Remarks on semilinear problems with nonlinearities depending on the derivative *

Jose María Almira \& Naira Del Toro

Abstract

In this paper, we continue some work by Cañada and Drábek [1] and Mawhin [6] on the range of the Neumann and Periodic boundary value problems: $$
\begin{gathered} \mathbf{u}^{\prime \prime}(t)+\mathbf{g}\left(t, \mathbf{u}^{\prime}(t)\right)=\overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t \in(a, b) \\ \mathbf{u}^{\prime}(a)=\mathbf{u}^{\prime}(b)=0 \\ \text { or } \quad \mathbf{u}(a)=\mathbf{u}(b), \quad \mathbf{u}^{\prime}(a)=\mathbf{u}^{\prime}(b) \end{gathered}
$$ where $\mathbf{g} \in C\left([a, b] \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), \overline{\mathbf{f}} \in \mathbb{R}^{n}$, and $\widetilde{\mathbf{f}}$ has mean value zero. For the Neumann problem with $n>1$, we prove that for a fixed $\widetilde{\mathbf{f}}$ the range can contain an infinity continuum. For the one dimensional case, we study the asymptotic behavior of the range in both problems.

1 Introduction

Let us consider the resonance problem

$$
\begin{gather*}
u^{\prime \prime}(t)+g\left(u^{\prime}(t)\right)=f(t), \quad t \in(a, b) \\
u^{\prime}(a)=u^{\prime}(b)=0 \tag{1.1}
\end{gather*}
$$

where $f \in C[a, b]$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. The linearized part of (1.1) is the resonance system

$$
\begin{gather*}
u^{\prime \prime}(t)=f(t), \quad t \in(a, b) \tag{1.2}\\
u^{\prime}(a)=u^{\prime}(b)=0
\end{gather*}
$$

and the corresponding eigenfunction is $u_{1}(t)=1$. The change of variable $v=u^{\prime}$ transforms (1.2) into the problem

$$
\begin{gather*}
v^{\prime}(t)=f(t), \quad t \in(a, b) \\
v(a)=v(b)=0 \tag{1.3}
\end{gather*}
$$

[^0]which obviously is solvable if and only if $\int_{a}^{b} f(t) d t=0$. Moreover, its solution is given by $v(t)=\int_{a}^{t} f(s) d s$. Hence (1.2) is solvable if and only if $f=\tilde{f} \in$ $\widetilde{C}[a, b]:=\left\{\widetilde{f} \in C[a, b]: \int_{a}^{b} \widetilde{f}(t) d t=0\right\}$ and its set of solutions is
$$
u_{c}(t)=c+\int_{a}^{t} v(s) d s
$$
where $c \in \mathbb{R}$ and $v(t)=\int_{a}^{t} f(s) d s$. Let us now consider problem (1.1). When we decompose
\[

$$
\begin{equation*}
f(t)=s+\widetilde{f}(t) \tag{1.4}
\end{equation*}
$$

\]

where $s \in \mathbb{R}$ and $\widetilde{f} \in \widetilde{C}[a, b]$, it is quite natural to ask for which values $s \in \mathbb{R}$ the problem (1.1) is solvable. This question has been studied by several authors. In particular, Cañada and Drábek (see [1]) proved that if $g \in C^{1}(\mathbb{R})$ and is bounded, then for each \widetilde{f} there is a unique value $s=s(\widetilde{f}) \in \mathbb{R}$ such that (1.1) is solvable. Moreover, in such a case they also proved that the map $s(\cdot)$: $\widetilde{C}[a, b] \rightarrow \mathbb{R}, \widetilde{f} \rightarrow s(\widetilde{f})$ is continuously differentiable and satisfies $|s(\widetilde{f})| \leq\|g\|$ for all $\widetilde{f} \in \widetilde{C}[a, b]$, where $\|g\|=\sup _{t \in \mathbb{R}}|g(t)|$. In the same paper the authors noted that their proofs are also applicable to the more general problem

$$
\begin{array}{r}
u^{\prime \prime}(t)+g\left(t, u^{\prime}(t)\right)=s+\widetilde{f}(t), \quad t \in(a, b) \tag{1.5}\\
u^{\prime}(a)=u^{\prime}(b)=0
\end{array}
$$

(with $g \in C^{1}([a, b] \times \mathbb{R}, \mathbb{R})$ and bounded) and also to the periodic problem

$$
\begin{gather*}
u^{\prime \prime}(t)+g\left(t, u^{\prime}(t)\right)=s+\widetilde{f}(t), \quad t \in(a, b) \tag{1.6}\\
u(a)=u(b), \quad u^{\prime}(a)=u^{\prime}(b)
\end{gather*}
$$

and proposed as an open question to study these kind of problems for systems of equations and for higher order equations. This was made by Mawhin in [6]. In particular, he studied the problems

$$
\begin{array}{r}
\mathbf{u}^{\prime \prime}(t)+\mathbf{g}\left(t, \mathbf{u}^{\prime}(t)\right)=\overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t \in(a, b) \\
\mathbf{u}^{\prime}(a)=\mathbf{u}^{\prime}(b)=\mathbf{0} \tag{1.7}
\end{array}
$$

and

$$
\begin{gather*}
\mathbf{u}^{\prime \prime}(t)+\mathbf{g}\left(t, \mathbf{u}^{\prime}(t)\right)=\overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t \in(a, b) \\
\mathbf{u}(a)=\mathbf{u}(b), \quad \mathbf{u}^{\prime}(a)=\mathbf{u}^{\prime}(b), \tag{1.8}
\end{gather*}
$$

where $\mathbf{g}:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Carathédory function, $\mathbf{u}:[a, b] \rightarrow \mathbb{R}^{n}, \overline{\mathbf{f}} \in \mathbb{R}^{n}$ and

$$
\widetilde{\mathbf{f}} \in \widetilde{L^{1}}\left([a, b], \mathbb{R}^{n}\right):=\left\{\widetilde{\mathbf{f}} \in L^{1}\left([a, b], \mathbb{R}^{n}\right): \int_{a}^{b} \widetilde{\mathbf{f}}(t) d t=0\right\}
$$

and proved that if

$$
\begin{equation*}
\lim _{\|\mathbf{v}\|_{2} \rightarrow \infty}\|\mathbf{g}(t, \mathbf{v}) /\| \mathbf{v}\left\|_{2}\right\|_{2}=0 \quad \text { uniformly a.e. in } t \in[a, b], \tag{1.9}
\end{equation*}
$$

then for each $\widetilde{\mathbf{f}} \in \widetilde{L^{1}}\left([a, b], \mathbb{R}^{n}\right)$ the sets

$$
\begin{aligned}
& \mathcal{J}_{\widetilde{\mathbf{f}}}^{(\mathcal{N})}=\left\{\overline{\mathbf{f}} \in \mathbb{R}^{n}: \text { the problem (1.7) is solvable }\right\} \\
& \mathcal{J}_{\widetilde{\mathbf{f}}}^{(\mathcal{P})}=\left\{\overline{\mathbf{f}} \in \mathbb{R}^{n}: \text { the problem (1.8) is solvable }\right\}
\end{aligned}
$$

are both nonempty, where $\|\cdot\|_{2}$ denotes the Euclidean norm of \mathbb{R}^{n}. Moreover, he also proved that for $n=1$ and $\widetilde{f} \in \widetilde{L^{1}}(a, b):=\widetilde{L^{1}}([a, b], \mathbb{R}), \# \mathcal{J}_{\tilde{f}}^{(\mathcal{N})}=\# \mathcal{J}_{\widetilde{f}}^{(\mathcal{P})}=$ 1 and stated the uniqueness problem for $n>1$ as an open question. In this note we solve this problem in the negative sense for the Neumann case (1.7).

For $n=1$ and $g \in C([a, b] \times \mathbb{R}, \mathbb{R})$ satisfying (1.9), we denote by $s_{\mathcal{N}}(\widetilde{f})$ the unique element of $\mathcal{J}_{\widetilde{f}}^{(\mathcal{N})}$ and by $s_{\mathcal{P}}(\widetilde{f})$ the unique element of $\mathcal{J}_{\widetilde{f}}^{(\mathcal{P})}$. We study the asymptotic behavior of the functionals $s_{\mathcal{N}}(\widetilde{f})$ and $s_{\mathcal{P}}(\widetilde{f})$ for $\|\widetilde{f}\| \rightarrow \infty$ when the uniqueness results are applicable.

2 Uniqueness Problem

The first contribution of this note to the subject is that we solve for the Neumann problem (1.7) the uniqueness question in the negative sense for all $n>1$. With this objective in mind, we take $h: \mathbb{R} \rightarrow \mathbb{R}$ a C^{∞} function such that it is bounded and satisfies $h(x)=x$ for all $x \in[-2,2]$ and we set $\widetilde{\mathbf{f}}=\mathbf{0}$ and

$$
\mathbf{g}\left(t, x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=-\left(-h\left(x_{2}\right), h\left(x_{1}\right), 0, \ldots, 0\right)
$$

Then $\mathbf{g}:[0,2 \pi] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ belongs to $C^{\infty}\left([0,2 \pi] \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and it is bounded. Let us now consider the problem

$$
\begin{gather*}
\mathbf{u}^{\prime \prime}(t)+\mathbf{g}\left(t, \mathbf{u}^{\prime}(t)\right)=\overline{\mathbf{f}}, \quad t \in(0,2 \pi) \\
\mathbf{u}^{\prime}(0)=\mathbf{u}^{\prime}(2 \pi)=\mathbf{0} \tag{2.1}
\end{gather*}
$$

and let $\alpha \in[-1,1]$ be fixed. We set $\mathbf{u}_{\alpha}(t)=\left(\alpha \sin \left(t-\frac{\pi}{2}\right)\right.$, $\alpha t-\alpha \cos (t-$ $\left.\left.\frac{\pi}{2}\right), 0, \ldots, 0\right)$ with $\alpha \in[-1,1]$. Then $\mathbf{u}_{\alpha} \in C^{2}\left([0,2 \pi], \mathbb{R}^{n}\right)$ and $\mathbf{u}_{\alpha}^{\prime}(t)=(\alpha \cos (t-$ $\left.\left.\frac{\pi}{2}\right), \alpha+\alpha \sin \left(t-\frac{\pi}{2}\right), 0, \ldots, 0\right)$, so that $\mathbf{u}_{\alpha}^{\prime}(0)=\mathbf{u}_{\alpha}^{\prime}(2 \pi)=\mathbf{0}$ and

$$
\begin{aligned}
\mathbf{u}_{\alpha}^{\prime \prime}(t) & =\left(-\alpha \sin \left(t-\frac{\pi}{2}\right), \alpha \cos \left(t-\frac{\pi}{2}\right), 0, \ldots, 0\right) \\
& =\left(-\left(\alpha+\alpha \sin \left(t-\frac{\pi}{2}\right)\right), \alpha \cos \left(t-\frac{\pi}{2}\right), 0, \ldots, 0\right)+(\alpha, 0,0, \ldots, 0) \\
& =-\mathbf{g}\left(t, \mathbf{u}_{\alpha}^{\prime}(t)\right)+(\alpha, 0,0, \ldots, 0)
\end{aligned}
$$

Hence \mathbf{u}_{α} solves (2.1) with $\overline{\mathbf{f}}=(\alpha, 0, \ldots, 0)$ and we have proved that there exists a continuum of vectors $\overline{\mathbf{f}} \in \mathbb{R}^{n}$ for which the problem (2.1) is solvable. Moreover, we have got such a result not only for $\mathbf{g}(t, \mathbf{x})$ continuous but also C^{∞} and bounded, so that $\mathbf{g}(t, \mathbf{x})$ satisfies the hypothesis of the existence and uniqueness results in the papers by Mawhin (see [6, Theorems 1 and 3]) and Cañada and Drábek (see [1, Theorem 3.3]). This proves that the mentioned uniqueness result for $n=1$ is impossible to generalize to higher dimensions. Of course, the same problem is still open for the periodic case.

3 Asymptotic behavior

In this section we set $n=1$ and we consider the problems (1.5) and (1.6). Moreover, in order to have existence of solutions, we assume that $g(t, u)$ satisfies that $\lim _{|u| \rightarrow \infty} \frac{g(t, u)}{|u|}=0$ uniformly in $t \in[a, b]$. With these hypotheses at hands we know that for each $\widetilde{f} \in \widetilde{C}[a, b], \mathcal{J}_{\tilde{f}}^{(\mathcal{N})}=\left\{s_{\mathcal{N}}(\widetilde{f})\right\}$ and $\mathcal{J}_{\tilde{f}}^{(\mathcal{P})}=\left\{s_{\mathcal{P}}(\widetilde{f})\right\}$, where $s_{\mathcal{N}}: \widetilde{C}[a, b] \rightarrow \mathbb{R}$ and $s_{\mathcal{P}}: \widetilde{C}[a, b] \rightarrow \mathbb{R}$ are certain functionals. Furthermore, the change of variables $v=u^{\prime}$ transforms (1.5) and (1.6) into the problems

$$
\begin{align*}
v^{\prime}(t)+g(t, v(t)) & =s+\widetilde{f}(t), \quad t \in(a, b) \tag{3.1}\\
v(a) & =v(b)=0
\end{align*}
$$

and

$$
\begin{gather*}
v^{\prime}(t)+g(t, v(t))=s+\widetilde{f}(t), \quad t \in(a, b) \\
v(a)=v(b), \quad \int_{a}^{b} v(t) d t=0 \tag{3.2}
\end{gather*}
$$

Thus, if $w(t)$ solves (3.1) and $\omega(t)$ solves (3.2) and we integrate between a and b both sides of the equation, we get

$$
s_{\mathcal{N}}(\widetilde{f})=\frac{1}{b-a} \int_{a}^{b} g(t, w(t)) d t \quad \text { and } \quad s_{\mathcal{P}}(\widetilde{f})=\frac{1}{b-a} \int_{a}^{b} g(t, \omega(t)) d t
$$

We will use the formulas above in order to prove certain asymptotic results for the functionals $s_{\mathcal{N}}(\cdot)$ and $s_{\mathcal{P}}(\cdot)$.

Now we state and prove the main results of this section.
Theorem 3.1 Let us set $\Theta=\left\{\frac{1}{b-a} \int_{a}^{b} g\left(t, v_{0}\right) d t: v_{0} \in \mathbb{R}\right\}$. Then for each $g_{0} \in \bar{\Theta}$, the closure of Θ in \mathbb{R}, there exists a sequence $\left\{\widetilde{f}_{n}\right\}_{n=1}^{\infty} \subset \widetilde{C}[a, b]$ such that $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}\right\|=\infty$ and $\lim _{n \rightarrow \infty} s_{\mathcal{N}}\left(\widetilde{f}_{n}\right)=g_{0}$, where $\left\|\tilde{f}_{n}\right\|=\sup _{t \in[a, b]}\left|\widetilde{f}_{n}(t)\right|$.

Proof Let $g_{0}=\frac{1}{b-a} \int_{a}^{b} g\left(t, v_{0}\right) d t \in \Theta$ be arbitrarily chosen. We define for each $n>2(b-a)^{-1}$ a function $w_{n}:[a, b] \rightarrow \mathbb{R}$ which satisfies the following conditions
a) $w_{n} \in C^{1}[a, b]$
b) $w_{n}(a)=w_{n}(b)=0$
c) $w_{n}\left(a+\frac{1}{2 n}\right)=w_{n}\left(b-\frac{1}{2 n}\right)=1$
d) $w_{n}(t)=v_{0}$ for all $t \in\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$
e) $\left\|w_{n}\right\| \leq\left|v_{0}\right|+2$
and we set

$$
\tilde{f}_{n}(t):=w_{n}^{\prime}(t)+g\left(t, w_{n}(t)\right)-\frac{1}{b-a} \int_{a}^{b} g\left(t, w_{n}(t)\right) d t .
$$

It is clear that a) implies that $\widetilde{f}_{n} \in C([a, b])$ for all $n \in \mathbb{N}$ and b) implies that $\int_{a}^{b} \widetilde{f}_{n}(t) d t=0$. Moreover, using that $K=[a, b] \times\left[-\left|v_{0}\right|-2,\left|v_{0}\right|+2\right]$ is compact and $\left\{\left(t, w_{n}(t)\right): t \in[a, b]\right\} \subset K$ for all $n \in \mathbb{N}$, we have that the functions $g\left(t, w_{n}(t)\right)$ are uniformly bounded in $[a, b]$, so that the conditions b) and c) imply that $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}\right\|=\infty$.

Then $w=w_{n}$ solves the problem

$$
\begin{gathered}
w^{\prime}(t)+g(t, w(t))=s_{\mathcal{N}}\left(\widetilde{f}_{n}\right)+\widetilde{f}_{n}(t), \quad t \in(a, b) \\
w(a)=w(b)=0
\end{gathered}
$$

with $s_{\mathcal{N}}\left(\widetilde{f}_{n}\right)=\frac{1}{b-a} \int_{a}^{b} g\left(t, w_{n}(t)\right) d t$. We will prove that $\lim _{n \rightarrow \infty} s_{\mathcal{N}}\left(\widetilde{f}_{n}\right)=g_{0}$. In fact, by d) we have that

$$
\begin{aligned}
s_{\mathcal{N}}\left(\tilde{f}_{n}\right) & =\frac{1}{b-a} \int_{a}^{b} g\left(t, w_{n}(t)\right) d t \\
& =\frac{1}{b-a}\left(\int_{a}^{a+\frac{1}{n}} g\left(t, w_{n}(t)\right) d t+\int_{a+\frac{1}{n}}^{b-\frac{1}{n}} g\left(t, v_{0}\right) d t+\int_{b-\frac{1}{n}}^{b} g\left(t, w_{n}(t)\right) d t\right) .
\end{aligned}
$$

The uniform boundedness of $g\left(t, w_{n}(t)\right)$ implies that

$$
\lim _{n \rightarrow \infty} \int_{a}^{a+\frac{1}{n}} g\left(t, w_{n}(t)\right) d t=\lim _{n \rightarrow \infty} \int_{b-\frac{1}{n}}^{b} g\left(t, w_{n}(t)\right) d t=0
$$

Hence

$$
\lim _{n \rightarrow \infty} s_{\mathcal{N}}\left(\widetilde{f}_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{b-a} \int_{a+\frac{1}{n}}^{b-\frac{1}{n}} g\left(t, v_{0}\right) d t=g_{0}
$$

which is what we wanted to prove.
Let us now take $g_{0} \in \bar{\Theta} \backslash \Theta$. Then there exists a sequence of numbers $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \Theta$ and a family of functions $\left\{\widetilde{f}_{n, k}\right\}_{n, k=1}^{\infty} \subset \widetilde{C}[a, b]$ such that $\left\|\widetilde{f}_{n, k}\right\| \geq$ k and $\left|s_{\mathcal{N}}\left(\widetilde{f}_{n, k}\right)-g_{n}\right| \leq \frac{1}{k}$ for all $k, n \geq 1$ and $\lim _{n \rightarrow \infty} g_{n}=g_{0}$. Thus the sequence $\left\{\widetilde{f}_{n, n}\right\}_{n=1}^{\infty}$ satisfies that $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n, n}\right\|=\infty$ and $\lim _{n \rightarrow \infty} s_{\mathcal{N}}\left(\widetilde{f}_{n, n}\right)=$ g_{0}.

Corollary 3.2 Let us assume that $g=g(v) \in C(\mathbb{R})$ and $g_{0} \in \overline{g(\mathbb{R})}$. Then there exists a sequence $\left\{\widetilde{f}_{n}\right\}_{n=1}^{\infty} \subset \widetilde{C}[a, b]$ such that $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}\right\|=\infty$ and $\lim _{n \rightarrow \infty} s_{\mathcal{N}}\left(\widetilde{f}_{n}\right)=g_{0}$.

Proof In [6, Corollary 2] it is shown the existence of solutions for $n=1$ whenever $g=g(v)$ is continuous. Hence, it is enough to observe that if g does not depend on the variable t then $\Theta=g(\mathbb{R})$.

Theorem 3.3 Let us assume that g is bounded and set $\Theta=\left\{\frac{1}{b-a} \int_{a}^{b} g\left(t, v_{0}\right) d t\right.$: $\left.v_{0} \in \mathbb{R}\right\}$. Then for each $g_{0} \in \bar{\Theta}$, there exists a sequence $\left\{\widetilde{f}_{n}\right\}_{n=1}^{\infty} \subset \widetilde{C}[a, b]$ such that $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}\right\|=\infty$ and $\lim _{n \rightarrow \infty} s_{\mathcal{P}}\left(\widetilde{f}_{n}\right)=g_{0}$.

Proof We define for each $n>2(b-a)^{-1}$ a function $\varphi_{n}:[a, b] \rightarrow \mathbb{R}$ which satisfies the following conditions:
a) $\varphi_{n} \in C^{1}[a, b]$
b) $\varphi_{n}(a)=\varphi_{n}(b)$
c) $\varphi_{n}\left(a+\frac{1}{2 n}\right)=\varphi_{n}\left(b-\frac{1}{2 n}\right)=1$
d) $\varphi_{n}(t)=v_{0}$ for all $t \in\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$
e) $\int_{a}^{b} \varphi_{n}(t) d t=0$

Clearly, these functions exist. The rest of the proof is analogous to that of Theorem 3.1. We just change w_{n} by φ_{n} and $s_{\mathcal{N}}(\widetilde{f})$ by $s_{\mathcal{P}}(\widetilde{f})$. The only difference with the other proof is that now the graphs of the functions φ_{n} are not uniformly bounded, and this is the reason because we need now to assume that g is bounded.

Corollary 3.4 Assume that $g=g(v) \in C(\mathbb{R})$ is bounded and $g_{0} \in \overline{g(\mathbb{R})}$. Then there exists a sequence $\left\{\widetilde{f}_{n}\right\}_{n=1}^{\infty} \subset \widetilde{C}[a, b]$ such that $\lim _{n \rightarrow \infty}\left\|\widetilde{f}_{n}\right\|=\infty$ and $\lim _{n \rightarrow \infty} s_{\mathcal{P}}\left(\widetilde{f}_{n}\right)=g_{0}$.

Proof In [6, Corollary 4] it is shown the existence of solutions for $n=1$ whenever $g=g(v)$ is continuous. Hence, it is enough to observe that if g does not depend on the variable t then $\Theta=g(\mathbb{R})$.

We have proved that the limits $\lim _{\|\tilde{f}\| \rightarrow \infty} s_{\mathcal{N}}(\widetilde{f})$ and $\lim _{\|\tilde{f}\| \rightarrow \infty} s_{\mathcal{P}}(\widetilde{f})$ never exist if $\bar{\Theta}$ is not a single point. This makes natural to ask if some weaker asymptotic results are possible. For example, for which functions $\widetilde{f} \in \widetilde{C}[a, b]$ do the radial limits $\lim _{k \rightarrow \infty} s_{\mathcal{N}}(k \widetilde{f})$ or $\lim _{k \rightarrow \infty} s_{\mathcal{P}}(k \widetilde{f})$ exist? Now we prove a comparison result which will be helpful for the computation of these limits.
Lemma 3.5 (Comparison Principle) Let $k>0$ and $\widetilde{f} \in \widetilde{C}[a, b]$. If $w_{\mathcal{N}}$ is a solution of the problem

$$
\begin{gather*}
w^{\prime}(t)+g(t, w(t))=s_{\mathcal{N}}(k \widetilde{f})+k \widetilde{f}(t), \quad t \in(a, b) \tag{3.3}\\
w(a)=w(b)=0
\end{gather*}
$$

where $w_{\mathcal{P}}$ is a solution of the problem

$$
\begin{gather*}
w^{\prime}(t)+g(t, w(t))=s_{\mathcal{P}}(k \tilde{f})+k \tilde{f}(t), \quad t \in(a, b) \\
w(a)=w(b) ; \quad \int_{a}^{b} w(t) d t=0, \tag{3.4}
\end{gather*}
$$

$v_{\mathcal{N}}$ is the unique solution of

$$
\begin{gather*}
v^{\prime}(t)=\widetilde{f}(t), \quad t \in(a, b) \tag{3.5}\\
v(a)=v(b)=0
\end{gather*}
$$

and $v_{\mathcal{P}}$ is the unique solution of

$$
\begin{gather*}
v^{\prime}(t)=\tilde{f}(t), \quad t \in(a, b) \\
v(a)=v(b) ; \quad \int_{a}^{b} v(s) d s=0 \tag{3.6}
\end{gather*}
$$

then $\left\|w_{\mathcal{N}}-k v_{\mathcal{N}}\right\| \leq(b-a)(M-m)$ and $\left\|w_{\mathcal{P}}-k v_{\mathcal{P}}\right\| \leq \frac{1}{2}(b-a)(M-m)$, where $m:=\inf _{(t, s) \in[a, b] \times \mathbb{R}} g(t, s)$ and $M:=\sup _{(t, s) \in[a, b] \times \mathbb{R}} g(t, s)$.

Proof: Let $w_{\mathcal{N}}$ be a solution of (3.3) and let $v_{\mathcal{N}}(t)=\int_{a}^{t} \widetilde{f}(s) d s$ be the solution of (3.5). Then

$$
w_{\mathcal{N}}(t)=k \int_{a}^{t} \widetilde{f}(s) d s+s_{\mathcal{N}}(k \widetilde{f})(t-a)-\int_{a}^{t} g\left(s, w_{\mathcal{N}}(s)\right) d s
$$

and

$$
\begin{aligned}
w_{\mathcal{N}}(t)-k v_{\mathcal{N}}(t) & =s_{\mathcal{N}}(k \tilde{f})(t-a)-\int_{a}^{t} g\left(s, w_{\mathcal{N}}(s)\right) d s \\
& =\frac{t-a}{b-a} \int_{a}^{b} g\left(s, w_{\mathcal{N}}(s)\right) d s-\int_{a}^{t} g\left(s, w_{\mathcal{N}}(s)\right) d s
\end{aligned}
$$

Hence

$$
\left|w_{\mathcal{N}}(t)-k v_{\mathcal{N}}(t)\right| \leq(b-a)(M-m), \quad \text { for all } t \in[a, b]
$$

since

$$
(t-a) m \leq \frac{t-a}{b-a} \int_{a}^{b} g\left(s, w_{\mathcal{N}}(s)\right) d s \leq(t-a) M
$$

and

$$
(t-a) m \leq \int_{a}^{t} g\left(s, w_{\mathcal{N}}(s)\right) d s \leq(t-a) M
$$

This completes the proof for the Neumann problem. For the periodic case we must take into account that if $w_{\mathcal{P}}$ is a solution of (3.4) and

$$
v_{\mathcal{P}}(t)=\int_{a}^{t} \widetilde{f}(s) d s-\frac{1}{b-a} \int_{a}^{b} \int_{a}^{t} \widetilde{f}(s) d s d t
$$

is the solution of (3.6) then

$$
\begin{aligned}
w_{\mathcal{P}}(t)= & k v_{\mathcal{P}}(t)+s_{\mathcal{P}}(k \widetilde{f})\left(t-\frac{a+b}{2}\right)+\frac{1}{b-a} \int_{a}^{b} \int_{a}^{t} g\left(s, w_{\mathcal{P}}(s)\right) d s d t \\
& -\int_{a}^{t} g\left(s, w_{\mathcal{P}}(s) d s\right.
\end{aligned}
$$

After this, the proof is quite similar to that of the Neumann problem.
In what follows we denote by $|A|$ the Lebesgue measure of the set A.

Theorem 3.6 Assume that the limits $g(t, \pm \infty):=\lim _{s \rightarrow \pm \infty} g(t, s)$ exist uniformly in $t \in[a, b]$. Given $\widetilde{f} \in \widetilde{C}[a, b]$ and $F(t)=\int_{a}^{t} \widetilde{f}(s) d s$, we have that (i) If $|\{t \in[a, b]: F(t)=0\}|=0$ then

$$
\lim _{k \rightarrow \infty} s_{\mathcal{N}}(k \widetilde{f})=\frac{\int_{F^{-1}(0,+\infty)} g(t,+\infty) d t+\int_{F^{-1}(-\infty, 0)} g(t,-\infty) d t}{b-a}
$$

(ii) If $|\{t \in[a, b]: F(t)=0\}|>0$ and $g(t, s)=g(t, 0)$ for all (t, s) in $[a, b] \times$ $[-(b-a)(M-m),(b-a)(M-m)]$, then

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} s_{\mathcal{N}}(k \widetilde{f}) \\
& =\frac{1}{b-a}\left(\int_{F^{-1}(0,+\infty)} g(t,+\infty) d t+\int_{F^{-1}(-\infty, 0)} g(t,-\infty) d t+\int_{F^{-1}(0)} g(t, 0) d t\right)
\end{aligned}
$$

Proof It follows from Lemma 3.5 that

$$
k F(t)-(b-a)(M-m) \leq w_{\mathcal{N}}(t) \leq k F(t)+(b-a)(M-m), \text { for all } t \in[a, b] ;
$$

where $F(t)=\int_{a}^{t} \widetilde{f}(s) d s$. We define the sets:

$$
\begin{gathered}
A^{+}=\{t \in[a, b]: F(t)>0\}=F^{-1}(0,+\infty) \\
A^{0}=\{t \in[a, b]: F(t)=0\}=F^{-1}(0) \\
A^{-}=\{t \in[a, b]: F(t)<0\}=F^{-1}(-\infty, 0)
\end{gathered}
$$

Then

$$
\begin{aligned}
s_{\mathcal{N}}(k \widetilde{f})= & \frac{1}{b-a} \int_{a}^{b} g\left(t, w_{\mathcal{N}}(t)\right) d t \\
= & \frac{1}{b-a} \int_{A^{0}} g\left(t, w_{\mathcal{N}}(t)\right) d t+\frac{1}{b-a} \int_{A^{+}} g\left(t, w_{\mathcal{N}}(t)\right) d t \\
& +\frac{1}{b-a} \int_{A^{-}} g\left(t, w_{\mathcal{N}}(t)\right) d t
\end{aligned}
$$

Now we will estimate each one of the integrals which appear in the equality above. First, using (3.7) and the Lebesgue's dominated convergence theorem we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{1}{b-a} \int_{A^{+}} g\left(t, w_{\mathcal{N}}(t)\right) d t & =\frac{1}{b-a} \int_{A^{+}} g(t,+\infty) d t \\
\lim _{k \rightarrow \infty} \frac{1}{b-a} \int_{A^{-}} g\left(t, w_{\mathcal{N}}(t)\right) d t & =\frac{1}{b-a} \int_{A^{-}} g(t,-\infty) d t
\end{aligned}
$$

Second, under the assumption (i) (i.e. $\left|A^{0}\right|=0$) we have

$$
\frac{1}{b-a} \int_{A^{0}} g\left(t, w_{\mathcal{N}}(t)\right) d t=0
$$

On the other hand, under the hypotheses of (ii) (i.e. $g(t, s)=g(t, 0)$ for all $(t, s) \in[a, b] \times[-(b-a)(M-m),(b-a)(M-m)])$, we obtain from (3.7) that

$$
-(b-a)(M-m) \leq w_{\mathcal{N}}(t) \leq(b-a)(M-m)
$$

for all $t \in A^{0}$. Hence,

$$
\frac{1}{b-a} \int_{A^{0}} g\left(t, w_{\mathcal{N}}(t)\right) d t=\frac{1}{b-a} \int_{A^{0}} g(t, 0) d t .
$$

Taking into account the two items above we complete the proof.
Theorem 3.7 Assume that $g(t, s)$ is bounded and that the limits $g(t, \pm \infty):=$ $\lim _{s \rightarrow \pm \infty} g(t, s)$ exist uniformly in $t \in[a, b]$. Given $\widetilde{f} \in \widetilde{C}[a, b]$ and

$$
H(t)=\int_{a}^{t} \widetilde{f}(s) d s-\frac{1}{b-a} \int_{a}^{b}\left(\int_{a}^{t} \widetilde{f}(s) d s\right) d t
$$

we have that:
(i) If $|\{t \in[a, b]: H(t)=0\}|=0$ then

$$
\lim _{k \rightarrow \infty} s_{\mathcal{P}}(k \widetilde{f})=\frac{1}{b-a}\left(\int_{H^{-1}(0,+\infty)} g(t,+\infty) d t+\int_{H^{-1}(-\infty, 0)} g(t,-\infty) d t\right)
$$

(ii) If $|\{t \in[a, b]: H(t)=0\}|>0$ and $g(t, s)=g(t, 0)$ for all (t, s) in $[a, b] \times$ $\left[-\frac{b-a}{2}(M-m), \frac{b-a}{2}(M-m)\right]$ then
$\lim _{k \rightarrow \infty} s_{\mathcal{P}}(k \widetilde{f})$
$=\frac{1}{b-a}\left(\int_{H^{-1}(0,+\infty)} g(t,+\infty) d t+\int_{H^{-1}(-\infty, 0)} g(t,-\infty) d t+\int_{H^{-1}(0)} g(t, 0) d t.\right)$
The proof of this theorem is analogous to that of Theorem 3.6, using the periodic case of the comparison principle. The following result is a direct consequence of the theorems above:

Corollary 3.8 With the notation of Theorems 3.6 and 3.7, if $g=g(s)$ does not depend on the variable t and there exists the limits $g(\pm \infty):=\lim _{s \rightarrow \pm \infty} g(s)$ then

$$
\lim _{k \rightarrow \infty} s_{\mathcal{N}}(k \widetilde{f})=\frac{g(+\infty)\left|F^{-1}(0,+\infty)\right|+g(-\infty)\left|F^{-1}(-\infty, 0)\right|}{b-a}
$$

whenever $\left|F^{-1}(0)\right|=0$ and

$$
\lim _{k \rightarrow \infty} s_{\mathcal{P}}(k \widetilde{f})=\frac{g(+\infty)\left|H^{-1}(0,+\infty)\right|+g(-\infty)\left|H^{-1}(-\infty, 0)\right|}{b-a}
$$

whenever $\left|H^{-1}(0)\right|=0$.

The following proposition gives an estimation of the size of the sets of functions with the property that the radial limits exists.

Proposition 3.9 The sets

$$
\mathcal{F}=\left\{\widetilde{f} \in \widetilde{C}[a, b]: F(t)=\int_{a}^{t} \widetilde{f}(s) d s \text { satisfies }\left|F^{-1}(0)\right|=0\right\}
$$

and

$$
\begin{aligned}
\mathcal{H}=\{ & \left\{\widetilde{f} \in \widetilde{C}[a, b]: H(t)=\int_{a}^{t} \widetilde{f}(s) d s-\frac{1}{b-a} \int_{a}^{b}\left(\int_{a}^{t} \widetilde{f}(s) d s\right) d t\right. \\
& \text { satisfies } \left.\left|H^{-1}(0)\right|=0\right\}
\end{aligned}
$$

are dense non-meager subsets of the Banach space $\widetilde{C}[a, b]$.
Proof Clearly, \mathcal{F} is a dense subset of $\widetilde{C}[a, b]$, since $\widetilde{\Pi}=\Pi \cap \widetilde{C}[a, b]$ is dense in $\widetilde{C}[a, b]$, where Π denotes the set of algebraic polynomials, and $\widetilde{\Pi} \backslash\{0\} \subset \mathcal{F}$. Now, we are going to prove that \mathcal{F} has nonempty interior, which implies that \mathcal{F} is non-meager. Of course, there is no loss of generality if we assume that $[a, b]=[-1,1]$. Then $\widetilde{f}(t)=t$ belongs to \mathcal{F}. Let $\widetilde{g} \in \widetilde{C}[-1,1]$ be such that $\|\widetilde{f}-\widetilde{g}\|<\frac{1}{4}$ and let $G(t)=\int_{-1}^{t} \widetilde{g}(s) d s$. Then

$$
\frac{t^{2}}{2}-\frac{t}{4}-\frac{3}{4} \leq G(t) \leq \frac{t^{2}}{2}+\frac{t}{4}-\frac{1}{4} \quad \text { for all } t \in[-1,1]
$$

Thus, $G^{-1}(0) \subset\{-1\} \cup[1 / 2,1]$. If $\# G^{-1}(0) \geq 3$ then there are two points $x, y \in[1 / 2,1]$ such that $G(x)=G(y)=0$ and Rolle's theorem implies that $G^{\prime}(t)=\widetilde{g}(t)$ vanishes at some point $\xi \in[1 / 2,1]$, which is impossible since $\|\widetilde{f}-\widetilde{g}\|<\frac{1}{4}$. This implies that $\# G^{-1}(0) \leq 2$, so that $\widetilde{g} \in \mathcal{F}$ and \mathcal{F} has nonempty interior and proves the claim for the set \mathcal{F}. Finally, the proof of the claim for the set \mathcal{H} follows from similar arguments.

Remark Note that when $g \in C^{1}(\mathbb{R})$, it follows from [1, Theorems 3.3 and 3.4] that $s_{\mathcal{N}}(\cdot)$ and $s_{\mathcal{P}}(\cdot)$ are continuous functionals so that $\lim _{\|\tilde{f}\| \rightarrow 0} s_{\mathcal{N}}(\tilde{f})=s_{\mathcal{N}}(0)$ and $\lim _{\|\tilde{f}\| \rightarrow 0} s_{\mathcal{P}}(\tilde{f})=s_{\mathcal{P}}(0)$. Now, $s_{\mathcal{N}}(0)=s_{\mathcal{P}}(0)=g(0)$ since [6, Theorem 3] guarantees that $w(t)=0$ is the unique solution of the systems

$$
\begin{gathered}
w^{\prime}(t)+g(w(t))=g(0), \quad t \in(a, b) \\
w(a)=w(b)=0 \quad \text { or } \quad w(a)=w(b) ; \quad \int_{a}^{b} w(t) d t=0
\end{gathered}
$$

Acknowledgements The authors are very grateful to Prof. A. Cañada both for proposing the problems considered in this note and for several useful suggestions.

References

[1] Cañada, A., Drábek, P. On semilinear problems with nonlinearities depending only on derivatives, SIAM J. Math. Anal., 27 (1996) 543-557.
[2] Cañada, A., Ureña, A. J. Asymptotic behaviour of the solvability set for pendulum-type equations with linear damping and homogeneous Dirichlet conditions, Electron. J. Differ. Equ. Conf. 6 (2001) 55-64.
[3] Cañada, A., Ureña, A. J. Some new qualitative properties on the solvability set of pendulum-type equations. In Dynamical Systems and Differential Equations, Discrete and Continuous Dynamical Systems, Kennesaw State University (2001) 66-73.
[4] Dancer, E. N. On the ranges of certain damped nonlinear differential equations, Annali di Matematica Pura ed Applicata (IV), CXIX (1979) 281-295.
[5] Kannan, R., Ortega, R. An asymptotic result in forced oscillations of pendulum-type equations, Appl. Anal., 22 (1986) 45-53.
[6] Mawhin, J. Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives, Acta Math. Inform. Univ. Ostraviensis, 2 (1994) 61-69.

Jose María Almira (e-mail: jmalmira@ujaen.es)
Naira Del Toro (e-mail: ndeltoro@ujaen.es)
Departamento de Matemáticas
Universidad de Jaén. E.U.P. Linares
C/ Alfonso X el Sabio, 28.
23700 Linares (Jaén) Spain

[^0]: * Mathematics Subject Classifications: 34B15, 34L30.

 Key words: Nonlinear boundary-value problem, Neumann and Periodic problems.
 © 2003 Southwest Texas State University.
 Submitted December 5, 2002. Published February 20, 2003.
 Partially supported by grant FQM-0178 from the Junta de Andalucía,
 Grupo de Investigación "Aproximación y Métodos Numéricos".

