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Blow-up for p-Laplacian parabolic equations ∗

Yuxiang Li & Chunhong Xie

Abstract

In this article we give a complete picture of the blow-up criteria for
weak solutions of the Dirichlet problem

ut = ∇(|∇u|p−2∇u) + λ|u|q−2u, in ΩT ,

where p > 1. In particular, for p > 2, q = p is the blow-up critical
exponent and we show that the sharp blow-up condition involves the first
eigenvalue of the problem

−∇(|∇ψ|p−2∇ψ) = λ|ψ|p−2ψ, in Ω; ψ|∂Ω = 0.

1 Introduction

In this paper we study the Dirichlet problem

ut = ∇(|∇u|p−2∇u) + λ|u|q−2u, in ΩT ,

u = 0, on ST ,

u(x, 0) = u0(x), in Ω,
(1.1)

u0(x) ∈ C0(Ω), where p > 1, q > 2, λ > 0 and Ω ⊂ RN is an open bounded
domain with smooth boundary ∂Ω.

When p = 2, the blow-up properties of the semilinear heat equation (1.1)
hasve been investigated by many researchers; see the recent survey paper [11].
For p 6= 2, the main interest in the past twenty years lies in the regularities
of weak solutions of the quasilinear parabolic equations; see the monograph [4]
and the references therein. When Ω = RN , the Fujita exponents have been
calculated; see [7, 8, 9, 10] and also the survey papers [3, 12].

To the best of our knowledge, when Ω is a bounded domain, the blow-up
conditions are not fully established, especially, in the case q = p > 2. In [23],
the author showed that q = p is the critical case, that is, if q < p, (1.1) has a
unique nonnegative global weak solution for all nonnegative initial values, and if
q > p, there are both nonnegative, nontrivial global weak solutions and solutions
which blow up in finite time. The blow-up result for q > p is also proved in [14].
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Furthermore, in [24] the author proved that in the critical case q = p > 2, if the
Lebesgue measure of Ω is sufficiently small, (1.1) has a global solution and if Ω
is a sufficiently large ball, it has no global solution.

In this paper we shall give a complete picture of the blow-up criteria for
(1.1). In particular, in the critical case q = p > 2, we will prove that if λ > λ1,
there are no nontrivial global weak solutions, and if λ ≤ λ1, all weak solutions
are global, where λ1 is the first eigenvalue of the nonlinear eigenvalue problem

−∇(|∇ψ|p−2∇ψ) = λ|ψ|p−2ψ, in Ω; ψ|∂Ω = 0. (1.2)

The following lemma concerns the properties of the first eigenvalue λ1 and
the first eigenfunction ψ(x).

Lemma 1.1 There exists a positive constant λ1(Ω) with the following proper-
ties:

(a) For any λ < λ1(Ω), the eigenvalue problem (1.2) has only the trivial solu-
tion ψ ≡ 0.

(b) There exists a positive solution ψ ∈ W 1,p
0 (Ω) ∩ C(Ω) of (1.2) if and only

if λ = λ1(Ω).

(c) The collection consisting of all solutions of (1.2) with λ = λ1(Ω) is 1-
dimensional vector space.

(d) If Ωj, j = 1, 2 are bounded domain with smooth boundary satisfying Ω1 b
Ω2, then λ1(Ω1) > λ1(Ω2).

(e) Let {Ωn} be a sequence of bounded domains with smooth boundaries such
that Ωn b Ωn+1 and

⋃∞
n=1 Ωn = Ω, then limn→∞ λ1(Ωn) = λ1(Ω).

Proof (a)-(d) follow from [5, Lemma 2.1, 2.2]. The continuity of ψ(x) is
asserted in [22, Corollary 4.2]. We now prove (e). It follows from (d) that
λ1(Ωn) is strictly decreasing and so it tends to some nonnegative constant λ∗1(Ω)
as n→∞. Denote by ψn(x) the positive solution of (1.2) on Ωn with λ = λ1(Ωn)
such that

∫
Ωn
ψndx = 1. By (c), ψn is unique. By the similar method in the

proof of [5, Theorem 2.1], one can obtain from {ψn} a positive solution ψ∗ of
(1.2) with λ = λ∗1(Ω). Then by (b), we have λ∗1(Ω) = λ1(Ω). ♦

We note that the blow-up conditions for (1.1) are similar to that of the
porous media equations; see [6, 15, 16, 18]. Also our results clearly illustrate
the observation that larger domains are more unstable than smaller domains;
see [12].

To prove that q = p is the critical case, we shall use the method of comparison
with suitable blowing-up self-similar sub-solutions introduced by Souplet and
Weissler [21]. This method enables us to treat the singular case 1 < p < 2, which
is not considered in [23, 24], as well as the degenerate case p > 2. Recently,
the self-similar sub-solution method is proven to be useful in proof of blow-up
theorems in the semilinear and porous media equations with gradient terms and



EJDE–2003/20 Yuxiang Li & Chunhong Xie 3

nonlocal problems; see also [1, 17, 20]. This paper shows that this method can
apply to the quasilinear problems with gradient diffusion. In the discussion
of the critical case, we use a technique of comparison combined with the so-
called “concavity” method, which is a different treatment with respect to the
eigenfunction method for the porous media equations.

This paper is organized as follows: In the next section we consider compar-
ison principles of the weak solutions of (1.1). In section 3 we first discuss the
critical case q = p > 2. The last section is devoted to the proof of the blow-up
results for (1.1) with large initial values.

2 Weak solutions and comparison principles

Following the book [4], we give the definition of the weak solutions of (1.1).

Definition 2.1 A weak sub(super)-solution of the Dirichlet problem (1.1) is a
measurable function u(x, t) satisfying

u ∈ C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(ΩT ), ut ∈ L2(ΩT )

and for all t ∈ (0, T ]∫
Ω

uϕ(x, t)dx+
∫ t

0

∫
Ω

{−uϕt + |∇u|p−2∇u · ∇ϕ}dx dτ

≤ (≥)
∫

Ω

u0ϕ(x, 0)dx+ λ

∫ t

0

∫
Ω

|u|q−2uϕdx dτ

for all bounded test functions

ϕ ∈W 1,p(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(ΩT ), ϕ ≥ 0.

A function u that is both a sub-solution and a super-solution is a weak solution
of the Dirichlet problem (1.1).

It would be technically convenient to have a formulation of weak solutions
that involves ut. The following notion of weak sub(super)-solutions in terms of
Steklov averages involves the discrete time derivative of u and is equivalent to
(2.1), ∫

Ω×{t}
{uh,tϕ+ [|∇u|p−2∇u]h · ∇ϕ− λ[|u|q−2u]hϕ}dx ≤ (≥)0, (2.1)

for all 0 < t < T − h and for all ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0. Moreover the

initial datum is taken in the sense of L2(Ω), i. e.,

(uh(·, 0)− u0)+(−) → 0, in L2(Ω).
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The Steklov average uh(·, t) is defined for all 0 < t < T by

uh ≡

{
1
h

∫ t+h

t
u(·, τ)dτ, t ∈ (0, T − h],

0, t > T − h.

The equivalence of (2.1) and (2.1) can be proven by the simple properties of
Steklov averages.

Lemma 2.2 ([4, Lemma I.3.2]) Let v ∈ Lq,r(ΩT ). Then let h → 0, vh con-
verges to v in Lq,r(ΩT−ε) for every ε ∈ (0, T ). If v ∈ C(0, T ;Lq(Ω)), then as
h→ 0, vh(·, t) converges to v(·, t) in Lq(Ω) for every t ∈ (0, T − ε), ∀ε ∈ (0, T ).

The Hölder continuity of the above weak solution has been studied by many
researchers in the past twenty years; see [4]. The following lemma is a special
case.

Lemma 2.3 For p > 1, let u be a bounded weak solution of the Dirichlet prob-
lem (1.1). If u0 ∈ C0(Ω), then u ∈ C(ΩT ). Moreover, let T ∗ < ∞ be the
maximal existence time of u, then lim supt→T∗ ‖u(·, t)‖∞ = ∞.

The existence of the local weak solutions of the Dirichlet problem (1.1) can
be proven by Galerkin approximations using the a priori estimates presented in
the book [4, Theorem III.1.2 and Theorem IV.1.2]. For details for p > 2, we
refer to [24, Theorem 2.1].

To establish the comparison principle, we begin with a simple lemma that
provides the necessary algebraic inequalities.

Lemma 2.4 For all η, η′ ∈ RN , there holds

(|η|p−2η − |η′|p−2η′) · (η − η′) ≥

{
c2(|η|+ |η′|)p−2|η − η′|2, if p > 1,
c1|η − η′|p, if p > 2,

where c1 and c2 are positive constants depending only on p.

For the detailed proof of this lemma, we refer to [2, Lemma 2.1].

Theorem 2.5 Let u, v ∈ C(ΩT ) be weak sub- and super-solutions of (1.1) re-
spectively and u(x, 0) ≤ v(x, 0), then u ≤ v in ΩT .

Proof We write (2.1) for u, v against the testing function

[(u− v)h]+(x, t) =
[ 1
h

∫ t+h

t

(u− v)(x, τ)dτ
]
+
,

with h ∈ (0, T ) and t ∈ [0, T −h). Differencing the two inequalities for u, v and
integrating over (0, t) gives∫

Ω

[(u− v)h]2+(x, t)dx+ 2
∫ t

0

∫
Ω

[|∇u|p−2∇u− |∇v|p−2∇v]h · ∇[(u− v)h]+dxdτ

≤
∫

Ω

[(u− v)h]+(x, 0)dx+ 2λ
∫ t

0

∫
Ω

[|u|q−2u− |v|q−2v]h[(u− v)h]+dxdτ.
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As h → 0 the first term on the right tends to zero since (u − v)+ ∈ C(ΩT ).
Applying Lemma 2.2 and Lemma 2.4, we arrive at∫

Ω

(u− v)2+(x, t)dx ≤ c3

∫ t

0

∫
Ω

(u− v)2+dxdτ.

The Gronwall’s Lemma gives the desired result. ♦
In the following we consider the positivity of the weak solutions of the prob-

lem
vt = ∇(|∇v|p−2∇v), in Ω× R+,

v = 0, on ∂Ω× R+,

v(x, 0) = v0(x) ≥ 0, in Ω,
(2.2)

where p > 2. Let

uS(x− x0, t− t0) = Ap,N [τ + (t− t0)]−N/[(p−2)N+p]

×
{[
ap/p−1 −

( |x− x0|
[τ + (t− t0)]1/[(p−2)N+p]

)p/(p−1)
]
+

}(p−1)/(p−2)

,

where
Ap,N =

(p− 2
p

)(p−1)/(p−2){ 1
(p− 2)N + p

}1/(p−2)
,

τ > 0, a > 0 are arbitrary constants. According to [19, p. 84 ], uS(x−x0, t− t0)
satisfies the first equation of (2.2). Without loss of generality, we assume that
v0(x) > 0 in a ball B(x0, δ1). Let x ∈ Ω be another point. In the following we
prove that there exists a finite time t and a neighborhood Vx such that v(x, t) > 0
in Vx. Since Ω is connected, there exists a continuous curve Γ : γ(s) ⊂ Ω,
0 ≤ s ≤ 1, such that γ(0) = x0 and γ(1) = x. Denote δ2 = dist(Γ, ∂Ω) and
δ = min{δ1, δ2}. Let x1 = Γ∩∂B(x0, δ/2), · · · , xk = Γ∩∂B(xk−1, δ/2), · · · , such
that xk 6= xk−2. It is clear that x ∈ B(xn, δ/2) for some n. Since B(x1, δ/4) ⊂
B(x0, δ), then v0(x) > 0 in B(x1, δ/4). Choose suitable τ and a such that
suppuS ⊂ B(x1, δ/4) and ‖uS‖∞ ≤ minx∈B(x1,δ/4) v0(x), then uS(x − x1, t)
is a weak sub-solution of (2.2) in B(x1, δ). The comparison principle implies
that there exists τ1 > 0 such that v(x, τ1) > 0 in B(x1, δ). Thus v(x, τ1) > 0
in B(x2, δ/2) since B(x2, δ/2) ⊂ B(x1, δ). Repeating the above procedure, by
finite steps, there exists a finite time t such that v(x, t) > 0 in B(xn, δ/2). The
proof is completed. Thus we have the following lemma.

Lemma 2.6 Assume that v0 ∈ C0(Ω) is nontrivial. Denote Ωρ = {x ∈ Ω :
dist(x, ∂Ω) > ρ}. Let v be the weak solution of (2.2). Then there exists a finite
time tρ > 0 such that v(x, tρ) > 0 in Ωρ.

Proof It follows from the above proof that for any x ∈ Ω, there exist tx > 0
and a neighborhood Vx ⊂ Ω such that v(x, tx) > 0 in Vx. Since

⋃
x∈Ω Vx ⊃ Ωρ,

by the finite covering theorem, Ωρ ⊂
⋃n

i=1 Vxi
. Put tρ = max{tx1 , · · · , txn

}.
This lemma is proved. ♦
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3 The critical case q = p > 2

Since in [23, 24], the authors have been established that q = p > 2 is the critical
case of (1.1), we first consider what happens if q = p. Zhao showed in [24] that
if the Lebesgue measure of Ω is sufficiently small, (1.1) has a global solution and
if Ω is a sufficiently large ball, it has no global solution. In this section we shall
prove that if q = p > 2, the crucial role is played by the first eigenvalue λ1 of
the eigenvalue problem (1.2), as in the porous media equations.

First we consider the global existence case λ ≤ λ1.

Theorem 3.1 Assume that u0 ∈ C0(Ω) and q = p > 2. If

λ < λ1, (3.1)

then the unique weak solution of (1.1) is globally bounded.

Proof Since λ < λ1, by Lemma 1.1, there exists Ωε c Ω such that λ < λ1,ε <
λ1. Let ψε(x) be the first eigenfunction with supx∈Ω ψε(x) = 1 of the eigenvalue
problem (1.2) with Ω = Ωε. Choose K to be so large that u0(x) ≤ Kψε(x) ≡
v(x). For all 0 < t < T − h and for all ϕ ∈W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ≥ 0,∫
Ω×{t}

{vh,tϕ+ [|∇v|p−2∇v]h · ∇ϕ− λ[|v|p−2v]hϕ}dx

=
∫

Ω

{|∇v|p−2∇v · ∇ϕ− λ|v|p−2vϕ}dx

= (λ1,ε − λ)
∫

Ω

|v|p−2vϕdx ≥ 0.

Hence v(x) = Kψ(x) is a weak super-solution of (1.1) in terms of Steklov
averages. The comparison principle implies this theorem. ♦

Remark 3.2 The global existence is still true for λ = λ1 if u0 satisfies the
stronger assumption that u0 ≤ Kψ(x) for K > 0 large.

Remark 3.3 Theorem 3.1 and Remark 3.2 hold for mixed sign solutions as
well. To see this, just use −Kψε in Theorem 3.1 and −Kψ in Remark 3.2 as
weak subsolutions of (1.1).

Now we consider the blow-up case λ > λ1. In [24, Theorem 4.1], using the
so-called “concavity” method, the author showed that if u0 ∈W 1,p

0 (Ω)∩L∞(Ω)
and

E(u0) =
1
p

∫
Ω

|∇u0|pdx−
λ

p

∫
Ω

|u0|pdx < 0, (3.2)

then there exists T ∗ <∞ such that

lim
t→T∗

‖ u(·, t) ‖L∞(Ω)= ∞. (3.3)

See also [13]. The result is crucial in the proof of the blow-up case λ > λ1. The
following lemma reproves the result using another version of the “concavity”
argument.
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Lemma 3.4 Assume that u0 ∈W 1,p
0 (Ω)∩C0(Ω) satisfies (3.2), then (3.3) holds.

Proof Unlike in the usual “concavity” argument, we put

H(t) =
1
2

∫
Ω

u2dx.

Taking u and ut as testing functions in the weak formulation of (1.1), modulo
a Steklov average, gives

d

dt
H(t) = −pE(u), in D′(R+),

− d

dt
E(u) =

∫
Ω

(ut)2dx, in D′(R+).
(3.4)

Differentiating (3.4), we have

d2

dt2
H(t) = −p d

dt
E(u), in D′(R+).

Note that
d

dt
H(t) =

∫
Ω

uutdx, in D′(R+).

Then using the Hölder inequality, we have

p

2

[ d
dt
H(t)

]2

=
p

2

[ ∫
Ω

uutdx
]2

≤ p

2

∫
Ω

u2dx

∫
Ω

(ut)2dx = H(t)
d2

dt2
H(t),

in D′(R+), which implies

d2

dt2
H1− p

2 (t) ≤ 0, in D′(R+).

It follows that T ∗ < ∞. Indeed, otherwise, taking into account (3.2) and the
continuity of H(t), there exists T < ∞ such that limt→T H(t) = ∞: a contra-
diction. The proof is completed. ♦

The following theorem follows from the above lemma.

Theorem 3.5 For q = p > 2, the unique weak solution of the Dirichlet problem
(1.1) with nontrivial, nonnegative u0 ∈ C0(Ω) blows up in finite time provided
that

λ > λ1. (3.5)

Proof Let ψ(x) > 0 be the first eigenfunction of the eigenvalue problem (1.2)
with maxx∈Ω ψ(x) = 1. Then we have, for any k > 0,

E(kψ) =
1
p

∫
Ω

|∇(kψ)|pdx− λ

p

∫
Ω

(kψ)pdx = kpλ1 − λ

p

∫
Ω

ψpdx < 0.
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Therefore, by Lemma 3.4, the solution of (1.1) with the initial datum kψ(x)
blows up in finite time. Given any nontrivial initial datum u0(x) ≥ 0, denote
by T ∗ the maximal existence time of the weak solution of (1.1). Suppose by
contradiction that T ∗ = ∞. Combining (3.5) with Lemma 1.1, there exists
Ωρ b Ω such that λ > λ1,ρ > λ1. By Lemma 2.6 and the comparison principle,
there exists tρ > 0 such that

u(x, tρ) > 0, x ∈ Ωρ. (3.6)

Consider the problem (1.1) in Ωρ with the initial datum kψρ, where ψρ is the
first eigenfunction of (1.2) in Ωρ with maxψρ = 1. We know that the weak
solution uρ(x, t) blows up in finite time for any k > 0. Choose k so small that
u(x, tρ) ≥ kψρ in Ωρ, then a contradiction follows from the comparison principle.
The theorem is proved. ♦

4 Global nonexistence for large initial values

In [24], the author used the so-called “concavity” method to prove that if q >
p > 2, the unique weak solution of (1.1) blows up in finite time if E(u0) < 0.
In this section we use the method of comparison with suitable blowing-up self-
similar sub-solution to give a uniform treatment for all p > 1. In the following
theorem we construct a suitable blowing-up self-similar subsolution.

Theorem 4.1 Assume that q > p > 1 and q > 2. Given a nonnegative, non-
trivial initial datum u0 ∈ C0(Ω), there exists µ0 > 0 (depending only upon u0)
such that for all µ > µ0, the weak solution u(x, t) of the Dirichlet problem (1.1)
with initial data µu0 blows up in a finite time T ∗. Moreover, there is some
C(u0) > 0 such that

T ∗(µu0) ≤
C(u0)
µp−1

, µ→∞. (4.1)

Proof We seek an unbounded self-similar sub-solution of (1.1) on [t0, 1/ε) ×
RN , 0 < t0 < 1/ε, of the form

v(x, t) =
1

(1− εt)k
V

( |x|
(1− εt)m

)
, (4.2)

where V (y) is defined by

V (y) =
(
1 +

A

σ
− yσ

σAσ−1

)
+
, σ =

p

p− 1
, y ≥ 0, (4.3)

with A, k,m, ε > 0 and t0 to be determined. First note that ∀t ∈ [t0, 1/ε),

supp(v(·, t)) ⊂ B(0, R(1− εt0)m), (4.4)
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with R = (Aσ−1(σ + A))1/σ. We compute (by setting y = |x|/(1 − εt)m for
convenience),

Pv = vt −∇(|∇v|p−2∇v)− λ|v|q−2v

=
ε(kV (y) +myV ′(y))

(1− εt)k+1
− (|V ′(y)|p−2V ′(y))′ + (N − 1)|V ′(y)|p−2V ′(y)/y

(1− εt)(k+m)(p−1)+m

− λ

(1− εt)k(q−1)
V q−1(y).

It is easy to verify that

1 ≤ V (y) ≤ 1 +
A

σ
, −1 ≤ V ′(y) ≤ 0, for 0 ≤ y ≤ A,

0 ≤ V (y) ≤ 1, −R
σ−1

Aσ−1
≤ V ′(y) ≤ −1, for A ≤ y ≤ R, (4.5)

(|V ′(y)|p−2V ′(y))′ + (N − 1)|V ′(y)|p−2V ′(y)/y = −N
A
χ{y<R} +

R

A
δ{y=R},

where χ is the indicator function. We choose

k =
1

q − 2
, 0 < m <

q − p

p(q − 2)
,

A >
k

m
, 0 < ε <

λ

k(1 +A/σ)
.

For t0 ≤ t < 1/ε with t0 sufficiently close to 1/ε, we have, in the case 0 ≤ y ≤ A,

Pv(x, t) ≤ εk(1 +A/σ)− λ

(1− εt)k+1
+

N/A

(1− εt)(k+m)(p−1)+m
≤ 0.

In the case A ≤ y < R, we get

Pv(x, t) ≤ ε(k −mA)
(1− εt)k+1

+
N/A

(1− εt)(k+m)(p−1)+m
≤ 0.

Obviously, we also have Pv ≡ 0 for y > R. Since v(x, t) is continuous and
piecewise C2 and due to the sign of the singular measure in (4.5) , then v(x, t)
is a local weak sub-solution of the Dirichlet problem (1.1).

Now by translation, one can assume without loss of generality that 0 ∈ Ω
and u0(0) = maxx∈Ω u0(x). It follows from the continuity of u0 that

u0(x) ≥ C, for all x ∈ B(0, ρ),

for some ball B(0, ρ) b Ω and some constant C > 0. Taking t0 still closer to
1/ε if necessary, one can assume that B(0, R(1− εt0)m) ⊂ B(0, ρ). Therefore,

µu0(x) ≥ µC ≥ V (0)
(1− εt0)k

≥ v(x, t0), x ∈ Ω, (4.6)
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for all µ > µ0 = V (0)/C(1− εt0)k. By the Theorem 2.5, it follows that

u(x, t) ≥ v(x, t+ t0), x ∈ Ω, 0 < t < min{T ∗, 1
ε
− t0}.

Hence T ∗ ≤ 1/ε− t0.
To prove (4.1), given µ > V (0)/C(1 − εt0)k, by the previous calculation,

whenever t0 ≤ T < 1/ε such that µ ≥ V (0)/C(1 − εT )k, we have T ∗(µu0) ≤
1/ε− T . Then

T ∗(µu0) ≤
1
ε

(
1 +A/σ

µC

)q−2

, for all µ ≥ V (0)
C(1− εt0)1/(q−2)

.

The proof is completed. ♦
Under the conditions of the above theorem, the solutions of (1.1) exist glob-

ally for small initial data.

Theorem 4.2 Assume that q > p > 1 and q > 2. There exists η > 0 such that
the solution of (1.1) exists globally if ‖u0‖∞ < η.

Proof Let Ωε c Ω be a bounded domain and ψε be the first eigenfunction
of (1.2) on Ωε with supx∈Ω ψε(x) = 1. Denote δ = infx∈Ω ψε(x). Choose
kq−p = λ1/λ and η = kδ. A direct computation yields that kψε(x) and −kψε(x)
is a weak super- and sub-solution of (1.1) respectively. This theorem follows the
comparison principle. ♦

Theorem 4.3 Assume that 2 < q < p. Then the solution of (1.1) exists globally
for any initial datum.

Proof The proof is very similar to the above. Let Ωε c Ω be a bounded
domain and ψε be the first eigenfunction on Ωε with infx∈Ω ψε(x) = 1. We
choose the super- and sub-solution to be Kψε(x) and −Kψε(x) for K so large
that ‖u0‖ ≤ K in Ω. ♦
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