ON INTEGRAL INEQUALITIES FOR FUNCTIONS OF SEVERAL INDEPENDENT VARIABLES

HASSANE KHELLAF

Abstract

This paper presents some non-linear integral inequalities for functions of n independent variables. These results extend the Gronwall type inequalities obtained for two variables by Dragomir and Kim [2]

1. Introduction

Integral inequalities play a significant role in the study of differential and integral equations. One of the most useful inequalities of Gronwall type is given in the following lemma (see [1, 2]).

Lemma 1.1. Let $u(t)$ and $k(t)$ be continuous, $a(t)$ and $b(t)$ Riemann integrable function on $J=[\alpha, \beta] \subset \mathbb{R}$ and $t \in \mathbb{R}$ with $b(t)$ and $k(t)$ nonnegative on J. If $u(t) \leq a(t)+b(t) \int_{\alpha}^{t} k(s) u(s) d s$ for $t \in J$, then

$$
\begin{equation*}
u(t) \leq a(t)+b(t) \int_{\alpha}^{t} a(s) k(s) \exp \left(\int_{s}^{t} b(\tau) k(\tau) d \tau\right) d s, \quad t \in J \tag{1.1}
\end{equation*}
$$

If $u(t) \leq a(t)+b(t) \int_{t}^{\beta} k(s) u(s) d s$ for $t \in J$, then

$$
\begin{equation*}
u(t) \leq a(t)+b(t) \int_{t}^{\beta} a(s) k(s) \exp \left(\int_{t}^{s} b(\tau) k(\tau) d \tau\right) d s, \quad t \in J \tag{1.2}
\end{equation*}
$$

In the past few years, these inequalities have been generalized to more than one variable. Many authors have established Gronwall type integral inequalities in two or more independent variables; see for example $[3,4,5,6,7]$. The results obtained have generated a lot of research interests due to its usefulness in the theory of differential and integral equations. Dragomir and Kim [2] considered integral inequalities for functions with two independent variables. The purpose of this paper is to generalize their results by obtaining new integral inequalities in n independent variables.

In what follows we denote by \mathbb{R} the set of real numbers and $\mathbb{R}_{+}=[0, \infty)$. All the functions appearing in the inequalities are assumed to be real valued of n-variables which are nonnegative and continuous. All integrals exist on their domains of definitions.

[^0]Throughout this paper, we shall assume that $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and $x^{0}=$ $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$ are in \mathbb{R}_{+}^{n}. We shall denote

$$
\int_{x^{0}}^{x} d t=\int_{x_{1}^{0}}^{x_{1}} \int_{x_{2}^{0}}^{x_{2}} \ldots \int_{x_{n}^{0}}^{x_{n}} \ldots d t_{n} \ldots d t_{1}
$$

and $D_{i}=\frac{\partial}{\partial x_{i}}$ for $i=1,2, \ldots, n$. For $x, t \in \mathbb{R}_{+}^{n}$, we shall write $t \leq x$ whenever $t_{i} \leq x_{i}, i=1,2, \ldots, n$.

2. Results

Lemma 2.1. Let $u(x), a(x)$ and $b(x)$ be nonnegative continuous functions, defined for $x \in \mathbb{R}_{+}^{n}$.
(1) Assume that $a(x)$ is positive, continuous function, nondecreasing in each of the variables $x \in \mathbb{R}_{+}^{n}$. Suppose that

$$
\begin{equation*}
u(x) \leq a(x)+\int_{x^{0}}^{x} b(t) u(t) d t \tag{2.1}
\end{equation*}
$$

holds for all $x \in \mathbb{R}_{+}^{n}$ with $x \geq x^{0}$, then

$$
\begin{equation*}
u(x) \leq a(x) \exp \left(\int_{x^{0}}^{x} b(t) d t\right) \tag{2.2}
\end{equation*}
$$

(2) Assume that $a(x)$ is positive, continuous function, non-increasing in each of the variables $x \in \mathbb{R}_{+}^{n}$. Suppose that

$$
\begin{equation*}
u(x) \leq a(x)+\int_{x}^{x^{0}} b(t) u(t) d t \tag{2.3}
\end{equation*}
$$

holds for all $x \in \mathbb{R}_{+}^{n}$ with $x \leq x^{0}$, then

$$
\begin{equation*}
u(x) \leq a(x) \exp \left(\int_{x}^{x^{0}} b(t) d t\right) \tag{2.4}
\end{equation*}
$$

Proof. The proof of (1) is similar to the proof of (2), so we present the proof of (2) and refer the reader to [1, p. 112] for more details.
(2) Since $a(x)$ is positive, non-increasing in each of the variables $x \in \mathbb{R}_{+}^{n}$, with $x \leq x^{0}$, then

$$
\begin{equation*}
\frac{u(x)}{a(x)} \leq 1+\int_{x}^{x^{0}} b(t) \frac{u(t)}{a(t)} d t \tag{2.5}
\end{equation*}
$$

Setting

$$
\begin{equation*}
v(x)=\frac{u(x)}{a(x)}, \tag{2.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
v(x) \leq 1+\int_{x}^{x^{0}} b(t) v(t) d t \tag{2.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
r(x)=1+\int_{x}^{x^{0}} b(t) v(t) d t \tag{2.8}
\end{equation*}
$$

Then $r\left(x_{1}^{0}, x_{2}, \ldots, x_{n}\right)=1$, and $v(x) \leq r(x), r(x)$ is positive and nonincreasing in each of the variables $x_{2}, \ldots, x_{n} \in \mathbb{R}_{+}$. Hence

$$
\begin{align*}
D_{1} r(x) & =\int_{x_{2}}^{x_{2}^{0}} \int_{x_{3}}^{x_{3}^{0}} \ldots \int_{x_{n}}^{x_{n}^{0}} b\left(x_{1}, t_{2}, \ldots, t_{n}\right) v\left(x_{1}, t_{2}, \ldots, t_{n}\right) d t_{n} \ldots d t_{2} \\
& \leq \int_{x_{2}}^{x_{2}^{0}} \int_{x_{3}}^{x_{3}^{0}} \ldots \int_{x_{n}}^{x_{n}^{0}} b\left(x_{1}, t_{2}, \ldots, t_{n}\right) r\left(x_{1}, t_{2}, \ldots, t_{n}\right) d t_{n} \ldots d t_{2} \tag{2.9}\\
& \leq r(x) \int_{x_{2}}^{x_{2}^{0}} \int_{x_{3}}^{x_{3}^{0}} \ldots \int_{x_{n}}^{x_{n}^{0}} b\left(x_{1}, t_{2}, \ldots, t_{n}\right) d t_{n} \ldots d t_{2},
\end{align*}
$$

Dividing both sides of (2.9) by $r(x)$ we get

$$
\begin{equation*}
\frac{D_{1} r(x)}{r(x)} \leq \int_{x_{2}}^{x_{2}^{0}} \int_{x_{3}}^{x_{3}^{0}} \ldots \int_{x_{n}}^{x_{n}^{0}} b\left(x_{1}, t_{2}, \ldots, t_{n}\right) d t_{n} \ldots d t_{2} . \tag{2.10}
\end{equation*}
$$

Integrating with respect to t_{1} from x_{1} to x_{1}^{0}, we have

$$
\begin{equation*}
r(x) \leq \exp \left(\int_{x^{0}}^{x^{0}} b(t) d t\right), \tag{2.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
v(x) \leq \exp \left(\int_{x}^{x_{0}} b(t) d t\right) \tag{2.12}
\end{equation*}
$$

Substituting (2.12) into (2.6), we have the result (2.4).
Theorem 2.2. Let $u(x), a(x), b(x), c(x), d(x), f(x)$ be real-valued non-negative continuous functions defined for $x \in \mathbb{R}_{+}^{n}$. Let $W(u(x))$ be real-valued, positive, continuous, strictly non-decreasing, subadditive, and submultiplicative function for $u(x) \geq 0$, and let $H(u(x))$ be real-valued, positive, continuous, and non-decreasing function defined for $x \in \mathbb{R}_{+}^{n}$. Assume that $a(x), f(x)$ are nondecreasing in the first variable x_{1} for $x_{1} \in \mathbb{R}_{+}$. If

$$
\begin{align*}
u(x) \leq & a(x)+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s \tag{2.13}\\
& +f(x) H\left(\int_{x 0}^{x} d(t) W(u(t)) d t\right),
\end{align*}
$$

for $\alpha \geq 0, x, t \in \mathbb{R}_{+}^{n}$ with $\alpha \leq x_{1}$ and $x^{0} \leq t \leq x$, then

$$
\begin{equation*}
u(x) \leq p(x)\left\{a(x)+f(x) H\left[G^{-1}\left(G(A(t))+\int_{x 0}^{x} d(t) W(p(t) f(t)) d t\right)\right]\right\} \tag{2.14}
\end{equation*}
$$

for $\alpha \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\alpha \leq x_{1}$, where
$p(x)=1+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) \exp \left(\int_{\alpha}^{x_{1}} b\left(\tau, x_{2}, \ldots, x_{n}\right) c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s$,

$$
\begin{gather*}
A(t)=\int_{x^{0}}^{\infty} d(t) W(a(t) p(t)) d t \tag{2.16}\\
G(z)=\int_{z^{0}}^{z} \frac{d s}{W(H(s))}, \quad z \geq z^{0}>0 .
\end{gather*}
$$

Here G^{-1} is the inverse function of G and

$$
G\left(\int_{x^{0}}^{\infty} d(t) W(a(t) p(t)) d t\right)+\int_{x^{0}}^{x} d(t) W(p(t) f(t)) d t,
$$

is in the domain of G^{-1} for $x \in \mathbb{R}_{+}^{n}$.
Proof. Define a function

$$
\begin{equation*}
z(x)=a(x)+f(x) H\left(\int_{x^{0}}^{x} d(t) W(u(t)) d t\right) \tag{2.18}
\end{equation*}
$$

Then (2.13) can be restated as

$$
\begin{equation*}
u(x) \leq z(x)+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s \tag{2.19}
\end{equation*}
$$

Clearly $z(x)$ is a nonnegative and continuous in $x_{1} \in \mathbb{R}_{+} . x_{2}, x_{3}, \ldots x_{n} \in \mathbb{R}_{+}$fixed in (2.19) and using (1) of lemma 1.1 to (2.19), we get

$$
\begin{aligned}
u(x) \leq & z(x)+b(x) \int_{\alpha}^{x_{1}} z\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) \\
& \times \exp \left(\int_{\alpha}^{x_{1}} b\left(\tau, x_{2}, \ldots, x_{n}\right) c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s
\end{aligned}
$$

Moreover, $z(x)$ is nondecreasing in $x_{1}, x_{1} \in R_{+}$, we obtain

$$
\begin{equation*}
u(x) \leq z(x) p(x) \tag{2.20}
\end{equation*}
$$

where $p(x)$ is defined by (2.15). From (2.18) we have

$$
\begin{equation*}
u(x) \leq(a(x)+f(x) H(v(x))) p(x) \tag{2.21}
\end{equation*}
$$

where $v(x)=\int_{x 0}^{x} d(t) W(u(t)) d t$. From (2.21), we observe that

$$
\begin{align*}
v(x) & \leq \int_{x^{0}}^{x} d(t) W((a(t)+f(t) H(v(t))) p(t)) d t \\
& \leq \int_{x^{0}}^{x} d(t) W(a(t) p(t)) d t+\int_{x^{0}}^{x} d(t) W(p(t) f(t)) W(H(v(t))) d t \tag{2.22}\\
& \leq \int_{x 0}^{\infty} d(t) W(a(t) p(t)) d t+\int_{x 0}^{x} d(t) W(p(t) f(t)) W(H(v(t))) d t,
\end{align*}
$$

Since W is subadditive and submultiplicative function. Define $r(x)$ as the right side of (2.22), then $r\left(x_{0}^{1}, x_{2}, \ldots, x_{n}\right)=\int_{x^{0}}^{\infty} d(t) W(a(t) p(t)) d t, v(x) \leq r(x), r(x)$ is positive nondecreasing in each of the variables $x_{2}, \ldots, x_{n} \in \mathbb{R}_{+}$and

$$
\begin{align*}
D_{1} r(x)= & \int_{x_{2}^{0}}^{x_{2}} \int_{x_{3}^{0}}^{x_{3}} \cdots \int_{x_{n}^{0}}^{x_{n}} d\left(x_{1}, t_{2}, \ldots, t_{n}\right) \\
& \times W\left(p\left(x_{1}, t_{2}, \ldots, t_{n}\right) f\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right) W\left(H\left(v\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right)\right) d t_{n} \ldots d t_{2} \\
\leq & \int_{x_{2}^{0}}^{x_{2}} \int_{x_{3}^{0}}^{x_{3}} \ldots \int_{x_{n}^{0}}^{x_{n}} d\left(x_{1}, t_{2}, \ldots, t_{n}\right) \\
& \times W\left(p\left(x_{1}, t_{2}, \ldots, t_{n}\right) f\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right) W\left(H\left(r\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right)\right) d t_{n} \ldots d t_{2} \\
\leq & W(H(r(x))) \int_{x_{2}^{0}}^{x_{2}} \int_{x_{3}^{0}}^{x_{3}} \ldots \int_{x_{n}^{0}}^{x_{n}} d\left(x_{1}, t_{2}, \ldots, t_{n}\right) \\
& \times W\left(p\left(x_{1}, t_{2}, \ldots, t_{n}\right) f\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right) d t_{n} \ldots d t_{2} . \tag{2.23}
\end{align*}
$$

Dividing both sides of (2.23) by $W(H(r(x)))$ we get

$$
\begin{align*}
\frac{D_{1} r(x)}{W(H(r(x)))} \leq & \int_{x_{2}^{0}}^{x_{2}} \int_{x_{3}^{0}}^{x_{3}} \ldots \int_{x_{n}^{0}}^{x_{n}} d\left(x_{1}, t_{2}, \ldots, t_{n}\right) \tag{2.24}\\
& \times W\left(p\left(x_{1}, t_{2}, \ldots, t_{n}\right) f\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right) d t_{n} \ldots d t_{2}
\end{align*}
$$

Note that for

$$
\begin{equation*}
G(z)=\int_{z^{0}}^{z} \frac{d s}{W(H(s))}, \quad z \geq z^{0}>0 \tag{2.25}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
D_{1} G(r(x))=\frac{D_{1} r(x)}{W(H(r(x)))} \tag{2.26}
\end{equation*}
$$

From (2.25) , (2.26) and (2.24), we have

$$
\begin{align*}
D_{1} G(r(x)) \leq & \int_{x_{2}^{0}}^{x_{2}} \int_{x_{3}^{0}}^{x_{3}} \ldots \int_{x_{n}^{0}}^{x_{n}} d\left(x_{1}, t_{2}, \ldots, t_{n}\right) \tag{2.27}\\
& \times W\left(p\left(x_{1}, t_{2}, \ldots, t_{n}\right) f\left(x_{1}, t_{2}, \ldots, t_{n}\right)\right) d t_{n} \ldots d t_{2}
\end{align*}
$$

Now setting $x_{1}=s$ in (2.27) and then integrating with respect to x_{1}^{0} to x_{1}, we obtain

$$
\begin{equation*}
G(r(x)) \leq G\left(r\left(x_{1}^{0}, x_{2}, \ldots, x_{n}\right)\right)+\int_{x_{0}}^{x} d(t) W(p(t) f(t)) d t \tag{2.28}
\end{equation*}
$$

Noting that $r\left(x_{1}^{0}, x_{2}, \ldots, x_{n}\right)=\int_{x_{0}}^{\infty} d(t) W(a(t) p(t)) d t$, we have

$$
\begin{equation*}
r(x) \leq G^{-1}\left[G\left(\int_{x^{0}}^{\infty} d(t) W(a(t) p(t)) d t\right)+\int_{x^{0}}^{x} d(t) W(p(t) f(t)) d t\right] \tag{2.29}
\end{equation*}
$$

The required inequality in (2.14) follows from the fact $v(x) \leq r(x)$, (2.19) and (2.29)

Theorem 2.3. Let $u(x), a(x), b(x), c(x), d(x), f(x), W(u(x))$, and $H(u(x))$ be as defined in theorem 2.2. Assume that $a(x), f(x)$ are non-increasing in the first variable x_{1}, for $x_{1} \in \mathbb{R}_{+}$. If

$$
\begin{align*}
u(x) \leq & a(x)+b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s \\
& +f(x) H\left(\int_{x}^{x_{0}} d(t) W(u(t)) d t\right) \tag{2.30}
\end{align*}
$$

for $\beta \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\beta \geq x_{1}$ and $x \leq x^{0}$. Then

$$
u(x) \leq \bar{p}(x)\left\{a(x)+f(x) H\left(G^{-1}\left[G(\bar{A}(t))+\int_{x}^{x_{0}} d(t) W(p(t) f(t)) d t\right]\right)\right\}
$$

for $\beta \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\beta \geq x_{1}$, where

$$
\begin{gathered}
\bar{p}(x)=1+b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) \exp \left(\int_{x_{1}}^{s} b\left(\tau, x_{2}, \ldots, x_{n}\right) c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s \\
\bar{A}(t)=\int_{0}^{x^{0}} d(t) W(a(t) \bar{p}(t)) d t \\
G(z)=\int_{z^{0}}^{z} \frac{d s}{W(H(s))}, \quad z \geq z^{0}>0
\end{gathered}
$$

Here G^{-1} is the inverse function of G and

$$
G\left(\int_{0}^{x^{0}} d(t) W(a(t) p(t)) d t\right)+\int_{x}^{x^{0}} d(t) W(p(t) f(t)) d t
$$

is in the domain of G^{-1} for $x \in \mathbb{R}_{+}^{n}$.
The proof is similar to the proof of Theorem 2.2 and so it is omitted.
Remark 2.4. We note that in the special case $n=2$ (integral inequalities in two independent variables) $x \in \mathbb{R}_{+}^{2}$ and $x_{0}=\left(x_{1}^{0}, x_{2}^{0}\right)=(\infty, \infty)$ in theorem 2.3. our estimate reduces to Theorem 2.4 obtained by S. S. Dragomir and Y. H. Kim [2].

Theorem 2.5. Let $u(x), a(x), b(x), c(x)$ and $f(x)$ be real-valued nonnegative continuous functions defined for $x \in \mathbb{R}_{+}^{n}$ and $L: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}_{+}^{*}$ be a continuous functions which satisfies the condition

$$
\begin{equation*}
0 \leq L(x, u)-L(x, v) \leq M(x, v) \Phi^{-1}(u-v) \tag{2.31}
\end{equation*}
$$

for $u \geq v \geq 0$, where $M(x, v)$ is a real-valued nonnegative continuous function defined for $x \in \mathbb{R}_{+}^{n}, v \in \mathbb{R}_{+}$. Assume that $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a continuous and strictly increasing function with $\Phi(0)=0, \Phi^{-1}$ is the inverse function of Φ and

$$
\begin{equation*}
\Phi^{-1}(u v) \leq \Phi^{-1}(u) \Phi^{-1}(v) \tag{2.32}
\end{equation*}
$$

for $u, v \in \mathbb{R}_{+}$, Assume that $a(x), f(x)$ are nondecreasing in the first variable x_{1} for $x_{1} \in \mathbb{R}_{+}$. If
$u(x) \leq a(x)+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s+f(x) \Phi\left(\int_{x_{0}}^{x} L(t, u(t)) d t\right)$,
for $\alpha \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\alpha \leq x_{1}$ and $x^{0}<x$. Then

$$
u(x) \leq p(x)\left\{a(x)+f(x) \Phi\left[e(x) \exp \left(\int_{x_{0}}^{x} M(t, p(t) a(t)) \Phi^{-1}(p(t) f(t)) d t\right)\right]\right\}
$$

for $\alpha \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\alpha \leq x_{1}$ and $x^{0}<x$, where

$$
p(x)=1+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) \exp \left(\int_{s}^{x_{1}} b\left(\tau, x_{2}, \ldots, x_{n}\right) c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s
$$

$$
\begin{equation*}
e(x)=\int_{x 0}^{x} L(t, p(t) a(t)) d t \tag{2.35}
\end{equation*}
$$

Proof. Define the function

$$
\begin{equation*}
z(x)=a(x)+f(x) \Phi\left(\int_{x_{0}}^{x} L(t, u(t)) d t\right) \tag{2.37}
\end{equation*}
$$

Then (2.33) can be restated as

$$
\begin{equation*}
u(x) \leq z(x)+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) u\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) d s \tag{2.38}
\end{equation*}
$$

Clearly $z(x)$ is nonnegative and continuous in $x_{1} \in \mathbb{R}_{+}$, where $x_{2}, x_{3}, \ldots x_{n} \in$ \mathbb{R}_{+}fixed in (2.38) and using 1 of lemma 1.1 to (2.38), we get

$$
u(x) \leq z(x)+b(x) \int_{\alpha}^{x_{1}} z\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right)
$$

$$
\times \exp \left(\int_{s}^{x_{1}} b\left(\tau, x_{2}, \ldots, x_{n}\right) c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s
$$

Moreover, $z(x)$ is nondecreasing in $x_{1}, x_{1} \in \mathbb{R}_{+}$, we obtain

$$
\begin{equation*}
u(x) \leq z(x) p(x) \tag{2.39}
\end{equation*}
$$

Where $p(x)$ is defined by (2.35). From (2.37) and (2.39) we have

$$
\begin{equation*}
u(x) \leq p(x)[a(x)+f(x) \Phi(v(x))] \tag{2.40}
\end{equation*}
$$

where

$$
v(x)=\int_{x^{0}}^{x} L(t, u(t)) d t
$$

From (2.40), and the hypotheses on L and Φ, we observe that

$$
\begin{align*}
v(x) & \leq \int_{x^{0}}^{x}(L(t, p(t)[a(t)+f(t) \Phi(v(t))])-L(t, p(t) a(t))+L(t, p(t) a(t))) d t \\
& \leq \int_{x 0}^{x} L(t, p(t) a(t)) d t+\int_{x^{0}}^{x} M(t, p(t) a(t)) \Phi^{-1}(p(t) f(t) \Phi(v(t))) d t \\
& \leq e(x)+\int_{x 0}^{x} M(t, p(t) a(t)) \Phi^{-1}(p(t) f(t)) v(t) d t \tag{2.41}
\end{align*}
$$

where $e(x)$ is defined by (2.36). Clearly, $e(x)$ is positive, continuous, nondecreasing in each of the variables $x, x \in \mathbb{R}_{+}^{n}$. Now, by part (1) of lemma 2.1,

$$
\begin{equation*}
v(x) \leq e(x) \exp \left(\int_{x_{0}}^{x} M(t, p(t) a(t)) \Phi^{-1}(p(t) f(t)) d t\right) \tag{2.42}
\end{equation*}
$$

Using (2.40) in (2.42), we get the required inequality in (2.34).
Theorem 2.6. Let $u(x), a(x), b(x), c(x), f(x), L, M, \Phi$, and Φ^{-1} be as defined in theorem 2.5. Assume that $a(x), f(x)$ are non-increasing in the first variable x_{1} for $x_{1} \in \mathbb{R}_{+}$. If
$u(x) \leq a(x)+b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s+f(x) \Phi\left(\int_{x}^{x^{0}} L(t, u(t)) d t\right)$,
for $\beta \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\beta \geq x_{1}, x<x^{0}$. Then

$$
u(x) \leq \bar{p}(x)\left\{a(x)+f(x) \Phi\left[\bar{e}(x) \exp \left(\int_{x}^{x_{0}} M(t, p(t) a(t)) \Phi^{-1}(p(t) f(t)) d t\right)\right]\right\}
$$

for $\beta \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\beta \geq x_{1}, x<x^{0}$, where

$$
\begin{gather*}
\bar{p}(x)=1+b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) \exp \left(\int_{x_{1}}^{s} b\left(\tau, x_{2}, \ldots, x_{n}\right) c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s \\
\bar{e}(x)=\int_{x}^{x^{0}} L(t, \bar{p}(t) a(t)) d t . \tag{2.44}
\end{gather*}
$$

The proof is similar to the proof of Theorem 2.5 and so it is omitted.
Remark 2.7. We note that in the special case $n=2, x \in \mathbb{R}_{+}^{2}$ and $x^{0}=\left(x_{1}^{0}, x_{2}^{0}\right)=$ (∞, ∞) in theorem 2.6. Our estimate reduces to Theorem 2.6 obtained by Dragomir and Kim [2].

Remark 2.8. (1) The preceding results remaining valid if we replace
$b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s$ by the general case
$b_{i}(x) \int_{\alpha_{i}}^{x_{i}} c_{i}\left(x_{1, .} \ldots, x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right) u\left(x_{1, .} \ldots, x_{i-1}, s_{i}, x_{i+1}, \ldots, x\right) d s_{i}$, for any $i=2, \ldots, n$ fixed, and $\alpha_{i} \geq 0, x=\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\alpha_{i} \leq s_{i} \leq x_{i}, x_{i}, s_{i} \in$ \mathbb{R}_{+}.
(2) The preceding results are also valid if $b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) u\left(s, x_{2}, \ldots, x_{n}\right) d s$ is replaced by the general case
$b_{i}(x) \int_{x_{i}}^{\beta_{i}} c_{i}\left(x_{1, .} \ldots, x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right) g\left(u\left(x_{1, .} \ldots, x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right)\right) d s_{i}$, for any $i=2, \ldots, n$ fixed, and $\alpha_{i} \geq 0, x=\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}_{+}^{n}$ with $\alpha_{i} \leq s_{i} \leq x_{i}$, $x_{i}, s_{i} \in \mathbb{R}_{+}$. where $b_{i}(x)$ and $c_{i}(x)$ be real-valued nonnegative continuous function defined for $x \in \mathbb{R}_{+}^{n}$, For any $i=2, \ldots, n$.

3. Further Inequalities

In this section we require the class of function S as defined in [2]. A function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is said to belong to the class S if it satisfies the following conditions:
(1) $g(u)$ is positive, nondecreasing and continuous for $u \geq 0$
(2) $(1 / v) g(u) \leq g(u / v), u>0, v \geq 1$.

Theorem 3.1. Let $u(x), a(x), b(x), c(x), d(x), f(x)$ be real-valued nonnegative continuous function defined for $x \in \mathbb{R}_{+}^{n}$ and let $g \in S$. Also let $W(u(x))$ be realvalued, positive, continuous, strictly nondecreasing, subadditive, and submultiplicative function for $u(x) \geq 0$ and let $H(u(x))$ be a real-valued, continuous, positive, and nondecreasing function defined for $x \in \mathbb{R}_{+}^{n}$, and $b(x)$ nonincreasing in the first variable x_{1}. Assume that a function $m(x)$ is nondecreasing in the first variable x_{1} and $m(x) \geq 1$, which is defined by

$$
\begin{equation*}
m(x)=a(x)+f(x) H\left(\int_{x 0}^{x} d(t) W(u(t)) d t\right) \tag{3.1}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}, x>x^{0} \geq 0$. If

$$
\begin{equation*}
u(x) \leq m(x)+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s \tag{3.2}
\end{equation*}
$$

for $\alpha \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\alpha \leq x_{1}$, then

$$
\begin{equation*}
u(x) \leq F(x)\left\{a(x)+f(x) H\left[G^{-1}\left(G(B(t))+\int_{x 0}^{x} d(t) W(F(t) f(t)) d t\right)\right]\right\} \tag{3.3}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}$, where

$$
\begin{gather*}
F(x)=\Omega^{-1}\left(\Omega(1)+\int_{\alpha}^{x_{1}} b\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) d s\right) \tag{3.4}\\
B(t)=\int_{x^{0}}^{\infty} d(t) W(a(t) F(t)) d t \tag{3.5}\\
\Omega(\delta)=\int_{\varepsilon}^{\delta} \frac{d s}{g(s)}, \quad \delta \geq \varepsilon>0 \tag{3.6}
\end{gather*}
$$

Here Ω^{-1} is the inverse function of Ω, and G, G^{-1} are defined in Theorem 2.2, and $\Omega(1)+\int_{\alpha}^{x_{1}} b\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) d s$ is in the domain of Ω^{-1}, and

$$
G\left(\int_{x_{0}}^{\infty} d(t) W(a(t) F(t)) d t\right)+\int_{x_{0}}^{x} d(t) W(F(t) f(t) d t),
$$

is in the domain of G^{-1} for $x \in \mathbb{R}_{+}^{n}$.
Proof. We have $m(x)$ be a positive, continuous, nondecreasing in x_{1} and $g \in S$, and $b(x)$ non-increasing in the first variable x_{1}. Then can be restated as

$$
\begin{equation*}
\frac{u(x)}{m(x)} \leq 1+\int_{\alpha}^{x_{1}} b\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) c\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) g\left(\frac{u\left(s, x_{2}, x_{3}, \ldots, x_{n}\right)}{m\left(s, x_{2}, x_{3}, \ldots, x_{n}\right)}\right) d s \tag{3.7}
\end{equation*}
$$

The inequality (3.7) may be treated as one-dimensional Bihari-Lasalle inequality the inequality type was given by Gyori [3] (see [1]), for any fixed $x_{2}, x_{3}, \ldots, x_{n}$, which implies

$$
\begin{equation*}
u(x) \leq F(x) m(x) \tag{3.8}
\end{equation*}
$$

Here $F(x)$ is defined by (3.4), by (3.1) and (3.8) we get

$$
\begin{equation*}
u(x) \leq F(x)\{a(x)+f(x) H(v(x))\} \tag{3.9}
\end{equation*}
$$

where $v(x)$ is defined by

$$
v(x)=\int_{x 0}^{x} d(t) W(u(t)) d t .
$$

Using the last argument in the proof of Theorem 2.2, we obtain desired inequality in (3.3).

Theorem 3.2. Let $u(x), a(x), c(x), d(x), f(x), W(u(x)$, and $H(u(x))$ be as defined in the theorem 3.1 and let $g \in S$ and $b(x)$ be nonnegative continuous functions, nondecreasing in the first variable x_{1}. Assume that a function $\bar{m}(x)$ is non-increasing in the first variable x_{1} and $\bar{m}(x) \geq 1$, which is defined by

$$
\begin{equation*}
\bar{m}(x)=a(x)+f(x) H\left(\int_{x}^{x^{0}} d(t) W(u(t)) d t\right) \tag{3.10}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}, x^{0} \geq x$. If

$$
\begin{equation*}
u(x) \leq \bar{m}(x)+b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s \tag{3.11}
\end{equation*}
$$

for $\beta \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\beta \geq x_{1}$, then

$$
\begin{equation*}
u(x) \leq \bar{F}(x)\left\{a(x)+f(x) H\left[G^{-1}\left(G(\bar{B}(t))+\int_{x}^{x^{0}} d(t) W(\bar{F}(t) f(t)) d t\right)\right]\right\} \tag{3.12}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}$. Here

$$
\begin{gather*}
\bar{F}(x)=\Omega^{-1}\left(\Omega(1)+\int_{x_{1}}^{\beta} b\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) d s\right), \tag{3.13}\\
\bar{B}(t)=\int_{0}^{x^{0}} d(t) W(a(t) \bar{F}(t)) d t \tag{3.14}
\end{gather*}
$$

and Ω is defined in (3.6). Here Ω^{-1} is the inverse function of Ω, and G, G^{-1} are defined in theorem 2.2, and $\Omega(1)+\int_{x_{1}}^{\beta} b\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) d s$ is in the domain of Ω^{-1}, and

$$
G\left(\int_{0}^{x^{0}} d(t) W(a(t) \bar{F}(t)) d t\right)+\int_{x}^{x^{0}} d(t) W(\bar{F}(t) f(t)) d t
$$

is in the domain of G^{-1} for $x \in \mathbb{R}_{+}^{n}$.

Proof. We have $\bar{m}(x)$ positive, continuous, nonincreasing in x_{1}. Also $g \in S$ and $b(x)$ nondecreasing in the first variable x_{1}. Then (3.11) can be restated as

$$
\begin{equation*}
\frac{u(x)}{\bar{m}(x)} \leq 1+\int_{x_{1}}^{\beta} b\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) c\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) g\left(\frac{u\left(s, x_{2}, \ldots, x_{n}\right)}{\bar{m}\left(s, x_{2}, \ldots, x_{n}\right)}\right) d s \tag{3.15}
\end{equation*}
$$

This inequality can be treated as one-dimensional Bihari-Lasalle inequality [3] for a fixed $x_{2}, x_{3}, \ldots, x_{n}$, which implies

$$
\begin{equation*}
u(x) \leq \bar{F}(x) \bar{m}(x) \tag{3.16}
\end{equation*}
$$

where $\bar{F}(x)$ is defined by (3.13). Now, by following last argument as in the proof of Theorem 2.3 , we obtain desired inequality in (3.12)

Corollary 3.3. If $b(x)=1$ for $x \in R_{+}^{n}$, then from

$$
u(x) \leq \bar{m}(x)+\int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s
$$

with $\beta \geq x_{1}$, it follows that

$$
u(x) \leq \bar{F}(x)\left\{a(x)+f(x) H\left[G^{-1}\left(G(\bar{B}(t))+\int_{x}^{x^{0}} d(t) W(\bar{F}(t) f(t)) d t\right)\right]\right\}
$$

for $x \in \mathbb{R}_{+}^{n}$, where

$$
\begin{gathered}
\bar{F}(x)=\Omega^{-1}\left(\Omega(1)+\int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) d s\right) \\
\bar{B}(t)=\int_{0}^{x^{0}} d(t) W(a(t) \bar{F}(t)) d t
\end{gathered}
$$

Remark 3.4. We note that in the special case $n=2, x=\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$, and $x^{0}=(\infty, \infty)$ in corollary 3.3. Our estimate reduces to Theorem 3.2 obtained by Dragomir and Kim [2].
Theorem 3.5. Let $u(x), a(x), b(x), c(x), f(x), L, M, \Phi$, and Φ^{-1} be as defined in theorem 2.5. Let $g \in S$ and $b(x)$ nonincreasing in the first variable x_{1}. Assume that a function $n(x)$ is nondecreasing in the first variable x_{1} and $n(x) \geq 1$ which is defined by

$$
\begin{equation*}
n(x)=a(x)+f(x) \Phi\left(\int_{x_{0}}^{x} L(t, u(t)) d t\right) \tag{3.17}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}, x \geq x_{0} \geq 0$. If

$$
\begin{equation*}
u(x) \leq n(x)+b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, x_{3}, \ldots, x_{n}\right)\right) d s \tag{3.18}
\end{equation*}
$$

for $\alpha \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\alpha \leq x_{1}$, then

$$
\begin{equation*}
u(x) \leq F(x)\left\{a(x)+f(x) \Phi\left[e(x) \exp \left(\int_{x^{0}}^{x} M(t, a(t) F(t)) \Phi^{-1}(f(t) F(t)) d t\right)\right]\right\} \tag{3.19}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}$, where $F(x)$ is defined in (3.4), $e(x)$ is defined in (2.36), Ω is defined in (3.6), Here Ω^{-1} is the inverse function of Ω, and $\Omega(1)+\int_{\alpha}^{x_{1}} b\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) d s$ is in the domain of Ω for $x \in \mathbb{R}_{+}^{n}$.

Proof. We follow an argument similar to that of Theorem 3.1. We have $n(x)$ be a positive, continuous, nondecreasing in x_{1} and $g \in S$, and $b(x)$ nonincreasing in the first variable x_{1}. Then can (3.18) be restated as

$$
\begin{equation*}
\frac{u(x)}{n(x)} \leq 1+\int_{\alpha}^{x_{1}} b\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) c\left(s, x_{2}, x_{3}, \ldots, x_{n}\right) g\left(\frac{u\left(s, x_{2}, \ldots, x_{n}\right)}{n\left(s, x_{2}, \ldots, x_{n}\right)}\right) d s \tag{3.20}
\end{equation*}
$$

The inequality (3.20) may be treated as one-dimensional Bihari-Lasalle inequality, for any fixed $x_{2}, x_{3}, \ldots, x_{n}$, which implies

$$
\begin{equation*}
u(x) \leq F(x) n(x) \tag{3.21}
\end{equation*}
$$

where $F(x)$ is defined by (3.4). From (3.17) and (3.21) we get

$$
\begin{equation*}
u(x) \leq F(x)\left[a(x)+f(x) H\left(\int_{x^{0}}^{x} L(t, u(t)) d t\right)\right] \tag{3.22}
\end{equation*}
$$

Following the last argument in the proof of Theorem 2.5, we obtain the desired inequality in (3.19).

Theorem 3.6. Let $u(x), a(x), b(x), c(x), f(x), L, M, \Phi$, and Φ^{-1} be as defined in theorem 2.5. Let $g \in S$ and $b(x)$ be nondecreasing in the first variable x_{1}. Assume that a function $\bar{n}(x)$ is nonincreasing in the first variable x_{1} and $\bar{n}(x) \geq 1$, which is defined by

$$
\begin{equation*}
\bar{n}(x)=a(x)+f(x) \Phi\left(\int_{x}^{x^{0}} L(t, u(t)) d t\right) \tag{3.23}
\end{equation*}
$$

for $x \in \mathbb{R}_{+}^{n}, x^{0} \geq x \geq 0$. If

$$
\begin{equation*}
u(x) \leq \bar{n}(x)+b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s \tag{3.24}
\end{equation*}
$$

for $\beta \geq 0, x \in \mathbb{R}_{+}^{n}$ with $\beta \geq x_{1}$, then

$$
u(x) \leq \bar{F}(x)\left\{a(x)+f(x) \Phi\left[\bar{e}(x) \exp \left(\int_{x}^{x^{0}} M(t, a(t) \bar{F}(t)) \Phi^{-1}(f(t) \bar{F}(t)) d t\right)\right]\right\}
$$

for $x \in \mathbb{R}_{+}^{n}$, where $\bar{F}(x)$ is defined in (3.13), $\bar{e}(x)$ is defined in (2.44), Ω is defined in (3.6). Here Ω^{-1} is the inverse function of Ω, and $\Omega(1)+\int_{x_{1}}^{\beta} b\left(s, x_{2}, \ldots, x_{n}\right) c\left(s, x_{2}, \ldots, x_{n}\right) d s$ is in the domain of Ω for $x \in \mathbb{R}_{+}^{n}$.

The proof of this theorem follows by an argument similar to that of Theorem 3.5 ; therefore, we omit it.

Corollary 3.7. if $b(x)=1$ for $x \in R_{+}^{n}$, then from

$$
u(x) \leq \bar{n}(x)+\int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s
$$

for $\beta \geq 0$ with $\beta \geq x_{1}$, then it follows that

$$
u(x) \leq \bar{F}(x)\left\{a(x)+f(x) \Phi\left[\bar{e}(x) \exp \left(\int_{x}^{x^{0}} M(t, a(t) \bar{F}(t)) \Phi^{-1}(f(t) \bar{F}(t)) d t\right)\right]\right\}
$$

for $x \in \mathbb{R}_{+}^{n}$, where

$$
\bar{F}(x)=\Omega^{-1}\left(\Omega(1)+\int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) d s\right)
$$

$$
\begin{gathered}
\bar{e}(x)=\int_{x}^{x^{0}} L(t, \bar{p}(t) a(t)) d t \\
\bar{p}(x)=1+\int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) \exp \left(\int_{x_{1}}^{s} c\left(\tau, x_{2}, \ldots, x_{n}\right) d \tau\right) d s
\end{gathered}
$$

for $x \in \mathbb{R}_{+}^{n} . \Omega$ is defined in (3.6), where Ω^{-1} is the inverse function of Ω, and $\Omega(1)+\int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) d s$ is in the domain of Ω for $x \in \mathbb{R}_{+}^{n}$.

Remark 3.8. We note that in the special case $n=2, x=\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$, and $x^{0}=(\infty, \infty)$ in corollary 3.7. our estimate reduces to Theorem 3.4 obtained by Dragomir and Kim [2].
Remark 3.9. (1) All the preceding results remain valid when $b(x) \int_{\alpha}^{x_{1}} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s$ is replaced by the general function $b_{i}(x) \int_{\alpha_{i}}^{x_{i}} c_{i}\left(x_{1, .}\right.$ dots $\left., x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right) g\left(u\left(x_{1, .}, ., x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right)\right) d s_{i}$, with $i=2, \ldots, n$ fixed, and $\alpha_{i} \geq 0, x=\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}_{+}^{n}$ and with $\alpha_{i} \leq s_{i} \leq x_{i}$, $x_{i}, s_{i} \in \mathbb{R}_{+}$,
(2) The above results remain valid when
$b(x) \int_{x_{1}}^{\beta} c\left(s, x_{2}, \ldots, x_{n}\right) g\left(u\left(s, x_{2}, \ldots, x_{n}\right)\right) d s$ is replaced by the general function
$b_{i}(x) \int_{x_{i}}^{\beta_{i}} c_{i}\left(x_{1, .} \ldots, x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right) g\left(u\left(x_{1, .} \ldots, x_{i-1}, s_{i}, x_{i+1}, \ldots, x_{n}\right)\right) d s_{i}$, with $i=2, \ldots, n$ fixed, and $\alpha_{i} \geq 0, x=\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}_{+}^{n}$ and with $\alpha_{i} \leq s_{i} \leq x_{i}$, $x_{i}, s_{i} \in \mathbb{R}_{+}$, where $b_{i}(x)$ and $c_{i}(x)$ be real-valued nonnegative continuous function defined for $x \in \mathbb{R}_{+}^{n}$, for all $i=2, \ldots, n$.

In a future work, we will present some applications for the results obtained in this work.

References

[1] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, (1992).
[2] S. S. Dragomir and Y.-Ho Kim, Some Integral Inequalities for Function of two Variables, EJDE , Vol. 2003 (2003), No.10, pp.1-13.
[3] I. Gyori, A Generalization of Bellman's Inequality for Stieltjes Integrals and a Uniqueness Theorem, Studia Sci. Math. Hungar, 6 (1971), 137-145.
[4] D. R. Snow, Gronwall's Inequality for Systems of Partial Differential Equation in tow independent Variables, Proc. Amer. Math. Soc. 33 (1972), 46-54.
[5] C. C. Yeh and M.-H. Shim, The Gronwall-Bellman Inequality in Several Variables, J. Math. Anal. Appl., 87 (1982), 157-1670.
[6] C. C. Yeh, Bellman-Bihari Integral Inequality in n Independent variables, J. Math. Anal. Appl., 87 (1982), 311-321
[7] C. C. Yeh, On Some Integral Inequalities in n Independent variables and their Applications, J. Math. Anal. Appl., 87 (1982), 387-410.

University of Badji Mokhtar, Faculty of Science, Department of Mathematics, B.
P. 12, Annaba 23000, Algeria

E-mail address: khellafhassane@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 45H40, 45K05.
 Key words and phrases. Integral inequality, subadditive and submultiplicative function. © 2003 Texas State University - San Marcos.
 Submitted September 15, 2003. Published December 16, 2003.

