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Existence of positive solutions for two nonlinear

eigenvalue problems ∗

Nedra Belhaj Rhouma & Lamia Mâatoug

Abstract

We study the existence of positive solutions for the following two non-
linear eigenvalue problems

∆u− g(., u)u + λf(., u)u = 0,

∆u− g(., u)u + λf(., u) = 0,

in a bounded regular domain in R2 with u = 0 on the boundary. We
assume that f and g are in Kato class of functions.

1 Introduction

In this paper, we shall study the existence of positive solutions for the following
nonlinear eigenvalue problems: (Pλ):

∆u− g(., u)u+ λf(., u)u = 0, in D,
u > 0, inD,
u = 0, on ∂D,

(1.1)

and (Qλ):
∆u− g(., u)u+ λf(., u) = 0, in D,

u > 0, in D,
u = 0, on ∂D.

(1.2)

In this paper, D is a regular bounded domain in R2, ∆ is the Laplacian and the
functions f and g are in a new Kato class K introduced in [11]. Solutions to
these problems are understood as distributional solutions in D. For the reader’s
convenience, we recall the definition of class K, some of its properties, and some
examples below and in section 2.
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Definition 1.1 A Borel measurable function ϕ on D belongs to the class K if
ϕ satisfies the condition

lim
α→0

sup
x∈D

∫
(|x−y|≤α)∩D

ρ(y)
ρ(x)

log(1 +
ρ(x)ρ(y)
|x− y|2

)|ϕ(y)|dy = 0, (1.3)

where ρ(x) is the distance from x to ∂D.

Hansen and Hueber in [9, 10] studied the existence of eigenvalues for the
linear problem

∆u− µu+ λνu = 0, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1.4)

in the general framework of harmonic spaces where Ω is a regular bounded do-
main in Rn, n ≥ 1 and the measures µ and ν generate continuous potentials.
They showed that (1.4) has a principal eigenvalue with a corresponding positive
eigenfunction. These results were generalized later in [2]. Namely, the authors
proved when f and g are locally in the Kato class Kn and under some assump-
tions, the existence of eigenvalues λ for which problems (1.1) and (1.2) have
nonnegative eigenfunctions.

Recall that a function ϕ in D belongs to the Kato class K2 [1, 4] if

lim
α→0

sup
x∈D

∫
(|x−y|≤α)∩D

log(
1

|x− y|
)|ϕ(y)|dy = 0. (1.5)

In [1] Aizenman and Simon identified the class K2 as the natural class of func-
tions so that the week solutions of the equation ∆u + ϕu = 0 are continuous.
We point out that the class K properly contains the Kato class K2 (see [11]).

Now we present concrete examples of functions in the class K [11].

1. Let ϕ be a radial function in B(0, 1). Then, the function ϕ is in the class
K if and only if ∫ 1

0

r log(
1
r
)|ϕ(r)|dr <∞.

2. Let λ < 2, then the function defined in D by ρλ(y) = 1
(ρ(y))λ is in the class

K. Note that if 1 ≤ λ < 2 then 1/(ρ(y))λ /∈ L1(D).

3. Let p > 1. Then Lp(D) ⊂ K2 ⊂ L1(D) ∩K ⊂ K ⊂ L1
loc(D). In case that

ϕ is radial and D is a ball, we prove that ϕ is in K2 if nd only if ϕ is in
K ∩ L1(D).

In the sequel, for f : D × R → R a Borel function and a > 0, we denote

f− = max(−f, 0), fa(x) = sup
t∈[0,a]

|f(x, t)|,

and fa(x) = sup
t∈[0,a]

|f(x, t)|.

For the remaining of this paper, we assume the following two conditions:
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(H1) f is a nonnegative measurable function on D×R, continuous with respect
to the second variable such that for all c ≥ 0, f(., c) ∈ K.

(H2) g is a measurable functions on D × R, continuous with respect to the
second variable such that for all c ≥ 0, g(., c) ∈ K.

Our main results are stated as follows.

Theorem 1.2 Assume (H1)–(H2) and that there exists a constant a > 0 such
that

V fa > 0, and ‖V (g−)a‖∞ < 1, (1.6)

where V = (−∆)−1 denotes the potential kernel associated to ∆. Then there
exists λ > 0 such that (1.1) has a continuous solution uλ satisfying ‖uλ‖∞ = a.

Example Let g be a measurable function defined on B(0, 1) × R+. Suppose
that there exists a nonnegative function q in (0, 1) such that

|g(x, t)| ≤ q(|x|), for all (x, t) ∈ B(0, 1)× R+,

and ∫ 1

0

r log
1
r
q(r)dr < 1.

Since ‖V (g−)a‖ ≤
∫ 1

0
r log 1

r q(r)dr < 1 then for any a > 0, there exists λ ≥ 0
such that the problem

∆u(x)− g(x, u(x))u(x) + λu(x) exp(u(x)) = 0, x ∈ B(0, 1),
u(x) > 0, x ∈ B(0, 1),
u(x) = 0, x ∈ ∂B,

has a continuous solution u such that ‖u‖∞ = a.
Now, we introduce the following definition which will be needed below.

Definition 1.3 We say that a measurable function f in D × R is locally K-
Lipschitz with respect to the second variable if for every c > 0, there exists a
nonnegative function ϕ in K such that for all x in D and t in [−c, c]

|f(x, t)− f(x, t′)| ≤ ϕ(x)|t− t′|.

Theorem 1.4 Assume that f and g are nonnegative, locally K-Lipschitz with
respect to the second variable and satisfying (H1)–(H2). Also assume that there
exist two nonnegative functions φ and ψ in K such that

V φ > 0 and f(x, t) ≥ tφ(x), for all (x, t) ∈ D × [0,∞), (1.7)
V fa > 0, for all a > 0, (1.8)

g(x, t) ≤ ψ(x), for all (x, t) ∈ D × [0,∞). (1.9)

Then there exists λ∗ ∈ (0,∞) such that
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(i) For any 0 < λ < λ∗, the problem (1.2) has a positive minimal solution
uλ ∈ C(D) and for any λ > λ∗, there is no positive solution for (1.2).

(ii) The function λ→ uλ is nondecreasing.

By a minimal solution, we mean a solution u of (1.2) such that if w is any
solution of (1.2), then u ≤ w.

Corollary 1.5 Assume that f and g are nonnegative, locally Lipschitz with re-
spect to the second variable and satisfy the same conditions as in Theorem 1.4,
then the function λ 7→ uλ is increasing.

Remark 1.6 If g(x, u) = 0 and f(., u) = f(u), then (1.2) becomes the corre-
sponding problem of semilinear equation

∆u+ λf(u) = 0, in D,
u > 0, in D,
u = 0, on ∂D

(1.10)

which has been widely studied [5, 6, 7]. It is shown that if f satisfies the
condition

(H) f is a C1 positive nondecreasing convex function on [0,∞) such that

lim
t→∞

f(t)
t

= ∞,

then there exists an extremal positive value λ∗ < ∞ for the parameter λ such
that

(i) For any 0 < λ < λ∗ there exists a positive minimal classical solution
uλ ∈ C2(Ω) while there is no such solution for (1.10) if λ > λ∗.

(ii) The function λ→ uλ is increasing.

In those papers, the existence of solutions was obtained by applying the varia-
tional methods in critical point theory or by using the general theory of bifur-
cation of Rabinowitz to get a curve of solutions of (1.10).

It is worth mentioning that we have the minimum requirements on the
smoothness of f and g. Indeed, there is no assumptions on the monotony neither
on the convexity of the function f as we will see in the examples given below
and the condition (1.7) is less restrictive than the condition limt→∞

f(t)
t = ∞.

Example Let p > 0. Let Ψ and Φ be nonnegative functions in K such that
V Φ > 0. Then, the results of Theorem 1.4 hold for the problem

∆u(x)− Ψ(x)u(x)
1 + up(x)

+ λΦ(x)(1 + u2(x)| log u(x)|) = 0, in D,

u > 0, in D,
u = 0, on ∂D.
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Example Let p > 0. Let Ψ and Φ be nonnegative functions in K such that
V Φ > 0. Then, the results of Theorem 1.4 hold for the problem

∆u(x)− Ψ(x)u(x)
1 + up(x)

+ λΦ(x)(1 + u(x)) = 0, in B(0, 1),

u > 0, in B(0, 1),
u = 0, on ∂B(0, 1).

Theorem 1.7 Assume that f and g are nonnegative, locally K-Lipschitz with
respect to the second variable and satisfying (H1)–(H2) and (1.7). Moreover
suppose that there exists a function θ in K such that

f(x, t) ≤ θ(x), for all (x, t) ∈ D × [0,+∞[.

Then for any λ > 0, the problem (1.2) has at least a positive continuous solution
in D.

Example Let 0 < a < b and β < 2. Let D = {x ∈ D, a < |x| < b}. Consider
the problem

∆u(x) + λ
2 + sinu(x)

(|x| − a)β(b− |x|)β
= 0, x ∈ D,

u(x) > 0, x ∈ D,
u(x) = 0, x ∈ ∂D.

Then for any λ > 0, this problem has at least a positive continuous solution on
D.

We shall prove Theorem 1.2 in section 3, and Theorem 1.4 and Theorem 1.7
in section 4. To prove the Theorems, we shall convert the problems into suitable
integral equations and use Shauder fixed point theorem and the iteration method
to establish existence.

As usual, we denote by B(D) the set of Borel measurable functions in D
and Bb(D) the set of bounded ones. C(D) will denote the set of continuous
functions in D and

C0(D) = {v ∈ C(D) : lim
x→∂D

v(x) = 0}.

Throughout this paper, the letter C will denote a generic positive constant
which may vary from line to line.

2 Preliminaries

First, we give some properties of functions belonging to the class K which will
be used later and are proved in [11]. Let G(x, y) be the Green’s function for
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D corresponding to the Laplacian ∆. Then by [4] and [13], there exists C > 0
such that for x, y ∈ D,

1
C

log(1 +
ρ(x)ρ(y)
|x− y|2

) ≤ G(x, y) ≤ C log(1 +
ρ(x)ρ(y)
|x− y|2

), (2.1)

ρ(y)
ρ(x)

G(x, y) ≤ C(1 +G(x, y)). (2.2)

Furthermore, GD satisfies the 3G-Theorem [13], which states that there exists
a constant C0 depending only on D such that for all x, y and z in D, we have

G(x, z)G(z, y)
G(x, y)

≤ C0

[ρ(z)
ρ(x)

G(x, z) +
ρ(z)
ρ(y)

G(z, y)
]
. (2.3)

Proposition 2.1 Let ϕ be a function in K. Then the function y 7→ ρ2(y)ϕ(y)
is in L1(D).

In the sequel, we use the notation

‖ϕ‖D = sup
x∈D

∫
D

ρ(y)
ρ(x)

log(1 +
ρ(x)ρ(y)
|x− y|2

)|ϕ(y)|dy. (2.4)

Proposition 2.2 If ϕ ∈ K then ‖ϕ‖D <∞.

Proposition 2.3 For any function ϕ belonging to K, any nonnegative super-
harmonic function h in D and all x ∈ D∫

D

G(x, y)h(y)|ϕ(y)|dy ≤ 2C0‖ϕ‖Dh(x), (2.5)

where the constant C0 is given in (2.3).

Corollary 2.4 Let ϕ be a function in K. Then

sup
x∈D

∫
D

G(x, y)|ϕ(y)|dy <∞. (2.6)

Corollary 2.5 Let ϕ be a function in K. Then the function y 7→ ρ(y)ϕ(y) is
in L1(D).

3 Proof of Theorem 1.2

For this section, we need some preliminary results. Recall that the potential
kernel V is defined on B+(D) by

V ϕ(x) =
∫

D

G(x, y)ϕ(y)dy, x ∈ D.
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Hence, for ϕ ∈ B+(D) such that ϕ ∈ L1
loc(D) and V ϕ ∈ L1

loc(D), we have in the
distributional sense that ∆(V ϕ) = −ϕ, in D. We point out if V ϕ 6= ∞, we have
V ϕ ∈ L1

loc(D), (see [4, p. 51]. Recall that V satisfies the complete maximum
principle, i.e., for each φ ∈ B+(D) and v a nonnegative superharmonic function
on D such that V φ ≤ v in {φ > 0} we have V φ ≤ v in D [12, Theorem 3.6]. In
the sequel, for ϕ ∈ K, we define the kernel V ϕ on Bb(D) by

V ϕw = V ϕw, ∀w ∈ Bb(D).

Lemma 3.1 ([11]) Let x0 ∈ D. Then for any function ϕ belonging to K and
any positive superharmonic function h in D, we have

lim
δ→0

sup
x∈D

1
h(x)

∫
B(x0,δ)∩D

G(x, y)h(y)|ϕ(y)| dy = 0. (3.1)

Consequently, we obtain the following result.

Proposition 3.2 Let ϕ ∈ K. Then the function V ϕ defined on D by

V ϕ(x) =
∫

D

G(x, y)ϕ(y)dy

is in C0(D).

Proof Let x0 ∈ D and r > 0. Let x, x′ ∈ B(x0,
r
2 ) ∩D. Then

|V ϕ(x)− V ϕ(x′)| ≤
∫

D

|G(x, y)−G(x′, y)||ϕ(y)|dy

≤2 sup
ξ∈D

∫
B(x0,r)∩D

G(ξ, y)|ϕ(y)|dy

+
∫

D∩(|y−x0|≥r)

|G(x, y)−G(x′, y)||ϕ(y)|dy.

SinceD is bounded, by (2.1), there exists C > 0 such that for all x ∈ B(x0,
r
2 )∩D

and y ∈ (D\B(x0, r)),
G(x, y) ≤ Cρ(y).

Moreover, G(x, y) is continuous on (x, y) ∈ (B(x0,
r
2 )∩D)×(D\B(x0, r)). Then

by Corollary 2.5 and Lebesgue’s theorem,∫
D∩(|y−x0|≥r)

|G(x, y)−G(x′, y)||ϕ(y)|dy → 0 as |x− x′| → 0.

Hence, by (3.1) with h = 1 we obtain that V ϕ is continuous in D.
Now, we show that

lim
x→∂D

V ϕ(x) = 0.
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Let x0 ∈ ∂D, r > 0, and x ∈ B(x0,
r
2 ) ∩D. Then

|V ϕ(x)| ≤
∫

D

G(x, y) |ϕ(y)| dy

≤ sup
ξ∈D

∫
B(x0,r)∩D

G(ξ, y)|ϕ(y)|dy +
∫

D∩(|y−x0|≥r)

G(x, y)|ϕ(y)|dy.

Since for all y ∈ D, limx→∂D G(x, y) = 0, it follows, as in the above argument,
that

lim
x→∂D

V ϕ(x) = 0.

�

Proposition 3.3 Let ϕ in K. Then, the operator V ϕ is compact on Bb(D).

Proof Let M > 0 and

S = {w ∈ Bb(D) : ‖w‖∞ ≤M}.

For w ∈ S, we have∣∣V ϕw(x)
∣∣ =

∣∣ ∫
D

G(x, y)ϕ(y)w(y)dy
∣∣ ≤M sup

x∈D

∫
D

G(x, y)|ϕ(y)|dy.

Since ϕ ∈ K, from Corollary 2.4, V ϕ(S) is uniformly bounded.
Next, we prove the equicontinuity of V ϕ(S) in Bb(D). Let x0 ∈ D, r > 0,

x, x′ ∈ B(x0,
r
2 ) ∩D. Then for w ∈ S,

|V ϕw(x)− V ϕw(x′)| ≤M

∫
D

|G(x, y)−G(x′, y)||ϕ(y)|dy.

Since ϕ ∈ K then by Proposition 3.2, we get

|V ϕw(x)− V ϕw(x′)| → 0 as |x− x′| → 0,

uniformly for all w ∈ S. Finally, by Ascoli’s Theorem the family V ϕ(S) is
relatively compact in Bb(D). �

Proposition 3.4 ([3]) Let ϕ be in K such that ‖V ϕ−‖∞ < 1. Then the oper-
ator (I + V ϕ) is invertible on Bb(D). Moreover, for every nonnegative super-
harmonic function s in D, we have

(I + V ϕ)−1s ≥ 0,

{(I + V ϕ)−1s > 0} = {s > 0}.

Let a > 0 be such that (1.6) holds, and set

Fa = {u ∈ C(D) : 0 ≤ u ≤ a}.
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Theorem 3.5 Assume (H1)–(H2) and (1.6). Then for u ∈ Fa, the problem

∆v − g(., u)v + λf(., u)v = 0, in D,

v > 0, in D,

v = 0, on ∂D

(3.2)

has a principal eigenvalue λu > 0 and a corresponding eigenfunction vu contin-
uous on D and satisfying

‖vu‖∞ = a.

Moreover, the set {λu, u ∈ Fa} is bounded.

Proof. By (H1) and (H2), fa and ga are in K. Let u ∈ Fa. Since

‖V g−(.,u)‖∞ ≤ ‖V (g−)a‖∞ < 1,

we have by Proposition 3.4 that the operator (I+V g(.,u)) is invertible on Bb(D).
Let Γ be the operator defined on Bb(D) as

Γ = (I + V g(.,u))−1V f(.,u).

Since f(., u) ≤ fa, we deduce from Proposition 3.3 that Γ is compact on Bb(D).
Therefore, from the general Fredholm theory for compact operators we get the
existence of a principal eigenvalue µu > 0 with a corresponding positive eigen-
function vu such that ‖vu‖∞ = a. By setting λu = 1

µu , we get the desired result.
On the other hand, vu satisfies

∆(vu + V (gavu)− λuV (fav
u)) = (g(., u)− ga)vu + λu(−f(., u) + fa)vu ≤ 0.

It follows that vu is a supersolution of the problem

∆v − gav + λufav = 0, in D,
v > 0, in D,
v = 0, on ∂D.

(3.3)

Hence, by a result in [10], we get λu ≤ λ̃, where λ̃ is the principal eigenvalue of
(3.3). �

Proof of Theorem 1.2 Let T be the operator defined on Fa by

Tu(x) = vu(x)

= −
∫

D

G(x, y)g(y, u(y))vu(y) dy + λu

∫
D

G(x, y )f(y, u(y))vu(y) dy.

We will show that T has a fixed point in Fa. To this end, we need to check that
T is a compact mapping from Fa to itself. First, we will show that the family
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of functions T (Fa) = {T (u), u ∈ Fa} is relatively compact in C(D). Let u ∈ Fa

and x ∈ D, then by Theorem 3.5,

|Tu(x)| =
∣∣ ∫

D

G(x, y)vu(y)[λuf(y, u(y))− g(y, u(y))]
∣∣

≤ a(1 + C)
∫

D

G(x, y)[fa(y) + ga(y)]dy.

Since fa, ga ∈ K, from Proposition 2.3 with h = 1, we deduce that

‖Tu‖∞ ≤ C(‖fa‖D + ‖ga‖D).

Thus the family T (Fa) is uniformly bounded.
Now, we prove the equicontinuity of T (Fa) in C(D). Let x0 ∈ D, δ > 0,

x, x′ ∈ B(x0,
δ
2 ) ∩D, and u ∈ Fa. Then

|Tu(x)− Tu(x′)| ≤2a(1 + C) sup
x∈D

∫
B(x0,δ)∩D

G(x, y)(fa(y) + ga(y)) dy

+ a

∫
Bc(x0,δ)∩D

|G(x, y)−G(x′, y)|(ga(y) + Cfa(y)) dy.

Since D is bounded, for |x − y| ≥ δ
2 , G(x, y) ≤ Cρ(y). Since fa + ga is in K

and G(x, y) is continuous for (x, y) ∈ (B(x0,
δ
2 )∩D)×Bc(x0, δ)∩D, it follows,

by Corollary 2.5 and Lebesgue’s theorem, that∫
Bc(x0,δ)∩D

|G(x, y)−G(x′, y)|(ga(y) + Cfa(y))dy → 0

as |x− x′| → 0. Then it follows from Lemma 3.1 that

|Tu(x)− Tu(x′)| → 0 as |x− x′| → 0

uniformly for all u ∈ Fa. Then by Ascoli’s theorem, the family T (Fa) is relatively
compact in C(D).

Next, we shall prove the continuity of T in the supremum norm. Let (un)n≥0

be a sequence in Fa which converges uniformly to u ∈ Fa. Since T (Fa) is
a relatively compact family in C(D) then without loss of generality, we may
suppose that there exists w in Fa such that (T (un))n converges uniformly to w.
Similarly, since (λun)n is bounded, we may suppose that (λun)n converges to a
nonnegative real λ. Let x ∈ D. Then we have

λun

∫
D

G(x, y)vun(y)f(y, un(y))dy − λ

∫
D

G(x, y)w(y)f(y, u(y)) dy

= λun

∫
D

G(x, y)[vun(y)f(y, un(y))− w(y)f(y, u(y))] dy

+ (λun − λ)
∫

D

G(x, y)w(y)f(y, u(y)) dy.
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Since

|λunG(x, y)[vun(y)f(y, un(y))− w(y)f(y, u(y))]| ≤ CG(x, y)fa(y),

by (H1), (2.5) and Lebegue’s theorem, we have∣∣∣λun

∫
D

G(x, y)vun(y)f(y, un(y))dy − λ

∫
D

G(x, y)w(y)f(y, u(y))dy
∣∣∣ → 0

uniformly in D as n→∞. Similarly, we have∣∣∣ ∫
D

G(x, y)vun(y)g(y, un(y))dy −
∫

D

G(x, y)w(y)g(y, u(y))dy
∣∣∣ → 0

uniformly in D as n→∞. Using the relationship

vun(x) +
∫

D

G(x, y)[g(y, un(y))− λunf(y, un(y))]vun(y)dy = 0

and letting n→∞, we get

w(x) +
∫

D

G(x, y)g(y, u(y))w(y)dy − λ

∫
D

G(x, y )f(y, u(y))w(y)dy = 0.

Hence w is a solution of (3.2) with ‖w‖∞ = a. Then λ is the principal eigenvalue
λu of (3.2) and

w = vu = T (u).

Now, the Shauder fixed point theorem implies the existence of u ∈ Fa such that
T (u) = u. �

4 Proof of Theorems 1.4 and 1.7

To establish the existence results, we shall use the method of sub-solution and
super solution. By definition, we will say that u is a subsolution to (1.2) if

∆u− g(., u)u+ λf(., u) ≥ 0, in D,
u ≤ 0, on ∂D

in the sense of distributions. Similarly, u is a supersolution to (1.2) if in the
above expressions the reverse inequalities hold.

Proposition 4.1 Assume that there exist u and u in B+
b (D) such that u is a

supersolution of (1.2) and u is a subsolution of (1.2) satisfying u ≤ u.
If (H1)–(H2) hold and f and g are nonnegative locally K-Lipschitz such that
V f(., u) > 0, then there exists a solution w of (1.2) satisfying

u ≤ w ≤ u, in D.
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Proof Let a = ‖u‖∞. Since f and g are K-Lipchitz with respect to the second
variable, then there exist two nonnegative functions f1 and g1 belonging to K
such that the maps

t 7→ λf(x, t) + f1(x)t,
t 7→ −g(x, t)t+ g1(x)t

are nondecreasing on [0, a]. Set

Fa = {u ∈ C(D) : 0 ≤ u ≤ a}.

For u ∈ Fa, let vu be the unique solution in D of the linear problem

∆vu − (f1 + g1)vu = (g(., u)− g1u)u− λf(., u)− f1u,

vu = 0, on ∂D.
(4.1)

Let T be the operator on Fa defined by

Tu = vu.

We claim that T is nondecreasing on Fa. Indeed, let u1 and u2 in Fa such that
u1 ≤ u2. It follows that

∆(vu1 − vu2)− (f1 + g1)(vu1 − vu2)
= (g(., u1)− g1u1)u1 − (g(., u2)− g1u2)u2

− λf(., u1)− f1u1 + λf(., u2) + f1u2 ≥ 0.

Since vu1 − vu2 = 0 on ∂D, we get by the complete maximum principle that

vu1 − vu2 ≤ 0 in D

and therefore T is nondecreasing on Fa. Let u be a subsolution of (1.2), then
by (4.1), we have

∆(Tu− u)− (f1 + g1)(Tu− u) ≤ 0, in D,
Tu− u ≥ 0, on ∂D.

Using the complete maximum principle, we obtain

Tu ≥ u, in D.

Similarly, we show that Tu ≤ u. Since T is nondecreasing, then the sequences
defined inductively by

u0 = u, un = Tun−1;
v0 = u, vn = Tvn−1

are monotonic and satisfy
u ≤ un ≤ vn ≤ u.
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Let
u = lim

n→∞
un and v = lim

n→∞
vn.

Since T (Fa) is compact in Cb(D) then the pointwise convergence implies the
uniform convergence.

u = Tu and v = Tv.

Hence, it follows from (4.1) that u is a solution of

∆u− g(., u)u = −λf(., u), in D,
u = 0, on ∂D.

(4.2)

i.e., u = λ(I +V g(.,u))−1[V (f(., u)]. Thus we deduce from Proposition 3.4, that

u = λ(I + V g(.,u))−1[V (f(., u)] ≥ λ(I + V g(.,u))−1[V (f(., u)] > 0 in D

which implies that u and v are solutions of (1.2) satisfying

u ≤ u ≤ v ≤ u.

Moreover, u and v are extremal solutions. �

Lemma 4.2 Assume that f and g are nonnegative and satisfying (H1)–(H2)
and (1.8). Then, for any a > 0, there exists a real λ > 0 such that the problem
(1.2) has a continuous solution uλ satisfying ‖uλ‖∞ = a.

Proof. Let a > 0. For each u ∈ Fa, let λu be such that

λu‖(I + V g(.,u))−1(V f(., u))‖∞ = a

and let T be the operator defined on Fa by

Tu = (I + V g(.,u))−1(λuV f(., u)).

Then

λu =
a

‖(I + V g(.,u))−1(V f(., u))‖∞
≤ a

‖(I + V ga)−1V fa‖∞
.

Hence, {λu, u ∈ Fa} is bounded. As in the proof of Theorem 1.1 we prove that
T has a fixed point u ∈ Fa, Tu = u. Moreover, by (1.8) we have

V f(., u) > 0, in D.

Using Proposition 3.4 and the fact that g is nonnegative, we obtain

Tu = (I + V g(.,u))−1(λuV f(., u)) > 0, in D

which completes the proof. �

Proposition 4.3 Let a > 0 and Fa = {u ∈ C(D) : 0 ≤ u ≤ a}. Let Sa be the
set of all λ ≥ 0 such that the problem (1.2) has a continuous solution uλ ∈ Fa.
Then, there exists λ(a) ∈]0,∞[ such that Sa = [0, λ(a)].
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Proof. By Lemma 4.2, Sa is nonempty. Assume that we can solve (Qλ0) for
some λ0 > 0 and let u0 be a solution of (Qλ0). Then one can solve (1.2) for all
0 ≤ λ ≤ λ0 since u0 is clearly a supersolution to (1.2) and u = 0 is a subsolution
of (1.2). Thus, if λ(a) denotes the supermum of all λ in Sa, we claim that

λ(a) <∞.

Indeed, let λ ∈ Sa and uλ be a solution in Fa of (Qλ). Then we have

∆uλ − gauλ + λ
fa

a
uλ = λ(

fa

a
− f(., uλ)

uλ
)uλ + (g(., uλ)− ga)uλ ≤ 0.

Consequently, uλ is a supersolution of

∆u− gau+ λ
fa

a
u = 0 in D,

u > 0 in D,
u = 0 on ∂D.

(4.3)

Hence, λ ≤ λ̃, where λ̃ is the principal eigenvalue of (4.3).
Finally, we shall prove that λ(a) ∈ Sa. Let λn ∈ Sa such that λn → λ(a)

and un ∈ Fa be a solution of (Qλn
). Then

un(x) =
∫

D

G(x, y)[−g(y, un(y))un(y) + λnf(y, un(y))]dy, ∀x ∈ D.

Since the family{
x 7→

∫
D

G(x, y)[−g(y, un(y))un(y) + λnf(y, un(y))dy, n ∈ N
}

is equicontinuous, we may suppose that there exists a continuous function u ∈ Fa

such that un converges uniformly to u. Thus

u(x) =
∫

D

G(x, y)[−g(y, u(y))u+ λ(a)f(y, u(y))dy, ∀x ∈ D.

It follows that u is a solution of (Qλ(a)) and consequently λ(a) ∈ Sa.

Proof of Theorem 1.4 (i) Let S = ∪a≥0Sa. Since Sa1 ⊂ Sa2 if a1 ≤ a2, it
follows that S is an interval. Let λ∗ be the supermum of all λ in S. We claim
that λ∗ <∞. Indeed, let λ ∈ S and uλ be a solution of (Qλ). Then uλ satisfies

∆u− ψu+ λφu = λ(φ− f(u)
u

)u+ (g(., u)− ψ)u ≤ 0.

So, λ ≤ λ̃, where λ̃ is the principal eigenvalue of the linear equation

∆u− ψu+ λφu = 0 in D,
u = 0 on ∂D.
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Next, we will show the existence of the minimal solution of (1.2) for λ ≤ λ∗.
Indeed, let 0 < λ < λ∗ and let uλ be a solution of (1.2). Using the proof of
Proposition 4.1, we set

u0 = 0, un = T (un−1) for n ≥ 1.

Since T is increasing and uλ = Tuλ, the function ũλ = limn→∞ un is a solutions
of (1.2) satisfying

0 ≤ ũλ ≤ uλ.

It follows that ũλ is the minimal solution of (Qλ).
(ii) Let 0 < λ < λ∗ and µ < λ. Since ũλ is a supersolution of (Qµ), then by
Proposition 4.1, there exists a positive solution uµ of (Qµ) such that

0 ≤ uµ ≤ ũλ.

Hence ũµ ≤ ũλ. �

Proof of Corollary 1.5 There exists γ > 0 such that the function

t 7→ µf(x, t)− g(x, t)t+ γt

is nondecreasing on [0, ‖ũλ‖∞] for every x ∈ D. Since ũµ ≤ ũλ, it follows that

∆(ũµ − ũλ)− γ(ũµ − ũλ)
≥ µf(ũλ)− g(ũλ)ũλ + γũλ − [µf(ũµ)− g(ũµ)ũµ + γũµ] ≥ 0.

Thus, by Hopf theorem [8, Theorem 3.5], we obtain that ũµ < ũλ in D.

Proof of Theorem 1.7 By (1.8) for every n ∈ N, V fn > 0. Hence, by Lemma
4.2, there exist λn > 0 and a solution uλn

of (Qλn
) such that ‖uλn

‖n = n. Since

uλn
+ V g(., uλn

)uλn
= λnV f(., uλn

),

then

λn ≥
uλn

(x)
‖V f(., uλn)‖∞

,∀x ∈ D.

Hence

λn ≥
uλn

(x)
‖V θ‖∞

,∀x ∈ D.

Thus, we obtain λn ≥ n/‖V θ‖∞. Therefore, limn→∞ λn = ∞. Since the
mapping a→ λ(a) is increasing, we get

∪a>0Sa = [0,∞).
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