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Order and hyper-order of entire solutions of linear

differential equations with entire coefficients ∗

Benharrat Beläıdi & Karima Hamani

Abstract

In this paper, we investigate the growth of solutions of the differential
equation

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0,

where A0(z), . . . , Ak−1(z) are entire functions with A0(z) 6≡ 0. We will
show that if the coefficients satisfy certain growth conditions, then ev-
ery finite order solution of the equation will satisfy certain other growth
conditions. We will also find conditions on the coefficients so that every
solution f 6≡ 0 will have infinite order and we estimate in one case the
lower bounds of the hyper-order.

1 Introduction and statement of results

We use the standard notations of the Nevanlinna theory [6]. The order of an
entire function f is defined as

σ(f) = lim sup
r→∞

log T (r, f)
log r

= lim sup
r→+∞

log log M(r, f)
log r

, (1.1)

where T (r, f) is the Nevanlinna characteristic function of f and M(r, f) =
max|z|=r |f(z)| (see [6]). To express the rate of growth of entire function of
infinite order, we recall the following concept.

Definition The hyper-order [1, 7] of an entire function f is defined as

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

= lim sup
r→∞

log log logM(r, f)
log r

. (1.2)

We define the linear measure of a set E ⊂ [0,+∞) by m(E) =
∫ +∞
0

χE(t)dt
where χE is the characteristic function of E. The upper and the lower densities
of E are defined by

densE = lim sup
r→+∞

m(E ∩ [0, r])
r

, densE = lim inf
r→+∞

m(E ∩ [0, r])
r

. (1.3)
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For k ≥ 2, we consider the linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0, (1.4)

where A0(z), . . . , Ak−1(z) are entire functions with A0(z) 6≡ 0. It is well-known
that all solutions of (1.4) are entire functions, and if some coefficients of (1.4)
are transcendental, then (1.4) has at least one solution with order σ(f) = +∞.
A question arises:

What conditions on A0(z), . . . , Ak−1(z) will guarantee that every
solution f 6≡ 0, of (1.4) has infinite order?

According to [5], [9, pp. 106-108] and [10, pp. 65-67], if A0(z), . . . , Ak−1(z) are
polynomials with A0(z) 6≡ 0, then every solution of (1.4) is an entire function
with finite rational order.

In this paper we prove results concerning the above question and other results
about solutions of finite order and their properties.

In the study of the differential equation

f ′′ +A(z)f ′ +B(z)f = 0, (1.5)

where A(z) and B(z) 6≡ 0 are entire functions, Gundersen proved the following
result.

Theorem 1.1 ([3, p. 417]) Let A(z) and B(z) 6≡ 0 be entire functions such
that for real constants α, β, θ1, θ2 satisfy α > 0, β > 0, and θ1 < θ2, we have

|A(z)| ≥ exp{(1 + o(1))α|z|β} (1.6)

and
|B(z)| ≤ exp{o(1)|z|β} (1.7)

as z →∞ in θ1 ≤ arg z ≤ θ2. Let ε > 0 be a given small constant, and let S(ε)
denote the angle θ1 + ε ≤ arg z ≤ θ2 − ε. If f 6≡ 0 is a solution of (1.5), where
σ(f) < +∞, then the following conditions hold:

(i) There exists a constant b 6= 0 such that f(z) → b as z → ∞ in S(ε).
Furthermore, as z →∞ in S(ε),

|f(z)− b| ≤ exp{−(1 + o(1))α|z|β} (1.8)

(ii) For each integer k ≥ 1, as z →∞ in S(ε),

|f (k)(z)| ≤ exp{− (1 + o(1))α|z|β}. (1.9)

In the same paper, Gundersen proved the following statement.
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Theorem 1.2 ([3, p. 418]) Let A(z) and B(z) 6≡ 0 be entire functions, and
let α > 0, β > 0 be constants, with σ(B) < β. Suppose that for any given
ε > 0, there exist two finite collections of real numbers {φk} and {θk} that
satisfy φ1 < θ1 < φ2 < θ2 < · · · < φn < θn < φn+1, where φn+1 = φ1 + 2π and

n∑
k=1

(φk+1 − θk) < ε, (1.10)

such that
|A(z)| ≥ exp{(1 + o(1))α|z|β} (1.11)

as z → ∞ in φk ≤ arg z ≤ θk (k = 1, 2, . . . n). Then every solution f 6≡ 0 of
(1.5) is of infinite order.

Recently, for the second order equation (1.5), Ki-Ho Kwon obtained in [7]
the following results:

Theorem 1.3 ([7, p. 488]) Let A(z) and B(z) be entire functions satisfying
σ(B) < σ(A). Then every solution f 6≡ 0 of finite order of (1.5) satisfies
σ(f) ≥ σ(A).

Theorem 1.4 ([7, p. 489]) Let A(z) and B(z) be entire functions where 0 <
σ(B) < 1/2, and let there exist a real constant β < σ(B) and a set Eβ ⊂ [0,+∞)
with densEβ = 1 such that for all r ∈ Eβ, we have

min
|z|=r

|A(z)| ≤ exp(rβ). (1.12)

Then every solution f 6≡ 0 of (1.5) is of infinite order with

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

≥ σ(B).

We shall investigate generalizations of problems of the above type to higher
order homogeneous linear differential equations.

Theorem 1.5 Let A0(z), . . . , Ak−1(z) with A0(z) 6≡ 0 be entire functions such
that for real constants α, β, θ1, θ2, where α > 0, β > 0, and θ1 < θ2, we have

|A1(z)| ≥ exp{(1 + o(1))α|z|β} (1.13)

and
|Aj(z)| ≤ exp{o(1)|z|β}, j = 0, 2, . . . , k − 1 (1.14)

as z →∞ in θ1 ≤ arg z ≤ θ2. Let ε > 0 be a given small constant, and let S(ε)
denote the angle θ1 + ε ≤ arg z ≤ θ2 − ε.

If f 6≡ 0 is a solution of (1.4) where σ(f) < +∞, then the following condi-
tions hold:
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(i) There exists a constant b 6= 0 such that f(z) → b as z → ∞ in S(ε).
Furthermore, as z →∞ in S(ε),

|f(z)− b| ≤ exp{− (1 + o(1))α|z|β}. (1.15)

(ii) For each integer m ≥ 1, as z →∞ in S(ε),

|f (m)(z)| ≤ exp{− (1 + o(1))α|z|β}. (1.16)

Theorem 1.6 Let A0(z), . . . , Ak−1(z) with A0(z) 6≡ 0 be entire functions, and
let α > 0, β > 0 be constants where σ(Aj) < β (j = 0, 2, . . . , k − 1). Suppose
that for any given ε > 0, there exist two finite collections of real numbers {φs}
and {θs} that satisfy φ1 < θ1 < φ2 < θ2 < · · · < φn < θn < φn+1 where
φn+1 = φ1 + 2π and

n∑
s=1

(φs+1 − θs) < ε, (1.17)

such that
|A1(z)| ≥ exp{(1 + o(1))α|z|β} (1.18)

as z → ∞ in φs ≤ arg z ≤ θs (s = 1, 2, . . . n). Then every solution f 6≡ 0 of
(1.4) is of infinite order.

Here we estimate the lower bounds for the order of solution f 6≡ 0 of (1.4)
when f is of finite order.

Theorem 1.7 Let A0(z), . . . , Ak−1(z) be entire functions that satisfy
max{σ(Aj) : j = 0, 2, . . . , k − 1} < σ(A1). Then every solution f 6≡ 0 of (1.4)
of finite order satisfies σ(f) ≥ σ(A1).

Remark If max{σ(Aj) : j = 0, 2, . . . , k− 1} = σ(A1), the conclusion of Theo-
rem 1.7 is in general false. Indeed f(z) = z2 satisfies f ′′+z2ezf ′′+zezf ′−4ezf =
0.

Now, we estimate the lower bounds on the hyper-order if every solution
f 6≡ 0 is of infinite order.

Theorem 1.8 Let A0(z), . . . , Ak−1(z) be entire functions where 0 < σ(A0) <
1/2, and let there exist a real constant β < σ(A0) and a set Eβ ⊂ [0,+∞) with
densEβ = 1 such that for all r ∈ Eβ, we have

min
|z|=r

|Aj(z)| ≤ exp(rβ) j = 1, 2, . . . , k − 1. (1.19)

Then every solution f 6≡ 0 of (1.4) is of infinite order with

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

≥ σ(A0).
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2 Preliminary Lemmas

We need the following lemmas for the proofs of our theorems.

Lemma 2.1 ([4, p. 89]) Let w be a transcendental entire function of finite
order σ. Let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a finite set of distinct
pairs of integers that satisfy ki > ji ≥ 0, i = 1, . . . ,m, and let ε > 0 be a given
constant. Then there exists a set E ⊂ [0, 2π) that has linear measure zero, such
that if ψ0 ∈ [0, 2π)−E, then there is a constant R0 = R0(ψ0) > 0 such that for
all z satisfying arg z = ψ0 and |z| ≥ R0, and for all (k, j) ∈ Γ, we have∣∣∣w(k)(z)

w(j)(z)

∣∣∣ ≤ |z|(k−j)(σ−1+ε). (2.1)

Lemma 2.2 ([3, p. 421]) Let w be an entire function such that |w′(z)| is un-
bounded on some ray arg z = θ. Then there exists an infinite sequence of points
zn = rne

i θ where rn → +∞ such that w′(zn) →∞ and

∣∣ w(zn)
w′(zn)

∣∣ ≤ (1 + o(1))|zn|, (2.2)

as zn →∞.

Lemma 2.3 ([3, p. 421]) Let w be analytic on a ray arg z = θ, and suppose
that for some constant α > 1, we have

∣∣w′(z)
w(z)

∣∣ = O(|z|−α), (2.3)

as z → ∞ along arg z = θ. Then there exists a constant c 6= 0 such that
w(z) → c as z →∞ along arg z = θ.

Lemma 2.4 ([2]) Let f(z) be an entire function of order σ where 0 < σ < 1/2,
and let ε > 0 be a given constant. Then there exists a set E2 ⊂ [0,+∞) with
densE2 ≥ 1− 2σ such that for all z satisfying |z| = r ∈ E2, we have

|f(z)| ≥ exp(rσ−ε). (2.4)

Lemma 2.5 ([1]) Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0, and let A0(z), . . . , Ak−1(z) be entire functions such that for some
constants 0 ≤ β < α and µ > 0, we have

|A0(z)| ≥ exp(α|z|µ) (2.5)

and
|Aj(z)| ≤ exp(β|z|µ) j = 1, . . . , k − 1 (2.6)

as z →∞ for z ∈ H. Then every solution f 6≡ 0 of (1.4) satisfies σ(f) = +∞
and σ2(f) ≥ µ.
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3 Proofs of Theorem 1.5

Suppose that f 6≡ 0 is a solution of (1.4) with σ(f) < ∞. Set δ = σ(f). Then
from Lemma 2.1, there exists a set E ⊂ [0, 2π) that has linear measure zero,
such that if ψ0 ∈ [0, 2π)− E, then

∣∣f (j)(z)
f ′(z)

∣∣ = o(1)|z|(j−1)δ j = 2, . . . , k (3.1)

as z →∞ along arg z = ψ0.
Now suppose that |f ′(z)| is unbounded on some ray arg z = φ0 where φ0 ∈

[θ1, θ2] − E. Then from Lemma 2.2, there exists an infinite sequence of points
zn = rne

i φ0 where rn → +∞ such that f ′(zn) →∞ and

∣∣ f(zn)
f ′(zn)

∣∣ ≤ (1 + o(1))|zn|. (3.2)

From (1.4), we have

|A1(z)| ≤
∣∣f (k)

f ′
∣∣ + |Ak−1(z)|

∣∣f (k−1)

f ′
∣∣ + · · ·+ |A2(z)|

∣∣f ′′
f ′

∣∣ + |A0(z)|
∣∣ f
f ′

∣∣. (3.3)

By using (3.2), (3.1), (1.13), and (1.14), we will obtain a contradiction in (3.3) as
z →∞. Therefore, |f ′(z)| is bounded on any ray arg z = φ where φ ∈ [θ1, θ2]−E.
It then follows from the classical Phragmén-Lindelöf theorem [8, p. 214] that
there exists a constant M > 0 such that

|f ′(z)| ≤M (3.4)

for all z ∈ S(ε). If θ0 ∈ [θ1 + ε, θ2 − ε] − E, then when arg z = θ0, we obtain
from (3.4) that

|f(z)| ≤ |f(0)|+
∣∣ ∫ z

0

f ′(u)du
∣∣ ≤ |f(0)|+M |z|. (3.5)

From (3.5), (3.1), and (1.4), we obtain

|A1(z)||f ′(z)| ≤
{
o(1)|z|(k−1)δ + o(1)|z|(k−2)δ|Ak−1(z)|+ . . .

+ o(1)|z|δ|A2(z)|
}
|f ′(z)|+ |A0(z)|{|f(0)|+M |z|}

(3.6)

as z →∞ along arg z = θ0. From (3.6), (1.13), and (1.14), we can deduce that

|f ′(z)| ≤ exp{−(1 + o(1))α|z|β} (3.7)

as z →∞ along arg z = θ0. By using an application of the Phragmén-Lindelöf
theorem to (3.7), it can be deduced that

|f ′(z)| ≤ exp{−(1 + o(1))α|z|β} (3.8)
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as z →∞ in S(2ε). This gives m = 1 in (1.16).
Now let z ∈ S(3ε) where |z| > 1, let γ be a circle of radius one with center

at z, and let m ≥ 1 be an integer. Then from the Cauchy integral formula and
(3.8), we obtain as z →∞ in S(3ε),

∣∣f (m)(z)
∣∣ ≤ (m− 1)!

2π

∮
γ

|f ′(u)|
|z − u|m

|du| ≤ exp{−(1 + o(1))α|z|β}. (3.9)

This proves (1.16). Now fix θ, where θ1 + ε ≤ θ ≤ θ2 − ε, and set

a0 =
∫ +∞

0

f ′(teiθ)eiθdt, (3.10)

where we note that a0 ∈ C from (1.16). Let z = |z|ei ψ where θ1+ε ≤ ψ ≤ θ2−ε.
Then from the Cauchy theorem and (3.10), we obtain

f(z)− f(0)− a0 =

z∫
0

f ′(u)du−
∫ +∞

0

f ′(teiθ)eiθdt

=
∫ ψ

θ

f ′(|z|eiζ)i|z|eiζdζ −
∫ +∞

|z|
f ′(teiθ)eiθdt.

(3.11)

Since
|f ′(z)| ≤ exp{−(1 + o(1))α|z|β}

as z →∞ in S(ε), then from (3.11), we get

|f(z)− b|

= |
∫ ψ

θ

f ′(|z|eiζ)i|z|eiζdζ −
∫ +∞

|z|
f ′(teiθ)eiθdt|

≤ |ψ − θ||z| exp{−(1 + o(1))α|z|β}+
∫ +∞

|z|
exp{−(1 + o(1))αtβ}dt

≤ |ψ − θ||z| exp{−(1 + o(1))α|z|β}

+
1

(1 + o(1))αβ |z|
β−1

2 exp{(1 + o(1))α |z|
β

2 }

∫ +∞

|z|

(1 + o(1))αβ t
β−1

2

exp{(1 + o(1))α tβ2 }
dt

≤ |ψ − θ||z| exp{−(1 + o(1))α|z|β}

+
1

(1 + o(1))αβ |z|
β−1

2 exp{(1 + o(1))α |z|
β

2 }
exp{−(1 + o(1))α

|z|β

2
}

≤ exp{−(1 + o(1))α|z|β}
(3.12)

as z → ∞ in S(ε), where b = f(0) + a0. Note that a0 in (3.10) is independent
of θ. Since (3.12) is the inequality (1.15), it remains only to show that b 6= 0.
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From Lemma 2.1, there exists a ray arg z = ψ1 where θ1 + ε ≤ ψ1 ≤ θ2 − ε,
such that

|f
(j)(z)
f(z)

| = o(1)|z|j δ j = 2, . . . , k (3.13)

as z → ∞ along arg z = ψ1, where δ = σ(f). Then from (3.13), (1.13), (1.14),
and (1.4), we have

|f
′(z)
f(z)

| ≤ |A0(z)
A1(z)

|+ |A2(z)||
f
′′
(z)

f(z)A1(z)
|+ . . .

+ |Ak−1(z)||
f

(k−1)
(z)

f(z)A1(z)
|+ | f

(k)
(z)

f(z)A1(z)
|

≤ exp{−(1 + o(1))α|z|β}

(3.14)

as z → ∞ along arg z = ψ1. By applying Lemma 2.3 to (3.14), and noting
that f(z) → b as z → ∞ in S(ε) from (3.12), we see that b 6= 0. The proof of
Theorem 1.5 is complete. ♦

The next example illustrates Theorem 1.5.

Example 3.1 Consider the differential equation

f ′′′ + ezf ′′ − 2e−zf ′ + (1− ez)f = 0. (3.15)

In this equation, for z = reiθ(r → +∞) and 2π
3 ≤ θ ≤ 3π

4 , we have

|A1(z)| = | − 2e−z| = 2 exp(−r cos θ) ≥ exp((1 + o(1))
r

2
),

|A0(z)| = |1− ez| ≤ 1 + exp(r cos θ) ≤ exp(o(1)r)
|A2(z)| = |ez| = exp(r cos θ) ≤ exp(o(1)r).

It is easy to see that the conditions (1.13) and (1.14) of Theorem 1.5 are satisfied
(α = 1

2 , β = 1). The function f(z) = ez + 2 with σ(f) = 1 satisfies equation
(3.15) and the relations (1.15), (1.16).

4 Proof of Theorem 1.6

Suppose that f 6≡ 0 is a solution of (1.4) where σ(f) <∞. Let ε > 0, {φs} and
{θs} be as in the hypothesis. From (1.18) and σ(Aj) < β (j = 0, 2, . . . , k−1), it
follows from Theorem 1.5 (i) that |f(z)| is bounded within each angle φs + ε ≤
arg z ≤ θs − ε (s = 1, 2, . . . n). Since ε can be arbitrarily small, it follows from
(1.17) and the Phragmén-Lindelöf theorem that |f(z)| is bounded in the whole
finite plane. Thus f is a nonzero constant from Liouville’s theorem, and this
contradicts (1.4).

The next two examples illustrate Theorem 1.6.
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Example 4.1 Consider the differential equation

f ′′′ + cos
√
zf ′′ + sin z f ′ +

sin
√
z√

z
f = 0. (4.1)

Then from Theorem 1.6, it follows that every solution f 6≡ 0 is of infinite order.

Example 4.2 Suppose A0(z), . . . , Ak−1(z) with A0(z) 6≡ 0 be entire functions
and n ≥ 1 an integer. Then from Theorem 1.6, it follows that every solution
f 6≡ 0 of following two equations is of infinite order:

f (k) +Ak−1(z)f (k−1) + · · ·+A2(z)f ′′ + sin(zn)f ′ +A0(z)f = 0, (4.2)

where ρ(Aj) < n, j = 0, 2, 3, . . . , k − 1; and

f (k) +Ak−1(z)f (k−1) + · · ·+A2(z)f ′′ + cos(zn/2)f ′ +A0(z)f = 0, (4.3)

where ρ(Aj) < n/2, j = 0, 2, 3, . . . , k − 1.

5 Proof of Theorem 1.7

Set max{σ(Aj) : j = 0, 2, . . . , k− 1} = β < α = σ(A1). Suppose that f 6≡ 0 is a
solution of (1.4) with σ(f) < +∞. It follows from (1.4), that

−A1(z) =
f (k)

f ′
+Ak−1(z)

f (k−1)

f ′
+ · · ·+A2(z)

f ′′

f ′
+A0(z)

f

f ′
. (5.1)

Hence from Nevanlinna’s fundamental results on meromorphic functions [6, p.
5], [6, Theorem 2.2, p. 34] and [6, Theorem 3.1, p. 55], we have

m(r,A1) ≤ m(r,A0) +m(r,A2) + · · ·+m(r,Ak−1)

+
k∑
j=2

m(r,
f (j)

f ′
) +m(r,

f

f ′
) +O(1)

≤ m(r,A0) +m(r,A2) + · · ·+m(r,Ak−1) +m(r,
f

f ′
) +O(log r)

(5.2)
holds for all r outside a set E ⊂ (0,+∞) with a linear measurem(E) = δ < +∞.
Here the notation m(r, h) for a meromorphic function h is defined by

m(r, h) =
1
2π

∫ 2π

0

log+ |h(reiθ)|dθ, (5.3)

which is equal to T (r, h) if h is entire. It follows from (5.2) that for r /∈ E

T (r,A1) ≤ T (r,A0) + T (r,A2) + · · ·+ T (r,Ak−1) + 2T (r, f) +O(log r), (5.4)
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since m(r, f/f ′) ≤ 2T (r, f) + O(1), r /∈ E. Since σ(A1) = α, there exists {r′n}
with r′n →∞, such that

lim
r′n→∞

log T (r′n, A1)
log r′n

= α. (5.5)

By m(E) = δ < +∞, there exists a point rn ∈ [r′n, r
′
n + δ + 1]− E. From

log T (rn, A1)
log rn

≥ log T (r′n, A1)
log(r′n + δ + 1)

=
log T (r′n, A1)

log r′n + log(1 + (δ + 1)/r′n)
(5.6)

we get

lim inf
rn→∞

log T (rn, A1)
log rn

≥ α. (5.7)

So, for any given ε with 0 < 2ε < α− β, and for j = 0, 2, . . . , k − 1,

T (rn, Aj) ≤ rβ+ε
n and T (rn, A1) > rα−εn (5.8)

hold for sufficiently large rn. By (5.4) and (5.8), we get for sufficiently large rn,

rα−εn ≤ (k − 1)rβ+ε
n + 2T (rn, f) +O(log rn). (5.9)

Therefore,

lim sup
rn→∞

log T (rn, f)
log rn

≥ α− ε (5.10)

and since ε is arbitrary, we get σ(f) ≥ σ(A1) = α. This proves Theorem 1.7. ♦
The next example illustrates Theorem 1.7.

Example 5.1 The equation

f ′′′′ + e−zf ′ − 16f = 0 (5.11)

has a solution f(z) = 120e2z+16ez+1, where σ(A1) = 1, σ(Aj) = 0, j = 0, 2, 3,
and σ(f) = 1.

6 Proof of Theorem 1.8

Let β < σ(A0) and let f 6≡ 0 be a solution of (1.4). Suppose that β < α < σ(A0)
and that there is a set Eβ ⊂ [0,+∞) of lower density 1 satisfying (1.19). Set

E1 =
{
z : |z| = r ∈ Eβ and |Aj(z)| = min

|z|=r
|Aj(z)|, j = 1, 2, . . . , k − 1

}
. (6.1)

Then dens{|z| : z ∈ E1 } = 1 and

|Aj(z)| ≤ exp(rβ), j = 1, 2, . . . , k − 1 (6.2)
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for all z ∈ E1. Also, from Lemma 2.4, there is a set E2 ⊂ [0,+∞) of positive
upper density such that for all z satisfying |z| ∈ E2, we have

|A0(z)| ≥ exp(rα). (6.3)

Now let E = {z ∈ E1 : |z| ∈ E2}. Then, with a set E and the number α,
A0(z), . . . , Ak−1(z) satisfy the hypothesis of Lemma 2.5 respectively. Hence we
conclude by Lemma 2.5 that every solution f 6≡ 0 of (1.4) satisfies σ(f) = +∞
and

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

≥ α. (6.4)

Thus the result of the theorem follows since α is arbitrary. ♦
The next example illustrates Theorem 1.8.

Example 6.1 Let P1(z), . . . , Pk−1(z) be nonconstant polynomials, and let
h1(z), . . . , hk−1(z) be entire functions satisfying σ(hj) < degPj for j = 1, . . . , k−
1. Let A0(z) be an entire function with 0 < σ(A0) < 1/2. Then, by Theorem
1.8, every solution f 6≡ 0 of the equation

f
(k)

+ hk−1(z)ePk−1(z)f
(k−1)

+ · · ·+ h1(z)eP1(z)f ′ +A0(z)f = 0 (6.5)

is of infinite order with σ2(f) ≥ σ(A0), because

min
|z|=r

|hj(z)ePj(z)| → 0, j = 1, . . . , k − 1

as r →∞.
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Karima Hamani
Department of Mathematics, Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P 227 Mostaganem Algeria
e-mail: belaidi@univ-mosta.dz belaidi.benharrat@caramail.com


