Blow-up for p-Laplacian parabolic equations *

Yuxiang Li \& Chunhong Xie

Abstract

In this article we give a complete picture of the blow-up criteria for weak solutions of the Dirichlet problem $$
u_{t}=\nabla\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{q-2} u, \quad \text { in } \Omega_{T},
$$ where $p>1$. In particular, for $p>2, q=p$ is the blow-up critical exponent and we show that the sharp blow-up condition involves the first eigenvalue of the problem $$
-\nabla\left(|\nabla \psi|^{p-2} \nabla \psi\right)=\lambda|\psi|^{p-2} \psi, \quad \text { in } \Omega ;\left.\quad \psi\right|_{\partial \Omega}=0
$$

1 Introduction

In this paper we study the Dirichlet problem

$$
\begin{gather*}
u_{t}=\nabla\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{q-2} u, \quad \text { in } \Omega_{T}, \\
u=0, \quad \text { on } S_{T} \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad \text { in } \Omega
\end{gather*}
$$

$u_{0}(x) \in C_{0}(\bar{\Omega})$, where $p>1, q>2, \lambda>0$ and $\Omega \subset \mathbb{R}^{N}$ is an open bounded domain with smooth boundary $\partial \Omega$.

When $p=2$, the blow-up properties of the semilinear heat equation (1.1) hasve been investigated by many researchers; see the recent survey paper [11]. For $p \neq 2$, the main interest in the past twenty years lies in the regularities of weak solutions of the quasilinear parabolic equations; see the monograph [4] and the references therein. When $\Omega=\mathbb{R}^{N}$, the Fujita exponents have been calculated; see $[7,8,9,10]$ and also the survey papers $[3,12]$.

To the best of our knowledge, when Ω is a bounded domain, the blow-up conditions are not fully established, especially, in the case $q=p>2$. In [23], the author showed that $q=p$ is the critical case, that is, if $q<p,(1.1)$ has a unique nonnegative global weak solution for all nonnegative initial values, and if $q>p$, there are both nonnegative, nontrivial global weak solutions and solutions which blow up in finite time. The blow-up result for $q>p$ is also proved in [14].

[^0]Furthermore, in [24] the author proved that in the critical case $q=p>2$, if the Lebesgue measure of Ω is sufficiently small, (1.1) has a global solution and if Ω is a sufficiently large ball, it has no global solution.

In this paper we shall give a complete picture of the blow-up criteria for (1.1). In particular, in the critical case $q=p>2$, we will prove that if $\lambda>\lambda_{1}$, there are no nontrivial global weak solutions, and if $\lambda \leq \lambda_{1}$, all weak solutions are global, where λ_{1} is the first eigenvalue of the nonlinear eigenvalue problem

$$
\begin{equation*}
-\nabla\left(|\nabla \psi|^{p-2} \nabla \psi\right)=\lambda|\psi|^{p-2} \psi, \quad \text { in } \Omega ;\left.\quad \psi\right|_{\partial \Omega}=0 \tag{1.2}
\end{equation*}
$$

The following lemma concerns the properties of the first eigenvalue λ_{1} and the first eigenfunction $\psi(x)$.

Lemma 1.1 There exists a positive constant $\lambda_{1}(\Omega)$ with the following properties:
(a) For any $\lambda<\lambda_{1}(\Omega)$, the eigenvalue problem (1.2) has only the trivial solution $\psi \equiv 0$.
(b) There exists a positive solution $\psi \in W_{0}^{1, p}(\Omega) \cap C(\bar{\Omega})$ of (1.2) if and only if $\lambda=\lambda_{1}(\Omega)$.
(c) The collection consisting of all solutions of (1.2) with $\lambda=\lambda_{1}(\Omega)$ is 1dimensional vector space.
(d) If $\Omega_{j}, j=1,2$ are bounded domain with smooth boundary satisfying $\Omega_{1} \Subset$ Ω_{2}, then $\lambda_{1}\left(\Omega_{1}\right)>\lambda_{1}\left(\Omega_{2}\right)$.
(e) Let $\left\{\Omega_{n}\right\}$ be a sequence of bounded domains with smooth boundaries such that $\Omega_{n} \Subset \Omega_{n+1}$ and $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega$, then $\lim _{n \rightarrow \infty} \lambda_{1}\left(\Omega_{n}\right)=\lambda_{1}(\Omega)$.

Proof (a)-(d) follow from [5, Lemma 2.1, 2.2]. The continuity of $\psi(x)$ is asserted in [22, Corollary 4.2]. We now prove (e). It follows from (d) that $\lambda_{1}\left(\Omega_{n}\right)$ is strictly decreasing and so it tends to some nonnegative constant $\lambda_{1}^{*}(\Omega)$ as $n \rightarrow \infty$. Denote by $\psi_{n}(x)$ the positive solution of (1.2) on Ω_{n} with $\lambda=\lambda_{1}\left(\Omega_{n}\right)$ such that $\int_{\Omega_{n}} \psi_{n} d x=1$. By (c), ψ_{n} is unique. By the similar method in the proof of [5, Theorem 2.1], one can obtain from $\left\{\psi_{n}\right\}$ a positive solution ψ^{*} of (1.2) with $\lambda=\lambda_{1}^{*}(\Omega)$. Then by (b), we have $\lambda_{1}^{*}(\Omega)=\lambda_{1}(\Omega)$.

We note that the blow-up conditions for (1.1) are similar to that of the porous media equations; see $[6,15,16,18]$. Also our results clearly illustrate the observation that larger domains are more unstable than smaller domains; see [12].

To prove that $q=p$ is the critical case, we shall use the method of comparison with suitable blowing-up self-similar sub-solutions introduced by Souplet and Weissler [21]. This method enables us to treat the singular case $1<p<2$, which is not considered in [23, 24], as well as the degenerate case $p>2$. Recently, the self-similar sub-solution method is proven to be useful in proof of blow-up theorems in the semilinear and porous media equations with gradient terms and
nonlocal problems; see also [1, 17, 20]. This paper shows that this method can apply to the quasilinear problems with gradient diffusion. In the discussion of the critical case, we use a technique of comparison combined with the socalled "concavity" method, which is a different treatment with respect to the eigenfunction method for the porous media equations.

This paper is organized as follows: In the next section we consider comparison principles of the weak solutions of (1.1). In section 3 we first discuss the critical case $q=p>2$. The last section is devoted to the proof of the blow-up results for (1.1) with large initial values.

2 Weak solutions and comparison principles

Following the book [4], we give the definition of the weak solutions of (1.1).
Definition 2.1 A weak sub(super)-solution of the Dirichlet problem (1.1) is a measurable function $u(x, t)$ satisfying

$$
u \in C\left(0, T ; L^{2}(\Omega)\right) \cap L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(\Omega_{T}\right), u_{t} \in L^{2}\left(\Omega_{T}\right)
$$

and for all $t \in(0, T]$

$$
\begin{aligned}
& \int_{\Omega} u \varphi(x, t) d x+\int_{0}^{t} \int_{\Omega}\left\{-u \varphi_{t}+|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi\right\} d x d \tau \\
& \leq(\geq) \int_{\Omega} u_{0} \varphi(x, 0) d x+\lambda \int_{0}^{t} \int_{\Omega}|u|^{q-2} u \varphi d x d \tau
\end{aligned}
$$

for all bounded test functions

$$
\varphi \in W^{1, p}\left(0, T ; L^{2}(\Omega)\right) \cap L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(\Omega_{T}\right), \quad \varphi \geq 0
$$

A function u that is both a sub-solution and a super-solution is a weak solution of the Dirichlet problem (1.1).

It would be technically convenient to have a formulation of weak solutions that involves u_{t}. The following notion of weak sub(super)-solutions in terms of Steklov averages involves the discrete time derivative of u and is equivalent to (2.1),

$$
\begin{equation*}
\int_{\Omega \times\{t\}}\left\{u_{h, t} \varphi+\left[|\nabla u|^{p-2} \nabla u\right]_{h} \cdot \nabla \varphi-\lambda\left[|u|^{q-2} u\right]_{h} \varphi\right\} d x \leq(\geq) 0 \tag{2.1}
\end{equation*}
$$

for all $0<t<T-h$ and for all $\varphi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \varphi \geq 0$. Moreover the initial datum is taken in the sense of $L^{2}(\Omega)$, i. e.,

$$
\left(u_{h}(\cdot, 0)-u_{0}\right)_{+(-)} \rightarrow 0, \quad \text { in } L^{2}(\Omega)
$$

The Steklov average $u_{h}(\cdot, t)$ is defined for all $0<t<T$ by

$$
u_{h} \equiv \begin{cases}\frac{1}{h} \int_{t}^{t+h} u(\cdot, \tau) d \tau, & t \in(0, T-h], \\ 0, & t>T-h .\end{cases}
$$

The equivalence of (2.1) and (2.1) can be proven by the simple properties of Steklov averages.

Lemma 2.2 ([4, Lemma I.3.2]) Let $v \in L^{q, r}\left(\Omega_{T}\right)$. Then let $h \rightarrow 0$, v_{h} converges to v in $L^{q, r}\left(\Omega_{T-\varepsilon}\right)$ for every $\varepsilon \in(0, T)$. If $v \in C\left(0, T ; L^{q}(\Omega)\right)$, then as $h \rightarrow 0, v_{h}(\cdot, t)$ converges to $v(\cdot, t)$ in $L^{q}(\Omega)$ for every $t \in(0, T-\varepsilon), \forall \varepsilon \in(0, T)$.

The Hölder continuity of the above weak solution has been studied by many researchers in the past twenty years; see [4]. The following lemma is a special case.

Lemma 2.3 For $p>1$, let u be a bounded weak solution of the Dirichlet problem (1.1). If $u_{0} \in C_{0}(\bar{\Omega})$, then $u \in C\left(\overline{\Omega_{T}}\right)$. Moreover, let $T^{*}<\infty$ be the maximal existence time of u, then $\lim \sup _{t \rightarrow T^{*}}\|u(\cdot, t)\|_{\infty}=\infty$.

The existence of the local weak solutions of the Dirichlet problem (1.1) can be proven by Galerkin approximations using the a priori estimates presented in the book [4, Theorem III.1.2 and Theorem IV.1.2]. For details for $p>2$, we refer to [24, Theorem 2.1].

To establish the comparison principle, we begin with a simple lemma that provides the necessary algebraic inequalities.
Lemma 2.4 For all $\eta, \eta^{\prime} \in \mathbb{R}^{N}$, there holds

$$
\left(|\eta|^{p-2} \eta-\left|\eta^{\prime}\right|^{p-2} \eta^{\prime}\right) \cdot\left(\eta-\eta^{\prime}\right) \geq \begin{cases}c_{2}\left(|\eta|+\left|\eta^{\prime}\right|\right)^{p-2}\left|\eta-\eta^{\prime}\right|^{2}, & \text { if } p>1 \\ c_{1}\left|\eta-\eta^{\prime}\right|^{p}, & \text { if } p>2\end{cases}
$$

where c_{1} and c_{2} are positive constants depending only on p.
For the detailed proof of this lemma, we refer to [2, Lemma 2.1].
Theorem 2.5 Let $u, v \in C\left(\overline{\Omega_{T}}\right)$ be weak sub-and super-solutions of (1.1) respectively and $u(x, 0) \leq v(x, 0)$, then $u \leq v$ in $\overline{\Omega_{T}}$.

Proof We write (2.1) for u, v against the testing function

$$
\left[(u-v)_{h}\right]_{+}(x, t)=\left[\frac{1}{h} \int_{t}^{t+h}(u-v)(x, \tau) d \tau\right]_{+},
$$

with $h \in(0, T)$ and $t \in[0, T-h)$. Differencing the two inequalities for u, v and integrating over $(0, t)$ gives

$$
\begin{aligned}
& \int_{\Omega}\left[(u-v)_{h}\right]_{+}^{2}(x, t) d x+2 \int_{0}^{t} \int_{\Omega}\left[|\nabla u|^{p-2} \nabla u-|\nabla v|^{p-2} \nabla v\right]_{h} \cdot \nabla\left[(u-v)_{h}\right]_{+} d x d \tau \\
& \leq \int_{\Omega}\left[(u-v)_{h}\right]_{+}(x, 0) d x+2 \lambda \int_{0}^{t} \int_{\Omega}\left[|u|^{q-2} u-|v|^{q-2} v\right]_{h}\left[(u-v)_{h}\right]_{+} d x d \tau
\end{aligned}
$$

As $h \rightarrow 0$ the first term on the right tends to zero since $(u-v)_{+} \in C\left(\overline{\Omega_{T}}\right)$. Applying Lemma 2.2 and Lemma 2.4, we arrive at

$$
\int_{\Omega}(u-v)_{+}^{2}(x, t) d x \leq c_{3} \int_{0}^{t} \int_{\Omega}(u-v)_{+}^{2} d x d \tau
$$

The Gronwall's Lemma gives the desired result.
In the following we consider the positivity of the weak solutions of the problem

$$
\begin{gather*}
v_{t}=\nabla\left(|\nabla v|^{p-2} \nabla v\right), \quad \text { in } \Omega \times \mathbb{R}_{+}, \\
v=0, \quad \text { on } \partial \Omega \times \mathbb{R}_{+}, \tag{2.2}\\
v(x, 0)=v_{0}(x) \geq 0, \quad \text { in } \Omega
\end{gather*}
$$

where $p>2$. Let

$$
\begin{aligned}
u_{S}\left(x-x_{0}, t\right. & \left.-t_{0}\right)=A_{p, N}\left[\tau+\left(t-t_{0}\right)\right]^{-N /[(p-2) N+p]} \\
\times & \left\{\left[a^{p / p-1}-\left(\frac{\left|x-x_{0}\right|}{\left[\tau+\left(t-t_{0}\right)\right]^{1 /[(p-2) N+p]}}\right)^{p /(p-1)}\right]_{+}\right\}^{(p-1) /(p-2)},
\end{aligned}
$$

where

$$
A_{p, N}=\left(\frac{p-2}{p}\right)^{(p-1) /(p-2)}\left\{\frac{1}{(p-2) N+p}\right\}^{1 /(p-2)},
$$

$\tau>0, a>0$ are arbitrary constants. According to [19, p. 84$], u_{S}\left(x-x_{0}, t-t_{0}\right)$ satisfies the first equation of (2.2). Without loss of generality, we assume that $v_{0}(x)>0$ in a ball $B\left(x_{0}, \delta_{1}\right)$. Let $\bar{x} \in \Omega$ be another point. In the following we prove that there exists a finite time \bar{t} and a neighborhood $V_{\bar{x}}$ such that $v(x, \bar{t})>0$ in $V_{\bar{x}}$. Since Ω is connected, there exists a continuous curve $\Gamma: \gamma(s) \subset \Omega$, $0 \leq s \leq 1$, such that $\gamma(0)=x_{0}$ and $\gamma(1)=\bar{x}$. Denote $\delta_{2}=\operatorname{dist}(\Gamma, \partial \Omega)$ and $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Let $x_{1}=\Gamma \cap \partial B\left(x_{0}, \delta / 2\right), \cdots, x_{k}=\Gamma \cap \partial B\left(x_{k-1}, \delta / 2\right), \cdots$, such that $x_{k} \neq x_{k-2}$. It is clear that $\bar{x} \in B\left(x_{n}, \delta / 2\right)$ for some n. Since $\overline{B\left(x_{1}, \delta / 4\right)} \subset$ $B\left(x_{0}, \delta\right)$, then $v_{0}(x)>0$ in $\overline{B\left(x_{1}, \delta / 4\right)}$. Choose suitable τ and a such that $\operatorname{supp} u_{S} \subset B\left(x_{1}, \delta / 4\right)$ and $\left\|u_{S}\right\|_{\infty} \leq \min _{x \in B\left(x_{1}, \delta / 4\right)} v_{0}(x)$, then $u_{S}\left(x-x_{1}, t\right)$ is a weak sub-solution of (2.2) in $B\left(x_{1}, \delta\right)$. The comparison principle implies that there exists $\tau_{1}>0$ such that $v\left(x, \tau_{1}\right)>0$ in $B\left(x_{1}, \delta\right)$. Thus $v\left(x, \tau_{1}\right)>0$ in $B\left(x_{2}, \delta / 2\right)$ since $B\left(x_{2}, \delta / 2\right) \subset B\left(x_{1}, \delta\right)$. Repeating the above procedure, by finite steps, there exists a finite time \bar{t} such that $v(x, \bar{t})>0$ in $B\left(x_{n}, \delta / 2\right)$. The proof is completed. Thus we have the following lemma.

Lemma 2.6 Assume that $v_{0} \in C_{0}(\bar{\Omega})$ is nontrivial. Denote $\Omega_{\rho}=\{x \in \Omega$: $\operatorname{dist}(x, \partial \Omega)>\rho\}$. Let v be the weak solution of (2.2). Then there exists a finite time $t_{\rho}>0$ such that $v\left(x, t_{\rho}\right)>0$ in Ω_{ρ}.

Proof It follows from the above proof that for any $x \in \Omega$, there exist $t_{x}>0$ and a neighborhood $V_{x} \subset \Omega$ such that $v\left(x, t_{x}\right)>0$ in V_{x}. Since $\bigcup_{x \in \Omega} V_{x} \supset \overline{\Omega_{\rho}}$, by the finite covering theorem, $\overline{\Omega_{\rho}} \subset \bigcup_{i=1}^{n} V_{x_{i}}$. Put $t_{\rho}=\max \left\{t_{x_{1}}, \cdots, t_{x_{n}}\right\}$. This lemma is proved.

3 The critical case $q=p>2$

Since in $[23,24]$, the authors have been established that $q=p>2$ is the critical case of (1.1), we first consider what happens if $q=p$. Zhao showed in [24] that if the Lebesgue measure of Ω is sufficiently small, (1.1) has a global solution and if Ω is a sufficiently large ball, it has no global solution. In this section we shall prove that if $q=p>2$, the crucial role is played by the first eigenvalue λ_{1} of the eigenvalue problem (1.2), as in the porous media equations.

First we consider the global existence case $\lambda \leq \lambda_{1}$.
Theorem 3.1 Assume that $u_{0} \in C_{0}(\bar{\Omega})$ and $q=p>2$. If

$$
\begin{equation*}
\lambda<\lambda_{1}, \tag{3.1}
\end{equation*}
$$

then the unique weak solution of (1.1) is globally bounded.
Proof Since $\lambda<\lambda_{1}$, by Lemma 1.1, there exists $\Omega_{\varepsilon} \ni \Omega$ such that $\lambda<\lambda_{1, \varepsilon}<$ λ_{1}. Let $\psi_{\varepsilon}(x)$ be the first eigenfunction with $\sup _{x \in \Omega} \psi_{\varepsilon}(x)=1$ of the eigenvalue problem (1.2) with $\Omega=\Omega_{\varepsilon}$. Choose K to be so large that $u_{0}(x) \leq K \psi_{\varepsilon}(x) \equiv$ $v(x)$. For all $0<t<T-h$ and for all $\varphi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \varphi \geq 0$,

$$
\begin{aligned}
& \int_{\Omega \times\{t\}}\left\{v_{h, t} \varphi+\left[|\nabla v|^{p-2} \nabla v\right]_{h} \cdot \nabla \varphi-\lambda\left[|v|^{p-2} v\right]_{h} \varphi\right\} d x \\
& =\int_{\Omega}\left\{|\nabla v|^{p-2} \nabla v \cdot \nabla \varphi-\lambda|v|^{p-2} v \varphi\right\} d x \\
& =\left(\lambda_{1, \varepsilon}-\lambda\right) \int_{\Omega}|v|^{p-2} v \varphi d x \geq 0 .
\end{aligned}
$$

Hence $v(x)=K \psi(x)$ is a weak super-solution of (1.1) in terms of Steklov averages. The comparison principle implies this theorem.

Remark 3.2 The global existence is still true for $\lambda=\lambda_{1}$ if u_{0} satisfies the stronger assumption that $u_{0} \leq K \psi(x)$ for $K>0$ large.

Remark 3.3 Theorem 3.1 and Remark 3.2 hold for mixed sign solutions as well. To see this, just use $-K \psi_{\varepsilon}$ in Theorem 3.1 and $-K \psi$ in Remark 3.2 as weak subsolutions of (1.1).

Now we consider the blow-up case $\lambda>\lambda_{1}$. In [24, Theorem 4.1], using the so-called "concavity" method, the author showed that if $u_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and

$$
\begin{equation*}
\mathcal{E}\left(u_{0}\right)=\frac{1}{p} \int_{\Omega}\left|\nabla u_{0}\right|^{p} d x-\frac{\lambda}{p} \int_{\Omega}\left|u_{0}\right|^{p} d x<0, \tag{3.2}
\end{equation*}
$$

then there exists $T^{*}<\infty$ such that

$$
\begin{equation*}
\lim _{t \rightarrow T^{*}}\|u(\cdot, t)\|_{L^{\infty}(\Omega)}=\infty \tag{3.3}
\end{equation*}
$$

See also [13]. The result is crucial in the proof of the blow-up case $\lambda>\lambda_{1}$. The following lemma reproves the result using another version of the "concavity" argument.

Lemma 3.4 Assume that $u_{0} \in W_{0}^{1, p}(\Omega) \cap C_{0}(\bar{\Omega})$ satisfies (3.2), then (3.3) holds.

Proof Unlike in the usual "concavity" argument, we put

$$
\mathcal{H}(t)=\frac{1}{2} \int_{\Omega} u^{2} d x
$$

Taking u and u_{t} as testing functions in the weak formulation of (1.1), modulo a Steklov average, gives

$$
\begin{align*}
\frac{d}{d t} \mathcal{H}(t) & =-p \mathcal{E}(u), \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right) \\
-\frac{d}{d t} \mathcal{E}(u) & =\int_{\Omega}\left(u_{t}\right)^{2} d x, \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right) \tag{3.4}
\end{align*}
$$

Differentiating (3.4), we have

$$
\frac{d^{2}}{d t^{2}} \mathcal{H}(t)=-p \frac{d}{d t} \mathcal{E}(u), \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)
$$

Note that

$$
\frac{d}{d t} \mathcal{H}(t)=\int_{\Omega} u u_{t} d x, \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)
$$

Then using the Hölder inequality, we have

$$
\frac{p}{2}\left[\frac{d}{d t} \mathcal{H}(t)\right]^{2}=\frac{p}{2}\left[\int_{\Omega} u u_{t} d x\right]^{2} \leq \frac{p}{2} \int_{\Omega} u^{2} d x \int_{\Omega}\left(u_{t}\right)^{2} d x=\mathcal{H}(t) \frac{d^{2}}{d t^{2}} \mathcal{H}(t)
$$

in $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$, which implies

$$
\frac{d^{2}}{d t^{2}} \mathcal{H}^{1-\frac{p}{2}}(t) \leq 0, \quad \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)
$$

It follows that $T^{*}<\infty$. Indeed, otherwise, taking into account (3.2) and the continuity of $\mathcal{H}(t)$, there exists $T<\infty$ such that $\lim _{t \rightarrow T} \mathcal{H}(t)=\infty$: a contradiction. The proof is completed.

The following theorem follows from the above lemma.
Theorem 3.5 For $q=p>2$, the unique weak solution of the Dirichlet problem (1.1) with nontrivial, nonnegative $u_{0} \in C_{0}(\bar{\Omega})$ blows up in finite time provided that

$$
\begin{equation*}
\lambda>\lambda_{1} \tag{3.5}
\end{equation*}
$$

Proof Let $\psi(x)>0$ be the first eigenfunction of the eigenvalue problem (1.2) with $\max _{x \in \Omega} \psi(x)=1$. Then we have, for any $k>0$,

$$
\mathcal{E}(k \psi)=\frac{1}{p} \int_{\Omega}|\nabla(k \psi)|^{p} d x-\frac{\lambda}{p} \int_{\Omega}(k \psi)^{p} d x=k^{p} \frac{\lambda_{1}-\lambda}{p} \int_{\Omega} \psi^{p} d x<0 .
$$

Therefore, by Lemma 3.4, the solution of (1.1) with the initial datum $k \psi(x)$ blows up in finite time. Given any nontrivial initial datum $u_{0}(x) \geq 0$, denote by T^{*} the maximal existence time of the weak solution of (1.1). Suppose by contradiction that $T^{*}=\infty$. Combining (3.5) with Lemma 1.1, there exists $\Omega_{\rho} \Subset \Omega$ such that $\lambda>\lambda_{1, \rho}>\lambda_{1}$. By Lemma 2.6 and the comparison principle, there exists $t_{\rho}>0$ such that

$$
\begin{equation*}
u\left(x, t_{\rho}\right)>0, \quad x \in \overline{\Omega_{\rho}} . \tag{3.6}
\end{equation*}
$$

Consider the problem (1.1) in Ω_{ρ} with the initial datum $k \psi_{\rho}$, where ψ_{ρ} is the first eigenfunction of (1.2) in Ω_{ρ} with $\max \psi_{\rho}=1$. We know that the weak solution $u_{\rho}(x, t)$ blows up in finite time for any $k>0$. Choose k so small that $u\left(x, t_{\rho}\right) \geq k \psi_{\rho}$ in Ω_{ρ}, then a contradiction follows from the comparison principle. The theorem is proved.

4 Global nonexistence for large initial values

In [24], the author used the so-called "concavity" method to prove that if $q>$ $p>2$, the unique weak solution of (1.1) blows up in finite time if $\mathcal{E}\left(u_{0}\right)<0$. In this section we use the method of comparison with suitable blowing-up selfsimilar sub-solution to give a uniform treatment for all $p>1$. In the following theorem we construct a suitable blowing-up self-similar subsolution.

Theorem 4.1 Assume that $q>p>1$ and $q>2$. Given a nonnegative, nontrivial initial datum $u_{0} \in C_{0}(\bar{\Omega})$, there exists $\mu_{0}>0$ (depending only upon u_{0}) such that for all $\mu>\mu_{0}$, the weak solution $u(x, t)$ of the Dirichlet problem (1.1) with initial data μu_{0} blows up in a finite time T^{*}. Moreover, there is some $C\left(u_{0}\right)>0$ such that

$$
\begin{equation*}
T^{*}\left(\mu u_{0}\right) \leq \frac{C\left(u_{0}\right)}{\mu^{p-1}}, \quad \mu \rightarrow \infty \tag{4.1}
\end{equation*}
$$

Proof We seek an unbounded self-similar sub-solution of (1.1) on $\left[t_{0}, 1 / \varepsilon\right) \times$ $\mathbb{R}^{N}, 0<t_{0}<1 / \varepsilon$, of the form

$$
\begin{equation*}
v(x, t)=\frac{1}{(1-\varepsilon t)^{k}} V\left(\frac{|x|}{(1-\varepsilon t)^{m}}\right) \tag{4.2}
\end{equation*}
$$

where $V(y)$ is defined by

$$
\begin{equation*}
V(y)=\left(1+\frac{A}{\sigma}-\frac{y^{\sigma}}{\sigma A^{\sigma-1}}\right)_{+}, \quad \sigma=\frac{p}{p-1}, y \geq 0 \tag{4.3}
\end{equation*}
$$

with $A, k, m, \varepsilon>0$ and t_{0} to be determined. First note that $\forall t \in\left[t_{0}, 1 / \varepsilon\right)$,

$$
\begin{equation*}
\operatorname{supp}(v(\cdot, t)) \subset \bar{B}\left(0, R\left(1-\varepsilon t_{0}\right)^{m}\right) \tag{4.4}
\end{equation*}
$$

with $R=\left(A^{\sigma-1}(\sigma+A)\right)^{1 / \sigma}$. We compute (by setting $y=|x| /(1-\varepsilon t)^{m}$ for convenience),

$$
\begin{aligned}
P v= & v_{t}-\nabla\left(|\nabla v|^{p-2} \nabla v\right)-\lambda|v|^{q-2} v \\
= & \frac{\varepsilon\left(k V(y)+m y V^{\prime}(y)\right)}{(1-\varepsilon t)^{k+1}}-\frac{\left(\left|V^{\prime}(y)\right|^{p-2} V^{\prime}(y)\right)^{\prime}+(N-1)\left|V^{\prime}(y)\right|^{p-2} V^{\prime}(y) / y}{(1-\varepsilon t)^{(k+m)(p-1)+m}} \\
& -\frac{\lambda}{(1-\varepsilon t)^{k(q-1)}} V^{q-1}(y) .
\end{aligned}
$$

It is easy to verify that

$$
\begin{gather*}
1 \leq V(y) \leq 1+\frac{A}{\sigma}, \quad-1 \leq V^{\prime}(y) \leq 0, \quad \text { for } 0 \leq y \leq A \\
0 \leq V(y) \leq 1, \quad-\frac{R^{\sigma-1}}{A^{\sigma-1}} \leq V^{\prime}(y) \leq-1, \quad \text { for } A \leq y \leq R \tag{4.5}\\
\left(\left|V^{\prime}(y)\right|^{p-2} V^{\prime}(y)\right)^{\prime}+(N-1)\left|V^{\prime}(y)\right|^{p-2} V^{\prime}(y) / y=-\frac{N}{A} \chi_{\{y<R\}}+\frac{R}{A} \delta_{\{y=R\}},
\end{gather*}
$$

where χ is the indicator function. We choose

$$
\begin{aligned}
& k=\frac{1}{q-2}, \quad 0<m<\frac{q-p}{p(q-2)} \\
& A>\frac{k}{m}, \quad 0<\varepsilon<\frac{\lambda}{k(1+A / \sigma)}
\end{aligned}
$$

For $t_{0} \leq t<1 / \varepsilon$ with t_{0} sufficiently close to $1 / \varepsilon$, we have, in the case $0 \leq y \leq A$,

$$
P v(x, t) \leq \frac{\varepsilon k(1+A / \sigma)-\lambda}{(1-\varepsilon t)^{k+1}}+\frac{N / A}{(1-\varepsilon t)^{(k+m)(p-1)+m}} \leq 0 .
$$

In the case $A \leq y<R$, we get

$$
P v(x, t) \leq \frac{\varepsilon(k-m A)}{(1-\varepsilon t)^{k+1}}+\frac{N / A}{(1-\varepsilon t)^{(k+m)(p-1)+m}} \leq 0
$$

Obviously, we also have $P v \equiv 0$ for $y>R$. Since $v(x, t)$ is continuous and piecewise C^{2} and due to the sign of the singular measure in (4.5), then $v(x, t)$ is a local weak sub-solution of the Dirichlet problem (1.1).

Now by translation, one can assume without loss of generality that $0 \in \Omega$ and $u_{0}(0)=\max _{x \in \Omega} u_{0}(x)$. It follows from the continuity of u_{0} that

$$
u_{0}(x) \geq C, \quad \text { for all } x \in B(0, \rho)
$$

for some ball $B(0, \rho) \Subset \Omega$ and some constant $C>0$. Taking t_{0} still closer to $1 / \varepsilon$ if necessary, one can assume that $B\left(0, R\left(1-\varepsilon t_{0}\right)^{m}\right) \subset B(0, \rho)$. Therefore,

$$
\begin{equation*}
\mu u_{0}(x) \geq \mu C \geq \frac{V(0)}{\left(1-\varepsilon t_{0}\right)^{k}} \geq v\left(x, t_{0}\right), \quad x \in \Omega \tag{4.6}
\end{equation*}
$$

for all $\mu>\mu_{0}=V(0) / C\left(1-\varepsilon t_{0}\right)^{k}$. By the Theorem 2.5, it follows that

$$
u(x, t) \geq v\left(x, t+t_{0}\right), \quad x \in \Omega, 0<t<\min \left\{T^{*}, \frac{1}{\varepsilon}-t_{0}\right\}
$$

Hence $T^{*} \leq 1 / \varepsilon-t_{0}$.
To prove (4.1), given $\mu>V(0) / C\left(1-\varepsilon t_{0}\right)^{k}$, by the previous calculation, whenever $t_{0} \leq T<1 / \varepsilon$ such that $\mu \geq V(0) / C(1-\varepsilon T)^{k}$, we have $T^{*}\left(\mu u_{0}\right) \leq$ $1 / \varepsilon-T$. Then

$$
T^{*}\left(\mu u_{0}\right) \leq \frac{1}{\varepsilon}\left(\frac{1+A / \sigma}{\mu C}\right)^{q-2}, \quad \text { for all } \mu \geq \frac{V(0)}{C\left(1-\varepsilon t_{0}\right)^{1 /(q-2)}}
$$

The proof is completed.
Under the conditions of the above theorem, the solutions of (1.1) exist globally for small initial data.

Theorem 4.2 Assume that $q>p>1$ and $q>2$. There exists $\eta>0$ such that the solution of (1.1) exists globally if $\left\|u_{0}\right\|_{\infty}<\eta$.

Proof Let $\Omega_{\varepsilon} \ni \Omega$ be a bounded domain and ψ_{ε} be the first eigenfunction of (1.2) on Ω_{ε} with $\sup _{x \in \Omega} \psi_{\varepsilon}(x)=1$. Denote $\delta=\inf _{x \in \Omega} \psi_{\varepsilon}(x)$. Choose $k^{q-p}=\lambda_{1} / \lambda$ and $\eta=k \delta$. A direct computation yields that $k \psi_{\varepsilon}(x)$ and $-k \psi_{\varepsilon}(x)$ is a weak super- and sub-solution of (1.1) respectively. This theorem follows the comparison principle.

Theorem 4.3 Assume that $2<q<p$. Then the solution of (1.1) exists globally for any initial datum.

Proof The proof is very similar to the above. Let $\Omega_{\varepsilon} \ni \Omega$ be a bounded domain and ψ_{ε} be the first eigenfunction on Ω_{ε} with $\inf _{x \in \Omega} \psi_{\varepsilon}(x)=1$. We choose the super- and sub-solution to be $K \psi_{\varepsilon}(x)$ and $-K \psi_{\varepsilon}(x)$ for K so large that $\left\|u_{0}\right\| \leq K$ in Ω.

Acknowledgement We would like to thank the anonymous referee for his/her careful reading of the original manuscript and for giving us many suggestions.

References

[1] F. Andreu, J. M. Mazón, F. Simondon and J. Toledo, Blow-up for a class of nonlinear parabolic problems, Asymptot. Anal. 29 (2002), 143-155.
[2] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 493-516.
[3] K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems : the sequel, J. Math. Anal. Appl. 243 (2000), 85-126.
[4] E. DiBenedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993.
[5] Y. Furusho and Y. Murata, Principal eigenvalue of the p-Laplacian in \mathbb{R}^{N}, Nonlinear Anal. 30(8) (1997), 4749-4756.
[6] V. A. Galaktionov, Boundary values problems for the nonlinear parabolic equation $u_{t}=\Delta u^{\sigma+1}+u^{p}$, Differential Equations 17 (1981), 836-842.
[7] V. A. Galaktionov, On conditions for there to be no global solutions of a class of quasilinear parabolic equations, Comput. Math. Math. Phys. 22 (1982), 73-90.
[8] V. A. Galaktionov, Conditions for global nonexistence and localization for a class of nonlinear parabolic equations, Comput. Math. Math. Phys. 23 (1983), 35-44.
[9] V. A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita's exponents, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 517-525.
[10] V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal. 34 (1998), 10051027.
[11] V. A. Galaktionov and J. L. Vazquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dynam. Systems 8(2) (2002), 399-433.
[12] H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), 262-288.
[13] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $P u_{t}=-A u+\mathcal{F}(u)$, Arch. Ration. Mech. Anal. 51 (1973), 371-386.
[14] H. A. Levine and L. E. Payne, Nonexistence of global weak solutions of classes of nonlinear wave and parabolic equations J. Math. Anal. Appl. 55 (1976), 329-334.
[15] H. A. Levine and P. E. Sacks, Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations 52 (1984), 135-161.
[16] P. Pucci and J. Serrin, A general variational inequality, Indiana U. Math. J. 35 (1986), 681-703.
[17] P. Rouchon, Blow-up of solutions of nonlinear heat equations in unbounded domains for slowly decaying initial data, Z. Angew. Math. Phys. 52 (2001), 1017-1032.
[18] P. E. Sacks, Global behavior for a class of nonlinear evolutionary equations, SIAM J. Math. Anal. 16 (1985), 233-250.
[19] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in quasilinear parabolic equations, Translated from the Russian by M. Grinfeld, Walter de Gruyter, Berlin, New York, 1995.
[20] Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), 1301-1334.
[21] Ph. Souplet and F. B. Weissler, Self-similar sub-solutions and blowup for nonlinear parabolic equations, J. Math. Anal. Appl. 212 (1997), 60-74.
[22] N. S. Trudinger, On Harnark type inequalities and their applications to quasilinear elliptic equations, E Comm. Pure Appl. Math. XX (1967), 721747.
[23] M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. 8 (1972/73), 211-229.
[24] J. Zhao, Existence and nonexistence of solutions for $u_{t}=\nabla\left(|\nabla u|^{p-2} \nabla u\right)+$ $f(\nabla u, u, x, t)$, J. Math. Anal. Appl. 172 (1993), 130-146.

Yuxiang Li

Department of Mathematics, Nanjing University
Nanjing 210093, China
email: lieyuxiang@yahoo.com.cn
Chunhong Xie
Department of Mathematics, Nanjing University
Nanjing 210093, China

[^0]: *Mathematics Subject Classifications: 35K20, 35K55, 35K57, 35K65.
 Key words: p-Laplacian parabolic equations, blow-up, global existence, first eigenvalue.
 (C)2003 Southwest Texas State University.

 Submitted October 20, 2002. Published February 28, 2003.

