, these inequalities have been generalized to more than
one variable. Many authors have established Gronwall type integral inequalities
in two or more independent variables; see for example [3, 4, 5, 6, 7]. The results
obtained have generated a lot of research interests due to its usefulness in the
theory of differential and integral equations. Dragomir and Kim [2] considered
integral inequalities for functions with two independent variables. The purpose of
this paper is to generalize their results by obtaining new integral inequalities in n
independent variables.

In what follows we denote by R the set of real numbers and R+ = [0,∞). All the
functions appearing in the inequalities are assumed to be real valued of n-variables
which are nonnegative and continuous. All integrals exist on their domains of
definitions.
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Throughout this paper, we shall assume that x = (x1, x2, . . . xn) and x0 =
(x0

1, x
0
2, . . . , x

0
n) are in Rn

+. We shall denote∫ x

x0
dt =

∫ x1

x0
1

∫ x2

x0
2

. . .

∫ xn

x0
n

. . . dtn . . . dt1

and Di = ∂
∂xi

for i = 1, 2, . . . , n. For x, t ∈ Rn
+, we shall write t ≤ x whenever

ti ≤ xi, i = 1, 2, . . . , n.

2. Results

Lemma 2.1. Let u(x), a(x) and b(x) be nonnegative continuous functions, defined
for x ∈ Rn

+.
(1) Assume that a(x) is positive, continuous function, nondecreasing in each of the
variables x ∈ Rn

+. Suppose that

u(x) ≤ a(x) +
∫ x

x0
b(t)u(t)dt (2.1)

holds for all x ∈ Rn
+ with x ≥ x0, then

u(x) ≤ a(x) exp
( ∫ x

x0
b(t)dt

)
, (2.2)

(2) Assume that a(x) is positive, continuous function, non-increasing in each of the
variables x ∈ Rn

+. Suppose that

u(x) ≤ a(x) +
∫ x0

x

b(t)u(t)dt (2.3)

holds for all x ∈ Rn
+ with x ≤ x0, then

u(x) ≤ a(x) exp
( ∫ x0

x

b(t)dt
)
. (2.4)

Proof. The proof of (1) is similar to the proof of (2), so we present the proof of (2)
and refer the reader to [1, p. 112] for more details.
(2) Since a(x) is positive, non-increasing in each of the variables x ∈ Rn

+, with
x ≤ x0, then

u(x)
a(x)

≤ 1 +
∫ x0

x

b(t)
u(t)
a(t)

dt, (2.5)

Setting

v(x) =
u(x)
a(x)

, (2.6)

we have

v(x) ≤ 1 +
∫ x0

x

b(t)v(t)dt, (2.7)

Let

r(x) = 1 +
∫ x0

x

b(t)v(t)dt, (2.8)
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Then r(x0
1, x2, . . . , xn) = 1, and v(x) ≤ r(x), r(x) is positive and nonincreasing in

each of the variables x2, . . . , xn ∈ R+. Hence

D1r(x) =
∫ x0

2

x2

∫ x0
3

x3

. . .

∫ x0
n

xn

b(x1,t2, . . . , tn)v(x1,t2, . . . , tn)dtn . . . dt2

≤
∫ x0

2

x2

∫ x0
3

x3

. . .

∫ x0
n

xn

b(x1,t2, . . . , tn)r(x1,t2, . . . , tn)dtn . . . dt2

≤ r(x)
∫ x0

2

x2

∫ x0
3

x3

. . .

∫ x0
n

xn

b(x1,t2, . . . , tn)dtn . . . dt2,

(2.9)

Dividing both sides of (2.9) by r(x) we get

D1r(x)
r(x)

≤
∫ x0

2

x2

∫ x0
3

x3

. . .

∫ x0
n

xn

b(x1,t2, . . . , tn)dtn . . . dt2. (2.10)

Integrating with respect to t1 from x1 to x0
1, we have

r(x) ≤ exp
( ∫ x0

x0
b(t)dt

)
, (2.11)

Hence

v(x) ≤ exp
( ∫ x0

x

b(t)dt
)
. (2.12)

Substituting (2.12) into (2.6), we have the result (2.4). �

Theorem 2.2. Let u(x), a(x), b(x), c(x), d(x), f(x) be real-valued non-negative
continuous functions defined for x ∈ Rn

+. Let W (u(x)) be real-valued, positive,
continuous, strictly non-decreasing, subadditive, and submultiplicative function for
u(x) ≥ 0, and let H(u(x)) be real-valued, positive, continuous, and non-decreasing
function defined for x ∈ Rn

+. Assume that a(x), f(x) are nondecreasing in the first
variable x1 for x1 ∈ R+. If

u(x) ≤ a(x) + b(x)
∫ x1

α

c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds

+ f(x)H
( ∫ x

x0

d(t)W (u(t))dt
)
,

(2.13)

for α ≥ 0, x, t ∈ Rn
+ with α ≤ x1 and x0 ≤ t ≤ x, then

u(x) ≤ p(x)
{

a(x) + f(x)H
[
G−1

(
G(A(t)) +

∫ x

x0

d(t)W (p(t)f(t))dt
)]}

, (2.14)

for α ≥ 0, x ∈ Rn
+ with α ≤ x1, where

p(x) = 1 + b(x)
∫ x1

α

c(s, x2, . . . , xn) exp
( ∫ x1

α

b(τ, x2, . . . , xn)c(τ, x2, . . . , xn)dτ
)
ds,

(2.15)

A(t) =
∫ ∞

x0

d(t)W (a(t)p(t))dt, (2.16)

G(z) =
∫ z

z0

ds

W (H(s))
, z ≥ z0 > 0 . (2.17)
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Here G−1 is the inverse function of G and

G
( ∫ ∞

x0

d(t)W (a(t)p(t))dt
)

+
∫ x

x0

d(t)W (p(t)f(t))dt,

is in the domain of G−1 for x ∈ Rn
+.

Proof. Define a function

z(x) = a(x) + f(x)H
( ∫ x

x0

d(t)W (u(t))dt
)
, (2.18)

Then (2.13) can be restated as

u(x) ≤ z(x) + b(x)
∫ x1

α

c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds. (2.19)

Clearly z(x) is a nonnegative and continuous in x1 ∈ R+. x2, x3, . . . xn ∈ R+fixed
in (2.19) and using (1) of lemma 1.1 to (2.19), we get

u(x) ≤ z(x) + b(x)
∫ x1

α

z(s, x2, . . . , xn)c(s, x2, . . . , xn)

× exp
( ∫ x1

α

b(τ, x2, . . . , xn)c(τ, x2, . . . , xn)dτ
)
ds,

Moreover, z(x) is nondecreasing in x1, x1 ∈ R+, we obtain

u(x) ≤ z(x)p(x), (2.20)

where p(x) is defined by (2.15). From (2.18) we have

u(x) ≤ (a(x) + f(x)H(v(x))) p(x), (2.21)

where v(x) =
∫ x

x0 d(t)W (u(t))dt. From (2.21), we observe that

v(x) ≤
∫ x

x0

d(t)W ((a(t) + f(t)H(v(t))) p(t)) dt

≤
∫ x

x0

d(t)W (a(t)p(t))dt +
∫ x

x0

d(t)W (p(t)f(t))W (H(v(t))) dt,

≤
∫ ∞

x0

d(t)W (a(t)p(t))dt +
∫ x

x0

d(t)W (p(t)f(t))W (H(v(t))) dt,

(2.22)

Since W is subadditive and submultiplicative function. Define r(x) as the right
side of (2.22), then r(x1

0, x2, . . . , xn) =
∫∞

x0 d(t)W (a(t)p(t))dt, v(x) ≤ r(x), r(x) is
positive nondecreasing in each of the variables x2, . . . , xn ∈ R+ and

D1r(x) =
∫ x2

x0
2

∫ x3

x0
3

. . .

∫ xn

x0
n

d(x1,t2, . . . , tn)

×W (p(x1,t2, . . . , tn)f(x1,t2, . . . , tn))W (H(v(x1,t2, . . . , tn))) dtn . . . dt2

≤
∫ x2

x0
2

∫ x3

x0
3

. . .

∫ xn

x0
n

d(x1,t2, . . . , tn)

×W (p(x1,t2, . . . , tn)f(x1,t2, . . . , tn))W (H(r(x1,t2, . . . , tn))) dtn . . . dt2

≤ W (H(r(x)))
∫ x2

x0
2

∫ x3

x0
3

. . .

∫ xn

x0
n

d(x1,t2, . . . , tn)

×W (p(x1,t2, . . . , tn)f(x1,t2, . . . , tn)) dtn . . . dt2.

(2.23)
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Dividing both sides of (2.23) by W (H(r(x))) we get

D1r(x)
W (H(r(x)))

≤
∫ x2

x0
2

∫ x3

x0
3

. . .

∫ xn

x0
n

d(x1,t2, . . . , tn)

×W (p(x1,t2, . . . , tn)f(x1,t2, . . . , tn)) dtn . . . dt2,

(2.24)

Note that for

G(z) =
∫ z

z0

ds

W (H(s))
, z ≥ z0 > 0 (2.25)

it follows that

D1G(r(x)) =
D1r(x)

W (H(r(x)))
, (2.26)

From (2.25) , (2.26) and (2.24), we have

D1G(r(x)) ≤
∫ x2

x0
2

∫ x3

x0
3

. . .

∫ xn

x0
n

d(x1,t2, . . . , tn)

×W (p(x1,t2, . . . , tn)f(x1,t2, . . . , tn)) dtn . . . dt2,

(2.27)

Now setting x1 = s in (2.27) and then integrating with respect to x0
1 to x1, we

obtain

G(r(x)) ≤ G(r(x0
1, x2, . . . , xn)) +

∫ x

x0

d(t)W (p(t)f(t))dt (2.28)

Noting that r(x0
1, x2, . . . , xn) =

∫∞
x0

d(t)W (a(t)p(t))dt, we have

r(x) ≤ G−1
[
G

( ∫ ∞

x0

d(t)W (a(t)p(t))dt
)

+
∫ x

x0

d(t)W (p(t)f(t))dt
]
. (2.29)

The required inequality in (2.14) follows from the fact v(x) ≤ r(x), (2.19) and
(2.29) �

Theorem 2.3. Let u(x), a(x), b(x), c(x), d(x), f(x), W (u(x)), and H(u(x)) be
as defined in theorem 2.2. Assume that a(x), f(x) are non-increasing in the first
variable x1, for x1 ∈ R+. If

u(x) ≤ a(x) + b(x)
∫ β

x1

c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds

+ f(x)H
(∫ x0

x

d(t)W (u(t))dt

)
,

(2.30)

for β ≥ 0, x ∈ Rn
+ with β ≥ x1 and x ≤ x0 . Then

u(x) ≤ p(x)
{

a(x) + f(x)H
(
G−1

[
G(A(t)) +

∫ x0

x

d(t)W (p(t)f(t))dt
])}

,

for β ≥ 0, x ∈ Rn
+ with β ≥ x1, where

p(x) = 1 + b(x)
∫ β

x1

c(s, x2, . . . , xn) exp
( ∫ s

x1

b(τ, x2, . . . , xn)c(τ, x2, . . . , xn)dτ
)
ds,

A(t) =
∫ x0

0

d(t)W (a(t)p(t))dt,

G(z) =
∫ z

z0

ds

W (H(s))
, z ≥ z0 > 0 .
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Here G−1 is the inverse function of G and

G
( ∫ x0

0

d(t)W (a(t)p(t))dt
)

+
∫ x0

x

d(t)W (p(t)f(t))dt,

is in the domain of G−1 for x ∈ Rn
+.

The proof is similar to the proof of Theorem 2.2 and so it is omitted.

Remark 2.4. We note that in the special case n = 2 (integral inequalities in two
independent variables) x ∈ R2

+ and x0 = (x0
1, x

0
2) = (∞,∞) in theorem 2.3. our

estimate reduces to Theorem 2.4 obtained by S. S. Dragomir and Y. H. Kim [2].

Theorem 2.5. Let u(x), a(x), b(x), c(x) and f(x) be real-valued nonnegative con-
tinuous functions defined for x ∈ Rn

+ and L : Rn+1
+ → R∗+ be a continuous functions

which satisfies the condition

0 ≤ L(x, u)− L(x, v) ≤ M(x, v)Φ−1(u− v), (2.31)

for u ≥ v ≥ 0, where M(x, v) is a real-valued nonnegative continuous function
defined for x ∈ Rn

+, v ∈ R+. Assume that Φ : R+ → R+ be a continuous and strictly
increasing function with Φ(0) = 0,Φ−1 is the inverse function of Φ and

Φ−1(uv) ≤ Φ−1(u)Φ−1(v), (2.32)

for u, v ∈ R+, Assume that a(x), f(x) are nondecreasing in the first variable x1 for
x1 ∈ R+. If

u(x) ≤ a(x)+b(x)
∫ x1

α

c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds+f(x)Φ
( ∫ x

x0

L(t, u(t))dt
)
,

(2.33)
for α ≥ 0, x ∈ Rn

+ with α ≤ x1 and x0 < x. Then

u(x) ≤ p(x)
{

a(x) + f(x)Φ
[
e(x) exp

( ∫ x

x0

M(t, p(t)a(t))Φ−1 (p(t)f(t)) dt
)]}

(2.34)
for α ≥ 0, x ∈ Rn

+ with α ≤ x1 and x0 < x, where

p(x) = 1 + b(x)
∫ x1

α

c(s, x2, . . . , xn) exp
( ∫ x1

s

b(τ, x2, . . . , xn)c(τ, x2, . . . , xn)dτ
)
ds,

(2.35)

e(x) =
∫ x

x0

L(t, p(t)a(t))dt. (2.36)

Proof. Define the function

z(x) = a(x) + f(x)Φ
( ∫ x

x0

L(t, u(t))dt
)
, (2.37)

Then (2.33) can be restated as

u(x) ≤ z(x) + b(x)
∫ x1

α

c(s, x2, x3, . . . , xn)u(s, x2, x3, . . . , xn)ds. (2.38)

Clearly z(x) is nonnegative and continuous in x1 ∈ R+, where x2, x3, . . . xn ∈
R+fixed in (2.38) and using 1 of lemma 1.1 to (2.38), we get

u(x) ≤ z(x) + b(x)
∫ x1

α

z(s, x2, . . . , xn)c(s, x2, . . . , xn)
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× exp
( ∫ x1

s

b(τ, x2, . . . , xn)c(τ, x2, . . . , xn)dτ
)
ds

Moreover, z(x) is nondecreasing in x1, x1 ∈ R+, we obtain

u(x) ≤ z(x)p(x), (2.39)

Where p(x) is defined by (2.35). From (2.37) and (2.39) we have

u(x) ≤ p(x) [a(x) + f(x)Φ(v(x))] , (2.40)

where

v(x) =
∫ x

x0

L(t, u(t))dt,

From (2.40), and the hypotheses on L and Φ, we observe that

v(x) ≤
∫ x

x0

(L (t, p(t) [a(t) + f(t)Φ(v(t))])− L (t, p(t)a(t)) + L (t, p(t)a(t))) dt,

≤
∫ x

x0

L (t, p(t)a(t)) dt +
∫ x

x0

M(t, p(t)a(t))Φ−1 (p(t)f(t)Φ(v(t))) dt,

≤ e(x) +
∫ x

x0

M(t, p(t)a(t))Φ−1 (p(t)f(t)) v(t)dt,

(2.41)
where e(x) is defined by (2.36). Clearly, e(x) is positive, continuous, nondecreasing
in each of the variables x, x ∈ Rn

+. Now, by part (1) of lemma 2.1,

v(x) ≤ e(x) exp
( ∫ x

x0

M(t, p(t)a(t))Φ−1 (p(t)f(t)) dt
)
. (2.42)

Using (2.40) in (2.42), we get the required inequality in (2.34). �

Theorem 2.6. Let u(x), a(x), b(x), c(x), f(x), L, M , Φ, and Φ−1 be as defined
in theorem 2.5. Assume that a(x), f(x) are non-increasing in the first variable x1

for x1 ∈ R+. If

u(x) ≤ a(x)+b(x)
∫ β

x1

c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds+f(x)Φ
( ∫ x0

x

L(t, u(t))dt
)
,

(2.43)
for β ≥ 0, x ∈ Rn

+ with β ≥ x1, x < x0 . Then

u(x) ≤ p(x)
{

a(x) + f(x)Φ
[
e(x) exp

( ∫ x0

x

M(t, p(t)a(t))Φ−1
(
p(t)f(t)

)
dt

)]}
,

for β ≥ 0, x ∈ Rn
+ with β ≥ x1, x < x0 , where

p(x) = 1 + b(x)
∫ β

x1

c(s, x2, . . . , xn) exp
( ∫ s

x1

b(τ, x2, . . . , xn)c(τ, x2, . . . , xn)dτ
)
ds

e(x) =
∫ x0

x

L(t, p(t)a(t))dt. (2.44)

The proof is similar to the proof of Theorem 2.5 and so it is omitted.

Remark 2.7. We note that in the special case n = 2 , x ∈ R2
+ and x0 = (x0

1, x
0
2) =

(∞,∞) in theorem 2.6. Our estimate reduces to Theorem 2.6 obtained by Dragomir
and Kim [2].
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Remark 2.8. (1) The preceding results remaining valid if we replace
b(x)

∫ x1

α
c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds by the general case

bi(x)
∫ xi

αi
ci(x1,. . . . , xi−1, si, xi+1, . . . , xn)u(x1,. . . . , xi−1, si, xi+1, . . . , x)dsi, for any

i = 2, . . . , n fixed , and αi ≥ 0, x = (x1, . . . xn) ∈ Rn
+ with αi ≤ si ≤ xi, xi, si ∈

R+.
(2) The preceding results are also valid if b(x)

∫ β

x1
c(s, x2, . . . , xn)u(s, x2, . . . , xn)ds

is replaced by the general case
bi(x)

∫ βi

xi
ci(x1,. . . . , xi−1, si, xi+1, . . . , xn)g(u(x1,. . . . , xi−1, si, xi+1, . . . , xn))dsi, for

any i = 2, . . . , n fixed , and αi ≥ 0, x = (x1, . . . xn) ∈ Rn
+ with αi ≤ si ≤ xi,

xi, si ∈ R+. where bi(x) and ci(x) be real-valued nonnegative continuous function
defined for x ∈ Rn

+, For any i = 2, . . . , n.

3. Further Inequalities

In this section we require the class of function S as defined in [2]. A function
g : R+ → R+ is said to belong to the class S if it satisfies the following conditions:

(1) g(u) is positive, nondecreasing and continuous for u ≥ 0
(2) (1/v)g(u) ≤ g(u/v), u > 0, v ≥ 1.

Theorem 3.1. Let u(x), a(x), b(x), c(x), d(x), f(x) be real-valued nonnegative
continuous function defined for x ∈ Rn

+ and let g ∈ S. Also let W (u(x)) be real-
valued, positive, continuous, strictly nondecreasing, subadditive, and submultiplica-
tive function for u(x) ≥ 0 and let H(u(x)) be a real-valued, continuous, positive,
and nondecreasing function defined for x ∈ Rn

+,and b(x) nonincreasing in the first
variable x1. Assume that a function m(x) is nondecreasing in the first variable x1

and m(x) ≥ 1, which is defined by

m(x) = a(x) + f(x)H
( ∫ x

x0

d(t)W (u(t))dt
)
, (3.1)

for x ∈ Rn
+, x > x0 ≥ 0. If

u(x) ≤ m(x) + b(x)
∫ x1

α

c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds, (3.2)

for α ≥ 0, x ∈ Rn
+ with α ≤ x1, then

u(x) ≤ F (x)
{

a(x) + f(x)H
[
G−1

(
G(B(t)) +

∫ x

x0

d(t)W (F (t)f(t))dt
)]}

, (3.3)

for x ∈ Rn
+ , where

F (x) = Ω−1
(
Ω(1) +

∫ x1

α

b(s, x2, . . . , xn)c(s, x2, . . . , xn)ds
)
, (3.4)

B(t) =
∫ ∞

x0

d(t)W (a(t)F (t))dt, (3.5)

Ω(δ) =
∫ δ

ε

ds

g(s)
, δ ≥ ε > 0. (3.6)

Here Ω−1 is the inverse function of Ω, and G, G−1 are defined in Theorem 2.2, and
Ω(1) +

∫ x1

α
b(s, x2, . . . , xn)c(s, x2, . . . , xn)ds is in the domain of Ω−1, and

G
( ∫ ∞

x0

d(t)W (a(t)F (t))dt) +
∫ x

x0

d(t)W (F (t)f(t)dt
)
,
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is in the domain of G−1 for x ∈ Rn
+.

Proof. We have m(x) be a positive, continuous, nondecreasing in x1 and g ∈ S,
and b(x) non-increasing in the first variable x1. Then can be restated as

u(x)
m(x)

≤ 1 +
∫ x1

α

b(s, x2, x3, . . . , xn)c(s, x2, x3, . . . , xn)g(
u(s, x2, x3, . . . , xn)
m(s, x2, x3, . . . , xn)

)ds

(3.7)
The inequality (3.7) may be treated as one-dimensional Bihari-Lasalle inequality
the inequality type was given by Gyori [3] (see [1]), for any fixed x2, x3, . . . , xn,
which implies

u(x) ≤ F (x)m(x). (3.8)
Here F (x) is defined by (3.4), by (3.1) and (3.8) we get

u(x) ≤ F (x) {a(x) + f(x)H(v(x))} , (3.9)

where v(x) is defined by

v(x) =
∫ x

x0

d(t)W (u(t))dt.

Using the last argument in the proof of Theorem 2.2, we obtain desired inequality
in (3.3). �

Theorem 3.2. Let u(x), a(x), c(x), d(x), f(x), W (u(x), and H(u(x)) be as defined
in the theorem 3.1 and let g ∈ S and b(x) be nonnegative continuous functions, non-
decreasing in the first variable x1. Assume that a function m(x) is non-increasing
in the first variable x1 and m(x) ≥ 1, which is defined by

m(x) = a(x) + f(x)H
( ∫ x0

x

d(t)W (u(t))dt
)

(3.10)

for x ∈ Rn
+, x0 ≥ x. If

u(x) ≤ m(x) + b(x)
∫ β

x1

c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds, (3.11)

for β ≥ 0, x ∈ Rn
+ with β ≥ x1, then

u(x) ≤ F (x)
{

a(x) + f(x)H
[
G−1

(
G(B(t)) +

∫ x0

x

d(t)W (F (t)f(t))dt
)]}

, (3.12)

for x ∈ Rn
+. Here

F (x) = Ω−1
(
Ω(1) +

∫ β

x1

b(s, x2, . . . , xn)c(s, x2, . . . , xn)ds
)
, (3.13)

B(t) =
∫ x0

0

d(t)W (a(t)F (t))dt, (3.14)

and Ω is defined in (3.6). Here Ω−1 is the inverse function of Ω, and G, G−1 are
defined in theorem 2.2, and Ω(1) +

∫ β

x1
b(s, x2, . . . , xn)c(s, x2, . . . , xn)ds is in the

domain of Ω−1, and

G(
∫ x0

0

d(t)W (a(t)F (t))dt) +
∫ x0

x

d(t)W (F (t)f(t))dt

is in the domain of G−1 for x ∈ Rn
+.
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Proof. We have m(x) positive, continuous, nonincreasing in x1. Also g ∈ S and
b(x) nondecreasing in the first variable x1. Then (3.11) can be restated as

u(x)
m(x)

≤ 1+
∫ β

x1

b(s, x2, x3, . . . , xn)c(s, x2, x3, . . . , xn)g
( u(s, x2, . . . , xn)
m(s, x2, . . . , xn)

)
ds (3.15)

This inequality can be treated as one-dimensional Bihari-Lasalle inequality [3] for
a fixed x2, x3, . . . , xn, which implies

u(x) ≤ F (x)m(x) (3.16)

where F (x) is defined by (3.13). Now , by following last argument as in the proof
of Theorem 2.3 , we obtain desired inequality in (3.12) �

Corollary 3.3. If b(x) = 1 for x ∈ Rn
+, then from

u(x) ≤ m(x) +
∫ β

x1

c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds

with β ≥ x1, it follows that

u(x) ≤ F (x)
{

a(x) + f(x)H
[
G−1

(
G(B(t)) +

∫ x0

x

d(t)W (F (t)f(t))dt
)]}

for x ∈ Rn
+ , where

F (x) = Ω−1
(
Ω(1) +

∫ β

x1

c(s, x2, . . . , xn)ds
)

B(t) =
∫ x0

0

d(t)W (a(t)F (t))dt

Remark 3.4. We note that in the special case n = 2 ,x = (x1, x2) ∈ R2
+, and

x0 = (∞,∞) in corollary 3.3. Our estimate reduces to Theorem 3.2 obtained by
Dragomir and Kim [2].

Theorem 3.5. Let u(x), a(x), b(x), c(x), f(x), L, M , Φ, and Φ−1 be as defined
in theorem 2.5. Let g ∈ S and b(x) nonincreasing in the first variable x1. Assume
that a function n(x) is nondecreasing in the first variable x1 and n(x) ≥ 1 which is
defined by

n(x) = a(x) + f(x)Φ
( ∫ x

x0

L(t, u(t))dt
)

(3.17)

for x ∈ Rn
+, x ≥ x0 ≥ 0. If

u(x) ≤ n(x) + b(x)
∫ x1

α

c(s, x2, x3, . . . , xn)g(u(s, x2, x3, . . . , xn))ds (3.18)

for α ≥ 0, x ∈ Rn
+ with α ≤ x1, then

u(x) ≤ F (x)
{

a(x) + f(x)Φ
[
e(x) exp

( ∫ x

x0
M(t, a(t)F (t))Φ−1

(
f(t)F (t)

)
dt

)]}
(3.19)

for x ∈ Rn
+ , where F (x) is defined in (3.4), e(x) is defined in (2.36), Ω is defined

in (3.6), Here Ω−1 is the inverse function of Ω, and
Ω(1) +

∫ x1

α
b(s, x2, . . . , xn)c(s, x2, . . . , xn)ds is in the domain of Ω for x ∈ Rn

+.
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Proof. We follow an argument similar to that of Theorem 3.1. We have n(x) be a
positive, continuous, nondecreasing in x1 and g ∈ S, and b(x) nonincreasing in the
first variable x1. Then can (3.18) be restated as

u(x)
n(x)

≤ 1+
∫ x1

α

b(s, x2, x3, . . . , xn)c(s, x2, x3, . . . , xn)g
(u(s, x2, . . . , xn)
n(s, x2, . . . , xn)

)
ds. (3.20)

The inequality (3.20) may be treated as one-dimensional Bihari-Lasalle inequality,
for any fixed x2, x3, . . . , xn, which implies

u(x) ≤ F (x)n(x) (3.21)

where F (x) is defined by (3.4). From (3.17) and (3.21) we get

u(x) ≤ F (x)
[
a(x) + f(x)H

( ∫ x

x0
L(t, u(t))dt

)]
(3.22)

Following the last argument in the proof of Theorem 2.5, we obtain the desired
inequality in (3.19). �

Theorem 3.6. Let u(x), a(x), b(x), c(x), f(x), L, M , Φ, and Φ−1 be as defined in
theorem 2.5. Let g ∈ S and b(x) be nondecreasing in the first variable x1. Assume
that a function n(x) is nonincreasing in the first variable x1 and n(x) ≥ 1, which
is defined by

n(x) = a(x) + f(x)Φ
( ∫ x0

x

L(t, u(t))dt
)

(3.23)

for x ∈ Rn
+, x0 ≥ x ≥ 0. If

u(x) ≤ n(x) + b(x)
∫ β

x1

c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds (3.24)

for β ≥ 0, x ∈ Rn
+ with β ≥ x1, then

u(x) ≤ F (x)
{

a(x) + f(x)Φ
[
e(x) exp

( ∫ x0

x

M(t, a(t)F (t))Φ−1
(
f(t)F (t)

)
dt

)]}
for x ∈ Rn

+, where F (x) is defined in (3.13), e(x) is defined in (2.44), Ω is defined
in (3.6). Here Ω−1 is the inverse function of Ω, and
Ω(1) +

∫ β

x1
b(s, x2, . . . , xn)c(s, x2, . . . , xn)ds is in the domain of Ω for x ∈ Rn

+.

The proof of this theorem follows by an argument similar to that of Theorem
3.5; therefore, we omit it.

Corollary 3.7. if b(x) = 1 for x ∈ Rn
+, then from

u(x) ≤ n(x) +
∫ β

x1

c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds,

for β ≥ 0 with β ≥ x1, then it follows that

u(x) ≤ F (x)
{

a(x) + f(x)Φ
[
e(x) exp

( ∫ x0

x

M(t, a(t)F (t))Φ−1
(
f(t)F (t)

)
dt

)]}
for x ∈ Rn

+, where

F (x) = Ω−1
(
Ω(1) +

∫ β

x1

c(s, x2, . . . , xn)ds
)
,
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e(x) =
∫ x0

x

L(t, p(t)a(t))dt,

p(x) = 1 +
∫ β

x1

c(s, x2, . . . , xn) exp
( ∫ s

x1

c(τ, x2, . . . , xn)dτ
)
ds,

for x ∈ Rn
+.Ω is defined in (3.6) , where Ω−1 is the inverse function of Ω, and

Ω(1) +
∫ β

x1
c(s, x2, . . . , xn)ds is in the domain of Ω for x ∈ Rn

+.

Remark 3.8. We note that in the special case n = 2, x = (x1, x2) ∈ R2
+, and

x0 = (∞,∞) in corollary 3.7. our estimate reduces to Theorem 3.4 obtained by
Dragomir and Kim [2].

Remark 3.9. (1) All the preceding results remain valid when
b(x)

∫ x1

α
c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds is replaced by the general function

bi(x)
∫ xi

αi
ci(x1,.dots, xi−1, si, xi+1, . . . , xn)g(u(x1,. . . . , xi−1, si, xi+1, . . . , xn))dsi,

with i = 2, . . . , n fixed, and αi ≥ 0, x = (x1, . . . xn) ∈ Rn
+ and with αi ≤ si ≤ xi,

xi, si ∈ R+,
(2) The above results remain valid when
b(x)

∫ β

x1
c(s, x2, . . . , xn)g(u(s, x2, . . . , xn))ds is replaced by the general function

bi(x)
∫ βi

xi
ci(x1,. . . . , xi−1, si, xi+1, . . . , xn)g(u(x1,. . . . , xi−1, si, xi+1, . . . , xn))dsi,

with i = 2, . . . , n fixed, and αi ≥ 0, x = (x1, . . . xn) ∈ Rn
+ and with αi ≤ si ≤ xi,

xi, si ∈ R+, where bi(x) and ci(x) be real-valued nonnegative continuous function
defined for x ∈ Rn

+, for all i = 2, . . . , n.

In a future work, we will present some applications for the results obtained in
this work.
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