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Nonlinear singular Navier problem of fourth order∗

Syrine Masmoudi & Malek Zribi

Abstract

We present an existence result for a nonlinear singular differential
equation of fourth order with Navier boundary conditions. Under appro-
priate conditions on the nonlinearity f(t, x, y), we prove that the problem

L2u = L(Lu) = f(., u, Lu) a.e. in (0, 1),

u′(0) = 0, (Lu)′(0) = 0, u(1) = 0, Lu(1) = 0.

has a positive solution behaving like (1−t) on [0, 1]. Here L is a differential
operator of second order, Lu = 1

A
(Au′)′. For f(t, x, y) = f(t, x), we

prove a uniqueness result. Our approach is based on estimates for Green
functions and on Schauder’s fixed point theorem.

1 Introduction

Dalmasso [1] studied the existence of positive radial solutions for the Dirichlet
problem

∆2u = f(u) in BR,

u =
∂u

∂ν
= 0 on ∂BR,

(1.1)

and for the Navier problem

∆2u = f(u) in BR,

u = ∆u = 0 on ∂BR,
(1.2)

where BR denotes the ball of radius R centered at the origin in Rn (n ≥ 1),
∂BR is the boundary of BR, and ∂

∂ν is the outward normal derivative.
Since only positive radial solutions are considered, problems (1.1) and (1.2)

reduce to the one-dimensional equation

∆2u = f(u) in [0, R),

with respective boundary conditions u(R) = u′(R) = 0 and u(R) = ∆u(R) = 0,
where ∆ denotes the polar form of the Laplacian (i.e. ∆u = 1

tn−1 (tn−1u′)′).
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The main result of Dalmasso in [1], was an existence result when f is a positive
sublinear function which is continuous and nondecreasing on [0,∞). If f(u) =
|u|p (p ∈ (0, 1) ∪ (1,∞)), Dalmasso proved uniqueness for (1.1) and (1.2).

In [3], we considered a more general type of equation having as a linear part
the singular operator of second order

Lu =
1
A

(Au′)′,

where A satisfies some appropriate conditions. In fact, we were interested in
the positive solutions of the nonlinear Dirichlet problem of fourth order

L2u = L(Lu) = f(., u) in (0, 1),
u′(0) = 0, (Lu)′(0) = 0, u′(1) = 0, u(1) = 0.

We proved an existence and a uniqueness result which generalize the result of
Dalmasso [1] for problem (1.1).

In this paper, we study the existence for the Navier problem of fourth order
related to the operator L. More precisely, we consider the nonlinear Navier
problem

L2u = L(Lu) = f(., u, Lu) a.e. in (0, 1),
u′(0) = 0, (Lu)′(0) = 0, u(1) = 0, Lu(1) = 0.

(1.3)

Here, we use the following assumptions:

(H1) A is continuous on [0, 1], infinitely differentiable and positive on (0, 1].

(H2) The function h : t 7→ 1
A(t)

∫ t

0
A(s)ds is continuously differentiable on [0, 1],

with h(0) = 0.

(H3) f : [0, 1)× (0,∞)× (−∞, 0) → (0,∞) is measurable and continuous with
respect to the second and third variables.

(H4) f is non-increasing with respect to the second variable and nondecreasing
with respect to the third variable.

(H5) For all c > 0,
∫ 1

0
G(0, s)f(s, c(1 − s),−c(1 − s))ds < ∞, where G(t, s) =

A(s)Γ(t, s) = A(s)
∫ 1

t∨s
dr

A(r) and t ∨ s = max(t, s).

Note that without loss of generality, we can assume that
∫ 1

0
A(s)ds = 1.

Our paper is organized as follows. In section 2, we give some estimates on
the Green function H(x, y) of the operator L2 with Navier conditions, which
enable us to establish the existence result for problem (1.3). The main result
of the paper is proved in section 3. Namely, the existence of positive solutions
u ∈ C2([0, 1]) of (1.3) behaving like (1− t), for t ∈ [0, 1]. In section 4, we give a
uniqueness result of (1.3) with the special nonlinearity f(t, x, y) = f(t, x).



EJDE–2003/19 Syrine Masmoudi & Malek Zribi 3

Throughout this paper, the letter C will denote a generic positive constant
which may vary from line to line and for a nonnegative measurable function f
in [0, 1], we use the notation

V f(t) =
∫ 1

0

G(t, s)f(s)ds =
∫ 1

t

1
A(r)

( ∫ r

0

A(s)f(s)ds
)
dr

and

V 2f(t) = V (V f)(t) =
∫ 1

0

H(t, s)f(s)ds.

We point out that if f is a nonnegative function in L1
loc([0, 1]), then

L(V f) = −f a.e. in [0, 1]. (1.4)

2 Estimates on the Green function

The Green function H of the operator L2 with boundary conditions u′(0) =
0, (Lu)′(0) = 0, u(1) = 0, Lu(1) = 0 is explicitly determined in the following
lemma.

Lemma 2.1 Assume (H1) and (H2). Then for t, s in [0, 1], we have

H(t, s) =
∫ 1

0

G(t, r)G(r, s)dr = A(s)
∫ 1

t

1
A(ξ)

( ∫ ξ

0

A(r)Γ(r, s)dr
)
dξ. (2.1)

Moreover, H has the following properties

∣∣ ∂2

∂t2
H(t, s)

∣∣ ≤ CG(0, s). (2.2)

−CG(0, s) ≤ ∂

∂t
H(t, s) ≤ 0. (2.3)

0 ≤ H(t, s) ≤ C(1− t)G(0, s). (2.4)

Proof For (t, s) ∈ (0, 1]× [0, 1], we have

∣∣ ∂2

∂t2
H(t, s)

∣∣ =
∣∣−A(s)Γ(t, s) + A(s)

A′(t)
A2(t)

∫ t

0

A(r)Γ(r, s)ds
∣∣

≤ A(s)Γ(0, s)|h′(t)|.

So from (H2), we obtain the inequality (2.2). To prove (2.3), we have

0 ≤ − ∂

∂t
H(t, s) =

A(s)
A(t)

∫ t

0

A(r)Γ(r, s)ds ≤ G(0, s)h(t).

Now, since h is continuous on [0, 1], we deduce (2.3). Combining this with
H(1, s) = 0, we obtain (2.4). ♦
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Proposition 2.2 Assume (H1) and (H2). Let δ ∈ (0, 1], then there exists a
positive constant C(δ) such that for all t, s ∈ [0, 1], we have

G(t, s) ≥ C(δ)(1− t)G(δ, s). (2.5)
H(t, s) ≥ C(δ)(1− t)H(δ, s). (2.6)

Proof To prove (2.5), we distinguish the following cases:
Case 1: 0 ≤ t ≤ δ ≤ 1. For any s ∈ [0, 1], the function G(., s) is non-increasing
on [0, 1]. So, we obtain the result with C(δ) = 1.
Case 2: 0 < δ ≤ t ≤ 1. Since A is continuous and positive on [δ, 1], then there
exist two positive constants a, b such that

a ≤ 1
A(r)

≤ b, for r ∈ [δ, 1].

We claim that C(δ) = a/b. Indeed,

Γ(t, s)− a

b
(1− t)Γ(δ, s) =

∫ 1

t∨s

dr

A(r)
− a

b
(1− t)

∫ 1

δ∨s

dr

A(r)
≥ a[(1− t ∨ s)− (1− t)(1− δ ∨ s)]
≥ 0.

Then G(t, s) ≥ a
b (1− t)G(δ, s), for t, s ∈ [0, 1] and (2.5) is deduced.

Now, we shall prove (2.6). For t, s ∈ [0, 1], we have

H(t, s)− a

b
(1− t)H(δ, s) = A(s)K(t, s),

where

K(t, s) =
∫ 1

s

1
A(θ)

( ∫ θ

0

G(t, r)dr
)
dθ − a

b
(1− t)

∫ 1

s

1
A(θ)

( ∫ θ

0

G(δ, r)dr
)
dθ.

So, from (2.5), we deduce that

∂

∂s
K(t, s) =

1
A(s)

∫ s

0

(
a

b
(1− t)G(δ, r)−G(t, r))dr ≤ 0,

which together with K(t, 1) = 0 imply that K is nonnegative on [0, 1] × [0, 1].
Thus (2.6) holds. ♦

3 Existence results

In this section, we prove existence of a positive solution for (1.3). We begin by
stating an existence result for the nonlinear problem

L2u = L(Lu) = f(., u, Lu) a.e. in (0, 1),
u′(0) = 0, (Lu)′(0) = 0, u(1) = α, Lu(1) = −β.

(3.1)

where α, β > 0.
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Lemma 3.1 Assume (H1)–(H3). Let α, β ≥ 0 and u ∈ C2([0, 1]) ∩ C3((0, 1))
be a solution of problem (3.1). Then the following properties hold

(i) Lu is increasing and u is decreasing on [0, 1].

(ii) u(t) = α + (1− t)k(t), for t ∈ [0, 1], where k ∈ C1([0, 1]) ∩ C2((0, 1)) and
k > 0 on [0, 1].

Proof (i) Since u satisfies the differential equation L2u = f(., u, Lu) with
(Lu)′(0) = 0, it follows that

A(t)(Lu)′(t) =
∫ t

0

A(s)f(s, u(s), Lu(s))ds.

Now, as f is a nonnegative function, we deduce that Lu is an increasing function
on [0, 1]. This together with Lu(1) = −β and u′(0) = 0 imply that u is a
decreasing function on [0, 1].

(ii) Since u ∈ C2([0, 1])∩C3((0, 1)) and u(1) = α, then there exists a function
k ∈ C1([0, 1]) ∩ C2((0, 1)) such that

u(t) = α + (1− t)k(t), for t ∈ [0, 1].

Moreover, since u is decreasing on [0, 1], k is positive on [0, 1). Furthermore,
k(1) = −u′(1) > 0. ♦

Proposition 3.2 Assume (H1)–(H5). Then for any α, β > 0, problem (3.1)
has at least one positive solution u ∈ C2([0, 1]) ∩ C3((0, 1)), satisfying for any
t ∈ [0, 1]

u(t) = α + β(V 1)(t) + V 2(f(., u, Lu))(t) (3.2)

Proof Let E = {u ∈ C1([0, 1]) : u′(0) = 0 and Lu ∈ C([0, 1])} endowed with
the norm

‖u‖ = ‖Lu‖∞ + |u(1)| = sup
t∈[0,1]

|Lu(t)|+ |u(1)|,

and C([0, 1])× R endowed with the norm

‖(g, α)‖1 = ‖g‖∞ + |α|.

Then it is obvious to see that the map (E, ‖.‖) → (C([0, 1]) × R, ‖.‖1), defined
as u 7→ (Lu, u(1)) is an isometry. Thus (E, ‖.‖) is a Banach space.

Now, by (H5) and (2.4), we note that V 2(f(., α,−β))(0) < ∞. So, in order
to apply a fixed point argument, we consider the closed convex subset of E

Λ = {u ∈ E : α ≤ u ≤ α + βV 1(0) + V 2(f(., α,−β))(0), Lu ≤ −β.}

Then we define the operator T on Λ by

Tu(t) = α + β(V 1)(t) + V 2(f(., u, Lu))(t), for t ∈ [0, 1].
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First, we shall prove that T maps Λ into itself. Let u ∈ Λ. Then using (1.4),
we have for t ∈ [0, 1],

L(Tu)(t) = −β − V (f(., u, Lu))(t).

Using hypotheses (H4), we deduce from (2.3) that Tu ∈ Λ. Next, we prove the
continuity of T in Λ. Let (un)n be a sequence in Λ such that

‖un − u‖ = ‖Lun − Lu‖∞ + |un(1)− u(1)| → 0 as n →∞.

Then for any t ∈ [0, 1], we have Tun(1) = Tu(1) = α and

|L(Tun)(t)− L(Tu)(t)| ≤
∫ 1

0

G(0, s)|f(s, un(s), Lun(s))− f(s, u(s), Lu(s))|ds.

So, by hypotheses (H3) and (H5), we deduce that

‖Tun − Tu‖ = ‖L(Tun)− L(Tu)‖∞ → 0 as n →∞.

Finally, we need to prove that TΛ is relatively compact in (E, ‖.‖). From the
continuity of the function G(., s), s ∈ (0, 1] and the hypotheses (H5), the family
{L(Tu) : u ∈ Λ} is equicontinuous on [0, 1]. Moreover, {L(Tu) : u ∈ Λ} is
uniformly bounded. Now, using Ascoli’s theorem, it follows that {L(Tu) : u ∈
Λ} is relatively compact in (C([0, 1]), ‖.‖∞), which implies that TΛ is relatively
compact in (E, ‖.‖). Hence, we conclude by Schauder’s fixed point theorem,
that T has a fixed point u in Λ, which satisfies the equation (3.2).

Now, by repeating differentiations in the integral equation (3.2) and using
the statements (2.2)-(2.4), we show by (H5), that u is a positive solution of
problem (3.1) and u ∈ C2([0, 1]) ∩ C3((0, 1)). ♦

To prove the existence of positive solution for problem (1.3), we consider a
sequence (αn)n≥0 of positive real numbers, decreasing to zero and we put un

the positive solution of (3.1) with αn, αn instead of α, β. Then we have the
following Lemma.

Lemma 3.3 Assume (H1)–(H5). Then there exists c > 0 such that for each
n ∈ N and t ∈ [0, 1], we have

un(t) ≥ c(1− t) and Lun(t) ≤ −c(1− t).

Proof Let δ ∈ (0, 1). Since for each n ∈ N, un verifies the equation (3.2), we
obtain from (2.5) and (2.6), that for t ∈ [0, 1] and n ∈ N,

un(t) = αn + αn

∫ 1

0

G(t, s)ds +
∫ 1

0

H(t, s)f(s, un(s), Lun(s))ds

≥ C(δ)(1− t)(un(δ)− αn)

and

Lun(t) = −αn −
∫ 1

0

G(t, s)f(s, un(s), Lun(s))ds

≤ C(δ)(1− t)(Lun(δ) + αn).
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Then for all n ∈ N and t ∈ [0, 1], we have

un(t) ≥ aC(δ)(1− t) and Lun(t) ≤ −bC(δ)(1− t),

where a = infn∈N(un(δ) − αn) and b = infn∈N(−Lun(δ) − αn). Note that,
from Lemma 3.1, a and b are nonnegative constants. We claim that c =
C(δ)min(a, b) > 0 and so the lemma is proved. To establish the claim, we
consider a subsequence ((unk

(δ) − αnk
), (−Lunk

(δ) − αnk
))k, which converges

to (a, b). Then for k large enough and δ ≤ s ≤ 1,

0 ≤ unk
(s) ≤ unk

(δ) ≤ 1 + a + α0

and
0 ≤ −Lunk

(s) ≤ −Lunk
(δ) ≤ 1 + b + α0.

This implies from (H4), that for k large enough, we have

unk
(δ)− αnk

≥
∫ 1

δ

H(δ, s)f(s, 1 + a + α0,−1− b− α0)ds > 0

and

−Lunk
(δ)− αnk

≥
∫ 1

δ

G(δ, s)f(s, 1 + a + α0,−1− b− α0)ds > 0.

So the claim is proved. ♦
Now, we are ready to prove the main result of this section.

Theorem 3.4 Assume (H1)–(H5). Then problem (1.3) has at least one positive
solution u ∈ C2([0, 1]) ∩ C3((0, 1)), such that for each t ∈ [0, 1],

c1(1− t) ≤ u(t) ≤ c2(1− t), (3.3)

where c1, c2 are positive constants.

Proof We aim to show the existence of u ∈ C2([0, 1]) ∩ C3((0, 1)) such that
u = V 2(f(., u, Lu)). We first recall that for n ∈ N, un satisfies the equation

un(t) = αn + αn(V 1)(t) + V 2(f(., un, Lun))(t), for t ∈ [0, 1]. (3.4)

So using Lemma 3.3, (2.3) and (2.4), we have for n ∈ N and t ∈ [0, 1],

|un(t)| ≤ α0 + α0

∫ 1

0

G(0, s)ds + C

∫ 1

0

G(0, s)f(s, c(1− s),−c(1− s))ds

and

|u′n(t)| ≤ α0‖h‖∞ + C

∫ 1

0

G(0, s)f(s, c(1− s),−c(1− s))ds.
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Hence from (H5) and Ascoli’s theorem, it follows that the family of functions
(un)n∈N is relatively compact in C([0, 1]). On the other hand, from Lemma 3.3
and (H4), we have for each n ∈ N and t, t′ ∈ [0, 1],

|Lun(t)− Lun(t′)| ≤ α0 + C

∫ 1

0

|G(t, s)−G(t′, s)|f(s, c(1− s),−c(1− s))ds

and

|Lun(t)| ≤ α0 +
∫ 1

0

G(0, s)f(s, c(1− s),−c(1− s))ds.

Now, since for each s ∈ (0, 1], the function t → G(t, s) is continuous on [0, 1]
and using (H5), we deduce from Ascoli’s theorem that (Lun)n∈N is relatively
compact in C([0, 1]). So, let (unk

)k∈N and (Lunk
)k∈N be the subsequences which

converge uniformly to functions u ∈ C([0, 1]) and v ∈ C([0, 1]), respectively.
We claim that v = Lu. Indeed, letting n → ∞ in (3.4) we deduce by the

dominated convergence theorem, that

u = V 2(f(., u, v)).

Then from (1.4), we have Lu = −V (f(., u, v)). On the other hand, from (3.4)
we have

Lun = −αn − V (f(., un, Lun)), for n ∈ N.

Consequently, by the dominated convergence theorem, we get

v = −V (f(., u, v)) = Lu.

We conclude that u = V 2(f(., u, Lu)). So using the statements (2.2)-(2.4), we
deduce that u ∈ C2([0, 1]) ∩ C3((0, 1)) is a positive solution of problem (1.3).
Finally, (3.3) follows immediately from Lemma 3.1. ♦

Remark 3.5 The result of Theorem 3.4 is also valid to the more general prob-
lem of high order

Lnu = (−1)nf(., u,−Lu, . . . , (−1)n−1Ln−1u) a.e. in (0, 1)

(Lku)′(0) = 0, (Lku)(1) = 0, k ∈ {0, 1, . . . , n− 1},
(3.5)

where n ≥ 2, the nonlinear term f(t, y1, . . . , yn) is assumed to have singularities
at t = 1 and yi = 0 (1 ≤ i ≤ n) and to satisfy the following conditions

(H6) f : [0, 1)× ((0,∞))n → (0,∞) is measurable,
f is continuous and nondecreasing with respect to each yi, 1 ≤ i ≤ n,
For all c > 0,

∫ 1

0
G(0, s)f(s, c(1− s), . . . , c(1− s))ds < ∞.

In fact, we give in Propositions 3.6 and 3.7 some estimates for the Green func-
tion of the operator u → (−1)nLnu with boundary conditions (Lku)′(0) = 0,
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(Lku)(1) = 0, for k ∈ {0, 1, . . . , n− 1}, which is given by the following iterated
relation

G1(t, s) = G(t, s) = A(s)
∫ 1

t∨s

dr

A(r)
,

Gn(t, s) =
∫ 1

t

1
A(ξ)

(
∫ ξ

0

A(r)Gn−1(r, s)dr)dξ, for n ≥ 2.

Proposition 3.6 Assume (H1) and (H2). Let n ≥ 2, then there exists a con-
stant Cn > 0, such that for each t, s ∈ [0, 1]× (0, 1], we have

(i) | ∂2

∂t2 Gn(t, s)| ≤ CnG(0, s).

(ii) −CnG(0, s) ≤ ∂
∂tGn(t, s) ≤ 0.

(iii) 0 ≤ Gn(t, s) ≤ Cn(1− t)G(0, s).

Proposition 3.7 Assume (H1) and (H2) and let δ ∈ (0, 1], then there exists a
positive constant C(δ) such that for all t, s ∈ [0, 1] and n ∈ N∗, we have

Gn(t, s) ≥ C(δ)(1− t)Gn(δ, s).

Using the same argument as in the proof of Theorem 3.4, we easily obtain
the following more general result.

Theorem 3.8 Assume (H1), (H2) and (H6). Then (3.5) has at least one pos-
itive solution u ∈ C2([0, 1]) ∩ C2n−1((0, 1)), satisfying for each t ∈ [0, 1],

c1(1− t) ≤ u(t) ≤ c2(1− t),

where c1, c2 are positive constants.

4 Uniqueness result

In this section, we assume that f(t, x, y) ≡ f(t, x) and we aim to prove a unique-
ness result for problem (1.3). We need the following lemma.

Lemma 4.1 Assume (H1)–(H5) and let u, v ∈ C2([0, 1]) ∩ C3((0, 1)) be two
solutions of problem (1.3) satisfying (3.3). Then the following identity holds∫ 1

0

A(t)(u− v)(t)L2(u− v)(t)dt =
∫ 1

0

A(t)(L(u− v))2(t)dt.
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Proof Two integrations by parts yield∫ t

0

A(s)(u− v)(s)L2(u− v)(s)ds

= A(t)(u− v)(t)(L(u− v))′(t)−A(t)(u− v)′(t)L(u− v)(t)

+
∫ t

0

A(s)(L(u− v))2(s)ds,

for all t ∈ [0, 1). Then, since A(1)(u − v)′(1)L(u − v)(1) = 0, we need only to
prove that

lim
t→1

A(t)(u− v)(t)(L(u− v))′(t) = 0.

Using (3.3), there exist two constants c1, c2 > 0 such that

c1(1− t) ≤ u(t) ≤ c2(1− t) and c1(1− t) ≤ v(t) ≤ c2(1− t)

Let δ ∈ (0, 1). Then by (H4), for t ∈ [δ, 1], we have

|A(t)(u− v)(t)(Lu)′(t)|

= |(u− v)(t)|
∫ t

0

A(s)f(s, u(s))ds

≤ (c2 − c1)(1− t)
∫ t

0

A(s)f(s, c1(1− s))ds

≤ (c2 − c1)
(

inf
r∈[δ,1]

1
A(r)

)−1
∫ 1

t

1
A(ξ)

( ∫ 1

0

A(s)f(s, c1(1− s))ds
)
dξ.

Then using (H5), the result holds. ♦

Theorem 4.2 Assume (H1)–(H5). Then problem (1.3) has a unique positive
solution u ∈ C2([0, 1]) ∩ C3((0, 1)), satisfying (3.3).

Proof The existence result is establised in Theorem 3.4. We shall prove the
uniqueness. Let u, v ∈ C2([0, 1]) ∩ C3((0, 1)) be two solutions of problem (1.3)
satisfying (3.3). From (H4), it follows that

(u− v)L2(u− v) = (u− v)(f(., u)− f(., v)) ≤ 0.

So, by Lemma 4.1, we deduce that L(u−v) = 0. This together with (u−v)′(0) =
0 and (u− v)(1) = 0 imply that u = v. ♦

Remark 4.3 Let q be a nonnegative and continuous function on [0, 1], infinitely
differentiable on (0, 1). Then the result of Theorem 4.2 is also valid for the
following more general Navier problem

(L− q)2u = f(., u) a.e. in (0, 1),
u′(0) = 0, ((L− q)u)′(0) = 0, u(1) = 0, ((L− q)u)(1) = 0,

(4.1)
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where f satisfies (H3)–(H5). Indeed, let ϕ ∈ C2([0, 1]) ∩ C∞((0, 1)) be the
unique solution of the problem

Lu− qu = 0 in (0, 1),
u′(0) = 0, u(0) = 1.

From [2], ϕ is nondecreasing on [0, 1] and for any t ∈ [0, 1],

1 ≤ ϕ(t) ≤ exp
( ∫ t

0

1
A(s)

( ∫ s

0

A(r)q(r)dr
)
ds

)
≤ exp(‖q‖∞‖h‖∞). (4.2)

Now, we consider the differential operator LAϕ2 defined by

LAϕ2u =
1

Aϕ2
(Aϕ2u′)′.

So, for each v ∈ C∞((0, 1)), we have (L− q)(ϕv) = ϕLAϕ2v, which implies that

(L− q)2(ϕv) = ϕ(LAϕ2)2v.

Then it is obvious to see that u = ϕv is a solution of (4.1) if and only if v
satisfies

L2
Aϕ2v = g(., v) a.e. in (0, 1),

v′(0) = 0, (LAϕ2v)′(0) = 0, v(1) = 0, LAϕ2v(1) = 0,
(4.3)

where g(t, x) = f(t,ϕ(t)x)
ϕ(t) , for (t, x) ∈ [0, 1) × (0,∞). On the other hand, using

(4.2), we remark that the assumption (H5) is equivalent to

∀c > 0,

∫ 1

0

A(s)ϕ2(s)
( ∫ 1

s

dr

A(r)ϕ2(r)
)
g(s, c(1− s))ds < ∞.

So applying Theorem 4.2, we deduce that problem (4.3) has a unique solution
v ∈ C2([0, 1])∩C3((0, 1)) satisfying (3.3). Hence u = ϕv is obviously the unique
positive solution of (4.1) satisfying (3.3) and which is in C2([0, 1]) ∩ C3((0, 1)).

Example 4.4 Let α, β ≥ 0 and k be a positive measurable function on [0, 1),
which satisfies ∫ 1

0

(1− s)1−(α∨β)k(s)ds < ∞.

Then the Navier problem

u(4)(t) = k(t)
(
u−α(t) + (−u′′)−β(t)

)
, t ∈ (0, 1),

u′(0) = 0, u(3)(0) = 0, u(1) = 0, u′′(1) = 0,

has a positive solution u ∈ C2([0, 1]) ∩ C3((0, 1)), satisfying (3.3).
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Example 4.5 Let A(t) = tγ(γ ≥ 0), for t ∈ [0, 1]. Let α, β ≥ 0 and k be a
positive measurable function on [0, 1), which satisfies∫ 1

0

(1− s)1−α−βk(s) ds < ∞.

We consider the problem

L2u = k(t)u−α(t)(−Lu)−β(t), t ∈ (0, 1),
u′(0) = 0, (Lu)′(0) = 0, u(1) = 0, Lu(1) = 0.

Since G(0, s) ≤ (1− s) then (H5) is satisfied and the above problem has at least
one positive solution u ∈ C2([0, 1]) ∩ C3((0, 1)), satisfying (3.3). Moreover, if
β = 0 then the solution u is unique.
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