Minimal and maximal solutions for two-point boundary-value problems *

Myron K. Grammatikopoulos \& Petio S. Kelevedjiev

Abstract

In this article we consider a boundary-value problem for the equation $f\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$ with mixed boundary conditions. Assuming the existence of suitable barrier strips, and using the monotone iterative method, we obtain the minimal and maximal solutions.

1 Introduction

We apply the monotone iterative method to obtain minimal and maximal solutions to the nonlinear boundary-value problem (BVP)

$$
\begin{gather*}
f\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0, \quad 0 \leq a \leq t \leq b, \\
x(a)=A, \quad x^{\prime}(b)=B, \tag{1.1}
\end{gather*}
$$

where the scalar function $f(t, x, p, q)$ is continuous and has continuous first derivatives on suitable subsets of $[a, b] \times \mathbb{R}^{3}$. For results, which guarantee the existence of $C^{2}[a, b]$-solutions to BVPs for the equation $x^{\prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right)-y(t)$ with various linear boundary conditions, see $[6,7,17,18,21,22,23]$. Concerning the uniqueness results, we refer to [21]. A result, concerning the existence and uniqueness of $C^{2}[a, b]$-solutions to the BVP for the equation $x^{\prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right)$, with general linear boundary conditions, can be found in [27]. The results of [19] guarantee the existence of $W^{2, \infty}[a, b]$-solutions or of $C^{2}[a, b]$-solutions to the Dirichlet BVP for the equation $f\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$, where the function $f(t, x, p, q)$ is defined on $[a, b] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times Y$, and Y is a non-empty closed connected or locally connected subset of \mathbb{R}^{n}. Finally, the $C^{2}[a, b]$-solvability of BVPs for the equation $f\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$ with fully nonlinear boundary conditions is studied in [12].

Note that, in the literature, the monotone iterative method is applied on BVPs for equations of the forms $x^{\prime \prime}=f\left(t, x, x^{\prime}\right)$ and $\left(\phi\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$ with various boundary conditions (see, for example, $[2,3,4,5,9,10,11,13,15$, $20,26,28])$. The sequences of iterates, considered in $[2,3,4,5,10,13,28]$,

[^0]converge to the extremal solutions, while the sequences of iterates, considered in $[9,15,19]$, converge to the unique solution. The first elements $u_{0}(t)$ and $v_{0}(t)$ of such sequences of iterates usually are lower and upper solutions respectively of the problems under consideration (see, for example, $[2,3,4,5,10,13,28]$. To derive the needed monotone iterates, the authors of $[2,3,4,5,10,13,15,28]$ use suitable growth conditions. For more applications of the monotone iterative method, see citeb1,11,13,s1,y1.

In this article, following citek1, we obtain the extremal solutions to (1.1) under assumption of the existence of suitable barrier strips (see Remarks 2.1 and 2.2 below), which immediately imply the first iterates $u_{0}(t)$ and $v_{0}(t)$. A version of [12, Theorem 5.1] implies the existence of the next iterates, and a suitable comparison result guarantees the monotone properties for the sequences of iterates. Finally, the Arzela-Askoli's theorem ensures the existence of the extremal solutions of the problem (1.1) as limits of the sequences of iterates.

2 Basic hypotheses

The following four hypotheses will be a tool for obtaining our results.
(H1) There are constants $K>0, F, F_{1}, L, L_{1}$ such that

$$
F a \leq A \leq L a, \quad F_{1}<F \leq B \leq L<L_{1} .
$$

For the set $T:=\{(t, x): a \leq t \leq b, F t \leq x \leq L t\}$, we assume that

$$
f(t, x, p, q)+K q \geq 0
$$

on $\left\{(t, x, p, q):(t, x) \in T, p \in\left[L, L_{1}\right], q \in(-\infty, 0)\right\}$, and

$$
f(t, x, p, q)+K q \leq 0
$$

on $\left\{(t, x, p, q):(t, x) \in T, p \in\left[F_{1}, F\right], q \in(0, \infty)\right\}$.
Remark 2.1 Set $\Phi_{1}(t, x, p, q) \equiv f(t, x, p, q)+K q$. Then, the strip $\Delta_{1}=[a, b] \times$ [L, L_{1}], on which $\Phi_{1}(t, x, p, q) \geq 0$, and the strip $\Delta_{2}=[a, b] \times\left[F_{1}, F\right]$, on which $\Phi_{1}(t, x, p, q) \leq 0$, are such that the graph of the function $x^{\prime}(t), t \in[a, b]$, does not cross Δ_{1} and Δ_{2}, and is located between them. For this reason Δ_{1} and Δ_{2} are called barrier strips for $x^{\prime}(t), t \in[a, b]$.
(H2) There are constants $G_{i}^{-}, G_{i}^{+}, H_{i}^{-}, H_{i}^{+}, i=1,2$, such that

$$
\begin{gathered}
G_{2}^{+}>G_{1}^{+} \geq 2 C, \quad G_{2}^{-}>G_{1}^{-} \geq 2 C \\
H_{2}^{+}<H_{1}^{+} \leq-2 C, \quad H_{2}^{-}<H_{1}^{-} \leq-2 C
\end{gathered}
$$

where $C=\max \{|L|,|F|\} /(b-a), f(t, x, p, q)$ and $f_{q}(t, x, p, q)$ are continuous and $f_{q}(t, x, p, q)<0$ for

$$
(t, x, p, q) \in[a, b] \times\left[m_{1}-\varepsilon, M_{1}+\varepsilon\right] \times[F-\varepsilon, L+\varepsilon] \times\left[m_{2}-\varepsilon, M_{2}+\varepsilon\right]
$$

where $m_{1}=\min \{F a, F b\} M_{1}=\max \{L a, L b\}, m_{2}=\min \left\{H_{2}^{+}, H_{2}^{-}\right\}$, $M_{2}=\max \left\{G_{2}^{+}, G_{2}^{-}\right\}$, and $\varepsilon>0$ is fixed and such that

$$
\begin{equation*}
H_{1}^{+}>H_{2}^{+}+\varepsilon, \quad H_{1}^{-}>H_{2}^{-}+\varepsilon, \quad G_{2}^{+}>G_{1}^{+}+\varepsilon, \quad G_{2}^{-}>G_{1}^{-}+\varepsilon \tag{2.1}
\end{equation*}
$$

$f_{t}(t, x, p, q), f_{x}(t, x, p, q)$ and $f_{p}(t, x, p, q)$ are continuous for (t, x, p, q) in $[a, b] \times\left[m_{1}, M_{1}\right] \times[F, L] \times\left[m_{2}, M_{2}\right] ;$

$$
f_{t}(t, x, p, q)+f_{x}(t, x, p, q) p+f_{p}(t, x, p, q) q \geq 0
$$

for (t, x, p, q) in $[a, b] \times\left[m_{1}, M_{1}\right] \times[F, L] \times\left(\left[H_{2}^{+}, H_{1}^{+}\right] \cup\left[G_{1}^{+}, G_{2}^{+}\right]\right)$, and

$$
f_{t}(t, x, p, q)+f_{x}(t, x, p, q) p+f_{p}(t, x, p, q) q \leq 0
$$

for (t, x, p, q) in $[a, b] \times\left[m_{1}, M_{1}\right] \times[F, L] \times\left(\left[H_{2}^{-}, H_{1}^{-}\right] \cup\left[G_{1}^{-}, G_{2}^{-}\right]\right)$, where F and L are the constants of H1.

Remark 2.2 Set $\Phi_{2}(t, x, p, q) \equiv f_{t}(t, x, p, q)+f_{x}(t, x, p, q) p+f_{p}(t, x, p, q) q$. Then, the pair of strips $\Omega_{1}=[a, b] \times\left(\left[H_{2}^{+}, H_{1}^{+}\right] \cup\left[G_{1}^{+}, G_{2}^{+}\right]\right)$, where $\Phi_{2}(t, x, p, q) \geq$ 0 , and the pair of strips $\Omega_{2}=[a, b] \times\left(\left[H_{2}^{-}, H_{1}^{-}\right] \cup\left[G_{1}^{-}, G_{2}^{-}\right]\right)$, where $\Phi_{2}(t, x, p, q) \leq$ 0 , are such that the graph of the function $x^{\prime \prime}(t), t \in[a, b]$, can not cross the outer strips, of the four such ones, defined by Ω_{1} and Ω_{2}. For this reason the outer strips of Ω_{1} and Ω_{2} are called barrier strips for $x^{\prime \prime}(t), t \in[a, b]$.
(H3) For $m_{3}=\min \left\{H_{1}^{+}, H_{1}^{-}\right\}$and $M_{3}=\max \left\{G_{1}^{+}, G_{1}^{-}\right\}$

$$
h\left(\lambda, t, x, p, m_{3}-\varepsilon\right) h\left(\lambda, t, x, p, M_{3}+\varepsilon\right) \leq 0
$$

for (λ, t, x, p) in $[0,1] \times[a, b] \times\left[m_{1}-\varepsilon, M_{1}+\varepsilon\right] \times[F-\varepsilon, L+\varepsilon]$, where $h(\lambda, t, x, p, q)=(\lambda-1) K q+\lambda f(t, x, p, q), F, L, K$ are the constants of H1, and $H_{1}^{+}, H_{1}^{-}, G_{1}^{+}, G_{1}^{-}, C, m_{1}, M_{1}$, and ε are as in H 2 .
(H4) For (t, x, p, q) in $T \times[F, L] \times\left[\min \left\{H_{1}^{+}, H_{1}^{-}\right\}, \max \left\{G_{1}^{+}, G_{1}^{-}\right\}\right], f_{x}(t, x, p, q) \geq$ 0 , where the trapezoid T and the constants F and L are as in H1, and $H_{1}^{+}, H_{1}^{-}, G_{1}^{+}$and G_{1}^{-}are the constants in H 2 , and m_{3} and M_{3} are as in H3.

3 Main result

For a function $y(t) \in C[a, b]$ bounded on $[a, b]$, we define a mapping

$$
\mathcal{A} y=x
$$

where $x(t) \in C^{2}[a, b]$ is a solution to the BVP

$$
\begin{gather*}
f\left(t, y(t), x^{\prime}, x^{\prime \prime}\right)=0, \quad t \in[a, b], \\
x(a)=A, \quad x^{\prime}(b)=B . \tag{3.1}
\end{gather*}
$$

We will show that under the hypotheses $\mathrm{H} 1, \mathrm{H} 2$, and H 3 , the map \mathcal{A} is uniquely determined. For this reason, we consider two sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}, n=$ $0,1, \ldots$, defined by

$$
u_{n+1}=\mathcal{A} u_{n} \quad \text { and } \quad v_{n+1}=\mathcal{A} v_{n}
$$

where $u_{0}=F t, v_{0}=L t, t \in[a, b]$, and F and L are as in H1. Now we formulate our main result.

Theorem 3.1 Under hypotheses H1-H4, there are sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$, $n=0,1, \ldots$, such that for $n \rightarrow+\infty: u_{n} \rightarrow u^{m}, v_{n} \rightarrow v^{M}$ and

$$
u_{0} \leq u_{1} \leq \cdots \leq u_{n} \leq \cdots \leq u^{m} \leq x \leq v^{M} \leq \cdots \leq v_{n} \leq \cdots \leq v_{1} \leq v_{0}
$$

where $u^{m}(t)$ and $v^{M}(t)$ are the minimal and maximal solutions of the $B V P$ (1.1) respectively, and $x(t) \in C^{2}[a, b]$ is a solution of (1.1).

The proof of this theorem can be found at the end of this article and is based on the auxiliary results, which we present in the next section.

4 Auxiliary results

We begin this section with an existence result, which is a modification of [8, Theorem 6.1, Chapter II]. Namely, we consider the family of BVPs

$$
\begin{gather*}
K x^{\prime \prime}=\lambda\left(K x^{\prime \prime}+f\left(t, y(t), x^{\prime}, x^{\prime \prime}\right)\right), \quad t \in[a, b], \\
x(a)=A, \quad x^{\prime}(b)=B, \tag{4.1}
\end{gather*}
$$

where $\lambda \in[0,1]$ and $K>0$.
Lemma 4.1 Assume that there are constants $Q_{i}, i=0,1, \ldots, 5$, independent of λ such that
(i) For each solution $x(t) \in C^{2}[a, b]$ of (4.1) it holds

$$
Q_{0}<x(t)<Q_{1}, Q_{2}<x^{\prime}(t)<Q_{3}, Q_{4}<x^{\prime \prime}(t)<Q_{5}, \quad t \in[a, b] .
$$

Also assume that:
(ii) $f(t, x, p, q)$ and $f_{q}(t, x, p, q)$ are continuous, and $f_{q}(t, x, p, q)<0$ for all (t, x, p, q) in $[a, b] \times\left[Q_{0}, Q_{1}\right] \times\left[Q_{2}, Q_{3}\right] \times\left[Q_{4}, Q_{5}\right]$
(iii) $h\left(\lambda, t, x, p, Q_{4}\right) h\left(\lambda, t, x, p, Q_{5}\right) \leq 0$ for (λ, t, x, p) in $\Lambda:=[0,1] \times[a, b] \times$ $\left[Q_{0}, Q_{1}\right] \times\left[Q_{2}, Q_{3}\right]$, where $h(\lambda, t, x, p, q)=(\lambda-1) K q+\lambda f(t, x, p, q)$.

Then the BVP (3.1) has a $C^{2}[a, b]$-solution for each $y(t) \in C[a, b]$ such that $Q_{0}<y(t)<Q_{1}, t \in[a, b]$.

Proof In view of (ii) and (iii), we conclude that there is a unique function $G(\lambda, t, x, p)$ which is continuous on Λ and such that

$$
q=G(\lambda, t, x, p) \quad \text { for } \quad(\lambda, t, x, p) \in \Lambda
$$

is equivalent to the equation

$$
h(\lambda, t, x, p, q)=0 \quad \text { on } \quad \Lambda \times\left[Q_{4}, Q_{5}\right] .
$$

Note that $h(0, t, x, p, 0)=0$ yields

$$
\begin{equation*}
G(0, t, x, p)=0 \quad \text { for } \quad(t, x, p) \in[a, b] \times\left[Q_{0}, Q_{1}\right] \times\left[Q_{2}, Q_{3}\right] \tag{4.2}
\end{equation*}
$$

Thus, the family (4.1) is equivalent to the family of BVPs

$$
\begin{gather*}
x^{\prime \prime}=G\left(\lambda, t, y(t), x^{\prime}\right), \quad t \in[a, b], \\
x(a)=A, \quad x^{\prime}(b)=B, \tag{4.3}
\end{gather*}
$$

where $\lambda \in[0,1]$. Now, define the set

$$
U=\left\{x(t) \in C^{2}[a, b]: x(t) \in\left(Q_{0}, Q_{1}\right), x^{\prime}(t) \in\left(Q_{2}, Q_{3}\right), x^{\prime \prime}(t) \in\left(Q_{4}, Q_{5}\right)\right\}
$$

which is an open subset of the convex set $C_{Q}^{2}[a, b]$ of the Banach space $C^{2}[a, b]$ and consider the map $\mathbf{N}: C_{Q}^{2}[a, b] \rightarrow C[a, b]$, defined by

$$
\mathbf{N} x=x^{\prime \prime}
$$

where $C_{Q}^{2}[a, b]=\left\{x \in C^{2}[a, b]: x(a)=A, x^{\prime}(b)=B\right\}$. It is easy to see that the $\operatorname{map} \mathbf{S}: C_{Q_{0}}^{2}[a, b] \rightarrow C[a, b]$, defined by

$$
\mathbf{S} x=x^{\prime \prime}
$$

with $C_{Q_{0}}^{2}[a, b]=\left\{x \in C^{2}[a, b]: x(a)=0, x^{\prime}(b)=0\right\}$, is one-to-one and the problem $\mathbf{S} x=0, x(a)=A, x^{\prime}(b)=B$, has a unique solution l. Then $\mathbf{N}^{-1}: C[a, b] \rightarrow C_{Q}^{2}[a, b]$ exists, is continuous, and moreover

$$
\mathbf{N}^{-1} s=\mathbf{S}^{-1} s+l .
$$

Let $\mathbf{H}_{\lambda}: \bar{U} \rightarrow C_{Q}^{2}[a, b]$ be defined by

$$
\mathbf{H}_{\lambda} x=\mathbf{N}^{-1} \mathbf{G}_{\lambda} \mathbf{j}(x), \quad \lambda \in[0,1]
$$

where $\mathbf{j}: C_{Q}^{2}[a, b] \rightarrow C^{1}[a, b]$ is defined by $\mathbf{j} x=x, \mathbf{G}_{\lambda}: C^{1}[a, b] \rightarrow C[a, b]$ is defined by

$$
\left(\mathbf{G}_{\lambda} x\right)(t)=G\left(\lambda, t, y(t), x^{\prime}(t)\right), \quad \lambda \in[0,1] .
$$

Clearly, \mathbf{H}_{λ} is a compact homotopy, because \mathbf{j} is a completely continuous embeding, and \mathbf{G}_{λ} and \mathbf{N}^{-1} are continuous. Moreover, $\mathbf{H}_{\lambda} x=x$ implies

$$
x=\mathbf{N}^{-1} \mathbf{G}_{\lambda} \mathbf{j}(x) .
$$

Hence, by the definition of \mathbf{N}^{-1}, we have

$$
x=\mathbf{S}^{-1} \mathbf{G}_{\lambda} \mathbf{j}(x)+l .
$$

Finally, since $\mathbf{S} l=0$, it follows that

$$
\mathbf{S} x=\mathbf{G}_{\lambda \mathbf{j}} \mathbf{j}(x)
$$

Thus, the fixed points of \mathbf{H}_{λ} are solutions to (4.3) and obviously \mathbf{H}_{λ} has no fixed points on ∂U.In view of (4.2), the map \mathbf{H}_{0}, which has the form $\mathbf{H}_{0} x=l$, is constant. Moreover, l, as the unique solution of $(4.1)_{0}$, belongs to the set U. Hence, by [8, Theorem 2.2], the map \mathbf{H}_{0} is essential. The topological transversality theorem of [8] implies that \mathbf{H}_{1} is also essential, i.e. for $\lambda=1$ (4.3) has a solution. Moreover, for $\lambda=1$ (4.3) coincides with (3.1). Therefore, the problem (3.1) has a solution. The proof of the lemma is complete.

To obtain our next auxiliary results, we introduce the following two sets

$$
\begin{aligned}
V & =\{y(t) \in C[a, b]: F t \leq y(t) \leq L t, t \in[a, b]\} \\
V_{1}=\{y(t) & \left.\in C^{1}[a, b]: F t \leq y(t) \leq L t, F \leq y^{\prime}(t) \leq L, t \in[a, b]\right\}
\end{aligned}
$$

where the constants L and F are as in H1. Then we formulate the following results.

Lemma 4.2 Let H1 hold and $x(t) \in C^{2}[a, b]$ be a solution to (4.1) with $y(t) \in$ V. Then the following statements hold:
(i) If there is an interval $T_{1} \subseteq[a, b]$ such that

$$
\begin{equation*}
L \leq x^{\prime}(t) \leq L_{1} \quad \text { for } \quad t \in T_{1} \tag{4.4}
\end{equation*}
$$

then $x^{\prime \prime}(t) \geq 0$ for $t \in T_{1}$.
(ii) If there is an interval $T_{2} \subseteq[a, b]$ such that $F_{1} \leq x^{\prime}(t) \leq F$ for $t \in T_{2}$, then $x^{\prime \prime}(t) \leq 0$ for $t \in T_{2}$.

Proof Since the proofs of (i) and (ii) are similar, it is sufficient to show that (4.4) implies $x^{\prime \prime}(t) \geq 0$ for $t \in T_{1}$. Indeed, the assertion is true for $\lambda=0$. Now, let $\lambda \in(0,1]$ and assume that there is a $t_{0} \in T_{1}$ such that $x^{\prime \prime}\left(t_{0}\right)<0$. Then

$$
0>K x^{\prime \prime}\left(t_{0}\right)=\lambda\left[K x^{\prime \prime}\left(t_{0}\right)+f\left(t_{0}, x\left(t_{0}\right), x^{\prime}\left(t_{0}\right), x^{\prime \prime}\left(t_{0}\right)\right)\right] \geq 0
$$

This contradiction proves the assertion.
Lemma 4.3 Let H1 hold, and $x(t) \in C^{2}[a, b]$ be a solution to (4.1) with $y(t) \in$ V. Then

$$
F t \leq x(t) \leq L t, \quad F \leq x^{\prime}(t) \leq L \quad \text { for } \quad t \in[a, b]
$$

Proof Consider the sets

$$
Y_{0}=\left\{t \in[a, b]: L<x^{\prime}(t) \leq L_{1}\right\} \quad \text { and } \quad Y_{1}=\left\{t \in[a, b]: F_{1} \leq x^{\prime}(t)<F\right\}
$$

and suppose that they are not empty. Then, using the continuity of $x^{\prime}(t)$ and the inequality $F \leq x^{\prime}(b) \leq L$, we easily conclude that there are closed intervals $\left[t_{0}, \tau_{0}\right] \subseteq Y_{0}$ and $\left[t_{1}, \tau_{1}\right] \subseteq Y_{1}$ such that

$$
\begin{equation*}
x^{\prime}\left(t_{0}\right)>x^{\prime}\left(\tau_{0}\right) \quad \text { and } \quad x^{\prime}\left(t_{1}\right)<x^{\prime}\left(\tau_{1}\right) \tag{4.5}
\end{equation*}
$$

On the other hand, by Lemma 4.2, we have

$$
x^{\prime \prime}(t) \geq 0 \quad \text { for } \quad t \in\left[t_{0}, \tau_{0}\right] \quad \text { and } \quad x^{\prime \prime}(t) \leq 0 \quad \text { for } t \in\left[t_{1}, \tau_{1}\right]
$$

and therefore, we have

$$
x^{\prime}\left(t_{0}\right) \leq x^{\prime}\left(\tau_{0}\right) \quad \text { and } \quad x^{\prime}\left(t_{1}\right) \geq x^{\prime}\left(\tau_{1}\right)
$$

But this contradicts (4.5). The obtained contradiction shows that Y_{0} and Y_{1} are empty, and so we see that

$$
F \leq x^{\prime}(t) \leq L \quad \text { for } \quad t \in[a, b]
$$

Integrating this expression from a to t and using the fact that $F a \leq A \leq L a$, we get

$$
F t \leq x(t) \leq L t, \quad t \in[a, b]
$$

which concludes the proof.
Remark 4.4 Let $x(t) \in C^{2}[a, b]$ be a solution to (1.1). Then, in view of Lemma 4.3, if $F=L$, it follows that $x^{\prime}(t)=B, t \in[a, b]$. Now, using $F a \leq A \leq L a$, we see that $x(t)=B t, t \in[a, b]$, is the unique $C^{2}[a, b]$-solution to the problem (1.1).

Lemma 4.5 Let H1 and H2 hold, and $x(t) \in C^{2}[a, b]$ be a solution to (4.1) with $y(t) \in V_{1}$. Then

$$
m_{3} \leq x^{\prime \prime}(t) \leq M_{3}, \quad t \in[a, b]
$$

and there is a constant D independent of λ such that

$$
\left|x^{\prime \prime \prime}(t)\right| \leq D \quad \text { for } t \in[a, b]
$$

Proof By the mean value theorem, there is a $\xi \in(a, b)$ such that $x^{\prime \prime}(\xi)=$ $\left[x^{\prime}(b)-x^{\prime}(a)\right] /(b-a)$. Since Lemma 4.3 implies

$$
\begin{equation*}
F \leq x^{\prime}(t) \leq L \quad \text { for } \quad t \in[a, b] \tag{4.6}
\end{equation*}
$$

we see that

$$
\begin{equation*}
x^{\prime \prime}(\xi) \leq 2 C \leq G_{1}^{+} \tag{4.7}
\end{equation*}
$$

where $C=\max \{|L|,|F|\} /(b-a)$. Now suppose that the set

$$
Y=\left\{t \in[a, \xi]: G_{1}^{+}<x^{\prime \prime}(t) \leq G_{2}^{+}\right\}
$$

is not empty. The continuity of $x^{\prime \prime}(t)$ and (4.7) imply that there is a closed interval $\left[t_{0}, \tau_{0}\right] \subseteq Y$ such that

$$
\begin{equation*}
x^{\prime \prime}\left(t_{0}\right)>x^{\prime \prime}\left(\tau_{0}\right) . \tag{4.8}
\end{equation*}
$$

Since (4.6) holds for $t \in\left[t_{0}, \tau_{0}\right]$ and

$$
\begin{gather*}
G_{1}^{+}<x^{\prime \prime}(t) \leq G_{2}^{+} \text {for } t \in\left[t_{0}, \tau_{0}\right] \\
m_{1} \leq F t \leq y(t) \leq L t \leq M_{1} \text { for } t \in\left[t_{0}, \tau_{0}\right], \tag{4.9}\\
F \leq y^{\prime}(t) \leq L \quad \text { for } t \in\left[t_{0}, \tau_{0}\right]
\end{gather*}
$$

in view of H 2 , we have

$$
\Psi_{1}(t) \equiv f_{q}\left(t, y(t), x^{\prime}(t), x^{\prime \prime}(t)\right)<0, \quad t \in\left[t_{0}, \tau_{0}\right]
$$

and for $t \in\left[t_{0}, \tau_{0}\right]$,

$$
\begin{aligned}
\Psi_{2}(t) \equiv & f_{t}\left(t, y(t), x^{\prime}(t), x^{\prime \prime}(t)\right)+f_{x}\left(t, y(t), x^{\prime}(t), x^{\prime \prime}(t)\right) y^{\prime}(t) \\
& +f_{p}\left(t, y(t), x^{\prime}(t), x^{\prime \prime}(t)\right) x^{\prime \prime}(t) \geq 0 .
\end{aligned}
$$

Thus, using the last two inequalities and the continuity of f_{t}, f_{x}, f_{p} and f_{q} on [t_{0}, τ_{0}], we conclude that $x^{\prime \prime \prime}$ is continuous on $\left[t_{0}, \tau_{0}\right]$ and

$$
\begin{equation*}
x^{\prime \prime \prime}(t)=\lambda \Psi_{2}(t) /\left[K(1-\lambda)-\lambda \Psi_{1}(t)\right] \geq 0 \quad \text { for } t \in\left[t_{0}, \tau_{0}\right] . \tag{4.10}
\end{equation*}
$$

Consequently, $x^{\prime \prime}\left(t_{0}\right) \leq x^{\prime \prime}\left(\tau_{0}\right)$, which contradicts (4.8). Thus,

$$
x^{\prime \prime}(t) \leq G_{1}^{+} \quad \text { for } t \in[a, \xi]
$$

The inequality $H_{1}^{-} \leq x^{\prime \prime}(t), t \in[a, \xi]$ can be obtained in the same manner. Similarly, it is easy to show that

$$
H_{1}^{+} \leq x^{\prime \prime}(t) \leq G_{1}^{-}, \quad t \in[\xi, b] .
$$

Finally, using (4.6), (4.9), the fact that $x^{\prime \prime}$ is bounded on $[a, b]$ and the continuity of the partial derivatives of $f(t, x, p, q)$ on the set $[a, b] \times\left[m_{1}, M_{1}\right] \times[F, L] \times$ [m_{3}, M_{3}], from (4.10) it follows that there is a constant D independent of λ such that

$$
\left|x^{\prime \prime \prime}(t)\right| \leq D \quad \text { for } t \in[a, b]
$$

The proof of the lemma is complete.
Lemma 4.6 Suppose that H1, H2 and H3 hold. Then the BVP (3.1) has a $C^{2}[a, b]$-solution, if $y(t) \in V_{1}$.

Proof Let $x(t) \in C^{2}[a, b]$ be a solution to $(4.1)_{\lambda}$. Then, by Lemma 4.3, we have

$$
\begin{gathered}
F-\varepsilon<x^{\prime}(t)<L+\varepsilon \quad \text { for } t \in[a, b] \\
m_{1}-\varepsilon<x(t)<M_{1}+\varepsilon \quad \text { for } t \in[a, b],
\end{gathered}
$$

while, by Lemma 4.5,

$$
m_{3}-\varepsilon<x^{\prime \prime}(t)<M_{3}+\varepsilon \quad \text { for } t \in[a, b],
$$

where $\varepsilon>0$ is as in H2. Thus, the condition (i) of Lemma 4.1 holds for $Q_{0}=m_{1}-\varepsilon, Q_{1}=M_{1}+\varepsilon, Q_{2}=F-\varepsilon, Q_{3}=L+\varepsilon, Q_{4}=m_{3}-\varepsilon$ and $Q_{5}=M_{3}+\varepsilon$. Moreover, from (2.1) and H3 it follows that the conditions (ii) and (iii) of Lemma 4.1 are satisfied. Also,

$$
m_{1}-\varepsilon<y(t)<M_{1}+\varepsilon \quad \text { for } t \in[a, b] .
$$

So, we can apply Lemma 4.1 to conclude that the problem (3.1) has a solution in $C^{2}[a, b]$. The proof of the lemma is complete.

We need the following two lemmas which are adopted from [24].
Lemma 4.7 ([24, Chapter I, Theorem 1]) Suppose $\phi(t)$ satisfies the differential inequality

$$
\begin{equation*}
\phi^{\prime \prime}+g(t) \phi^{\prime} \geq 0 \quad \text { for } a<t<b \tag{4.11}
\end{equation*}
$$

with $g(t)$ a bounded function. If $\phi(t) \leq M$ in (a, b) and if the maximum M of ϕ is attained at an interior point c of (a, b), then $\phi \equiv M$.

Lemma 4.8 ([24, Chapter I, Theorem 2]) Suppose $\phi(t)$ is a nonconstant function which satisfies the inequality (4.11) and has one-sided derivatives at a and b, and suppose g is bounded on every closed subinterval of (a, b). If the maximum of ϕ occurs at $t=a$ and g is bounded below at $t=a$, then $\phi^{\prime}(a)<0$. If the maximum occurs at $t=b$ and g is bounded above at $t=b$, then $\phi^{\prime}(b)>0$.

Lemma 4.9 Suppose that $\phi \in C^{2}(a, b) \cap C^{1}[a, b]$ satisfies the inequality

$$
\phi^{\prime \prime}(t)+g(t) \phi^{\prime}(t) \geq 0 \quad \text { for } t \in(a, b),
$$

where $g(t)$ is bounded on (a, b). If $\phi(a) \leq 0$ and

$$
\begin{equation*}
\phi^{\prime}(b) \leq 0, \tag{4.12}
\end{equation*}
$$

then

$$
\begin{equation*}
\phi(t) \leq 0 \quad \text { for } t \in[a, b] . \tag{4.13}
\end{equation*}
$$

Proof First, assume that $\phi(t)$ achieves its maximum at $t_{0} \in(a, b)$. By Lemma 4.7, for $t \in[a, b]$ we obtain $\phi(t) \equiv \phi\left(t_{0}\right)=\phi(a) \leq 0$ and so (4.13) holds.

Next, suppose that $\phi(t)$ achieves its maximum at the ends of the interval $[a, b]$. If we assume $\phi(t) \leq \phi(b), t \in[a, b]$, the application of Lemma 4.8 shows that $\phi^{\prime}(b)>0$, which contradicts (4.12). Thus, by our assumtions, $\phi(t) \leq$ $\phi(a) \leq 0, t \in[a, b]$, and so (4.13) follows. The proof is complete.

In the last two lemmas we use the map \mathcal{A} defined in the section 3 .
Lemma 4.10 Under assumptions H1, H2, and H3, for any $y \in V_{1}$, the image x by the map \mathcal{A} exists and it is unique.

Proof The existence of the image of x follows from Lemma 4.6. In order to see that x is unique, fix y and assume thatzis an other image of y by \mathcal{A} and consider the function $\phi(t)=x(t)-z(t), t \in[a, b]$. Then, it is evident that

$$
f\left(t, y(t), x^{\prime}(t), x^{\prime \prime}(t)\right)-f\left(t, y(t), z^{\prime}(t), z^{\prime \prime}(t)\right)=0, \quad t \in[a, b]
$$

Next, we construct the equality

$$
\left.\begin{array}{rl}
& f\left(t, y(t), x^{\prime}(t), x^{\prime \prime}(t)\right)
\end{array}\right)-f\left(t, y(t), z^{\prime}(t), x^{\prime \prime}(t)\right), ~=f\left(t, y(t), z^{\prime}(t), x^{\prime \prime}(t)\right)-f\left(t, y(t), z^{\prime}(t), z^{\prime \prime}(t)\right)=0, ~ \$
$$

which can be rewritten in the form $I_{1}(t) \phi^{\prime}(t)+I_{2}(t) \phi^{\prime \prime}(t)=0$, where

$$
\begin{aligned}
& I_{1}(t)=\int_{0}^{1} f_{p}\left(t, y(t), z^{\prime}(t)+\theta\left(x^{\prime}(t)-z^{\prime}(t)\right), x^{\prime \prime}(t)\right) d \theta \\
& I_{2}(t)=\int_{0}^{1} f_{q}\left(t, y(t), z^{\prime}(t), z^{\prime \prime}(t)+\theta\left(x^{\prime \prime}(t)-z^{\prime \prime}(t)\right)\right) d \theta
\end{aligned}
$$

Hence, the function $\phi(t)$ is a solution to the BVP

$$
\begin{gathered}
\phi^{\prime \prime}(t)+\frac{I_{1}(t)}{I_{2}(t)} \phi^{\prime}(t)=0, \quad t \in[a, b], \\
\phi(a)=0, \quad \phi^{\prime}(b)=0
\end{gathered}
$$

Moreover, it is easy to conclude that $\phi(t) \equiv 0, t \in[a, b]$, is the unique solution of the above BVP. Consequently, $x(t) \equiv z(t), t \in[a, b]$. The proof of the lemma is complete.

Lemma 4.11 Under the hypotheses H1-H4, if $y_{1}(t), y_{2}(t) \in V_{1}$ are such that $y_{1}(t) \leq y_{2}(t)$ for $t \in[a, b]$, then

$$
x_{1}(t) \leq x_{2}(t) \text { for } \quad t \in[a, b],
$$

where $x_{i}=\mathcal{A} y_{i}, i=1,2$.

Proof Observe that, by Lemma 4.3, we have $F \leq x_{1}^{\prime}(t) \leq L, t \in[a, b]$, and, by Lemma 4.5 ,

$$
m_{3} \leq x_{1}^{\prime \prime}(t) \leq M_{3}, \quad t \in[a, b]
$$

Moreover,

$$
F t \leq y_{1}(t) \leq y_{2}(t) \leq L t, \quad t \in[a, b] .
$$

Thus, from $f_{x}(t, x, p, q) \geq 0$ for (t, x, p, q) in $T \times[F, L] \times\left[m_{3}, M_{3}\right]$ it follows that

$$
0=f\left(t, y_{1}(t), x_{1}^{\prime}(t), x_{1}^{\prime \prime}(t)\right) \leq f\left(t, y_{2}(t), x_{1}^{\prime}(t), x_{1}^{\prime \prime}(t)\right), \quad t \in[a, b]
$$

Hence, for $t \in[a, b]$ we have

$$
f\left(t, y_{2}(t), x_{2}^{\prime}(t), x_{2}^{\prime \prime}(t)\right)-f\left(t, y_{2}(t), x_{1}^{\prime}(t), x_{1}^{\prime \prime}(t)\right) \leq 0
$$

and then, as in Lemma 4.10, we construct the inequality

$$
\begin{aligned}
f\left(t, y_{2}(t), x_{1}^{\prime}(t), x_{1}^{\prime \prime}(t)\right) & -f\left(t, y_{2}(t), x_{2}^{\prime}(t), x_{1}^{\prime \prime}(t)\right) \\
+f\left(t, y_{2}(t), x_{2}^{\prime}(t), x_{1}^{\prime \prime}(t)\right) & -f\left(t, y_{2}(t), x_{2}^{\prime}(t), x_{2}^{\prime \prime}(t)\right) \geq 0
\end{aligned}
$$

from which for $\phi(t)=x_{1}(t)-x_{2}(t), t \in[a, b]$, we find

$$
\phi^{\prime \prime}(t)+\frac{J_{1}(t)}{J_{2}(t)} \phi^{\prime}(t) \geq 0, \quad t \in[a, b]
$$

where

$$
\begin{aligned}
& J_{1}(t)=\int_{0}^{1} f_{p}\left(t, y_{2}(t), x_{2}^{\prime}(t)+\theta\left(x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right), x_{1}^{\prime \prime}(t)\right) d \theta \\
& J_{2}(t)=\int_{0}^{1} f_{q}\left(t, y_{2}(t), x_{2}^{\prime}(t), x_{2}^{\prime \prime}(t)+\theta\left(x_{1}^{\prime \prime}(t)-x_{2}^{\prime \prime}(t)\right)\right) d \theta
\end{aligned}
$$

Furthermore, $\phi(a)=0, \phi^{\prime}(b)=0$. Finally, applying Lemma 4.9, we see that $\phi(t) \leq 0$ for $t \in[a, b]$, which completes the proof.

5 Proof of Theorem 3.1

Consider the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$, defined by

$$
u_{n+1}=\mathcal{A} u_{n} \quad \text { and } \quad v_{n+1}=\mathcal{A} v_{n}, \quad n=0,1, \ldots
$$

In view of Lemma 4.6, from Lemma 4.3 it follows that $F t=u_{0} \leq u_{1}$ and $v_{1} \leq v_{0}=L t$. Moreover, Lemma 4.11 and induction arguments imply that

$$
u_{n-1} \leq u_{n}, \quad v_{n} \leq v_{n-1}, \quad n=1,2, \ldots
$$

On the other hand, since $u_{0} \leq v_{0}$, by Lemma 4.11 and induction arguments, we conclude that $u_{n} \leq v_{n}, n=0,1, \ldots$ ¿From this observation it follows that

$$
u_{0} \leq u_{n} \leq v_{0}, \quad n=0,1, \ldots
$$

Therefore, $\left\{u_{n}\right\}$ is uniformly bounded. Furthermore, since, by Lemma 4.3, $\left\{u_{n}^{\prime}\right\}$ is uniformly bounded, we see that $\left\{u_{n}\right\}$ is equicontinuous. Finally, since, by Lemma 4.5, $\left\{u_{n}^{\prime \prime \prime}\right\}$ is uniformly bounded, it follows that the sequence $\left\{u_{n}^{\prime \prime}\right\}$ is uniformly bounded and equicontinuous. Thus, we can apply the ArzelaAscoli theorem to conclude that there are a subsequence $\left\{u_{n_{i}}\right\}$ and a function $u \in C^{2}[a, b]$ such that $\left\{u_{n_{i}}\right\},\left\{u_{n_{i}}^{\prime}\right\}$ and $\left\{u_{n_{i}}^{\prime \prime}\right\}$ are uniformly convergent on $[a, b]$ to u, u^{\prime} and $u^{\prime \prime}$ respectively. Now, using the fact that $u_{n_{i}}=\mathcal{A} u_{n_{i-1}}$ can be rewritten equivalently in the form

$$
\begin{aligned}
u_{n_{i}}(t)= & \frac{1}{K} \int_{a}^{t}\left(\int_{b}^{r}\left(K u_{n_{i}}^{\prime \prime}(s)+f\left(s, u_{n_{i-1}}(s), u_{n_{i}}^{\prime}(s), u_{n_{i}}^{\prime \prime}(s)\right)\right) d s\right) d r \\
& +B(t-a)+A
\end{aligned}
$$

letting $i \rightarrow+\infty$, we obtain

$$
u(t)=\frac{1}{K} \int_{a}^{t}\left(\int_{b}^{r}\left(K u^{\prime \prime}(s)+f\left(s, u(s), u^{\prime}(s), u^{\prime \prime}(s)\right)\right) d s\right) d r+B(t-a)+A
$$

from which it follows that $u(t)$ is a solution to the BVP (1.1).
Remark that, if $x(t)$ is a solution of (1.1), then, by Lemma 4.3, we have $u_{0}(t) \leq x(t)$ for $t \in[a, b]$. Applying Lemma 4.11 (it is possible, because $x=\mathcal{A} x$), by induction we obtain

$$
u_{n}(t) \leq x(t), \quad t \in[a, b], \quad n=0,1, \ldots
$$

and then $u(t) \leq x(t), t \in[a, b]$, which holds for each solution $x(t) \in C^{2}[a, b]$ of the problem (1.1). Consequently, it follows that

$$
u(t) \equiv u^{m}(t), \quad t \in[a, b] .
$$

By similar arguments, we conclude that $\lim v_{n}=v^{M}(t), t \in[a, b]$. Thus, the proof is complete.

Acknowledgement P. S. Kelevedjiev would like to thank the Ministry of National Economy of Helenic Republic for providing the NATO Science Fellowship (No. DOO 850/02) and the University of Ioannina for its hospitality.

References

[1] S. Bernfeld, V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, New York, Academic Press, 1974.
[2] A. Cabada, R.L. Pouso, Existence results for the problem $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=$ $f\left(t, u, u^{\prime}\right)$ with periodic and Neumann boundary conditions, Nonlinear Anal. 30 (1997), 1733.
[3] A. Cabada, R.L. Pouso, Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal. 42 (2000), 1377-1396.
[4] M. Cherpion, C. De Coster, P Habets, Monotone iterative methods for boundary value problems, Differential Integral Equations 12 (1999), 309338.
[5] B.C. Dhage, S.T. Patil, On the existence of extremal solutions of nonlinear discontinuous boundary value problems, Math. Sci. Res. Hot-Line. 2 (1998), 17-29.
[6] P.M. Fitzpatrick, Existence results for equations involving noncompact perturbation of Fredholm mappings with applications to differential equations, J. Math. Anal. Appl. 66 (1978), 151-177.
[7] P.M. Fitzpatrick, W.V. Petryshyn, Galerkin method in the constructive solvability of nonlinear Hammerstein equations with applications to differential equations, Trans. Amer. Math. Soc. 238 (1978), 321-340.
[8] A.Granas, R. B. Guenther, J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissnes Math., Warszawa, 1985.
[9] S. Heikkilä, V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear differential equations, New York, Dekker, 1994.
[10] D. Jiang, L. Kong, A monotone method for constructing extremal solutions to second order periodic boundary value problems, Ann. Polon. Math. 76 (2001), 279-286.
[11] P. Kelevedjiev, N. Popivanov, Minimal and maximal solutions of two point boundary value problems for second order differential equations, Nonlinear Oscillations 4 (2001), 216-225.
[12] P. Kelevedjiev, N. Popivanov, Existence of solutions of boundary value problems for the equation $f\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$ with fully nonlinear boundary conditions, Annuaire de l'Universite de Sofia 94, 2000, 65-77.
[13] M. Koleva, N. Kutev, Monotone methods and minimal and maximal solutions for nonlinear ordinary differential equations, International series of numerical mathematics 97, Burkhaus Verlag Basel. (1991), 205-209.
[14] G. S. Ladde, V. Lakshmikantham, D.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Boston, Pitman, MA, 1985.
[15] V. Lakshmikantham, N. Shahzad, Method of quasilinearization for general second order boundary value problems, Nonlinear World. 2 (1995), 133-146.
[16] V. Lakshmikantham, N. Shahzad, Nieto, Methods of generalized quasilinearization for periodic boundary value problems, Nonlinear Analysis 27 (1996), 143-151.
[17] Y. Mao, J.Lee, Two point boundary value problems for nonlinear differential equations, Rocky Maunt. J. Math. 26 (1996), 1499-1515.
[18] Y. Mao, J. Lee, Two point boundary value problems for nonlinear differential equations, Rocky Mount. J. Math. 10 (1980), 35-58.
[19] S.A. Marano, On a boundary value problem for the differential equation $f\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$, J. Math. Anal. Appl. 182 (1994), 309-319.
[20] R. N. Mohapatra, K. Vajravelu, Y. Yin, An improved quasilinearization method for second order nonlinear boundary value problems, J. Math. Anal. Appl. 214 (1997), 55-62.
[21] W.V. Petryshyn, Solvability of various boundary value problems for the equation $x^{\prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right)-y$, Pacific J. Math. 122 (1986), 169-195.
[22] W. V. Petryshyn, Z.S. Yu, Solvability of Neumann BV problems for nonlinear second order ODE's which need not be solvable for the highest order derivative, J. Math. Anal. Appl. 91 (1983), 244-253.
[23] W. V. Petryshyn, Z.S. Yu, Periodic solutions of nonlinear second-order differential equations which are not solvable for the highest-order derivative, J. Math. Anal. Appl. 89 (1982), 462-488.
[24] M. N. Proter, H.F. Weinberger, Maximum Principle in Differential Equations, New Jearsy, Prentice-Hall, Inc., 1967.
[25] N. Shahzad, S. Malek, Remarks on generalized quasilinearization method for first order periodic boundary problems, Nonlinear World. 2 (1995), 247255.
[26] H. B. Thompson, Minimal solutions for two point boundary value problems, Rendiconti del circolo mathematico di Palermo, Serie II, Tomo XXXVII, (1988), 261-281.
[27] A. Tineo, Existence of solutions for a class of boundary value problems for the equation $x^{\prime \prime}=F\left(t, x, x^{\prime}, x^{\prime \prime}\right)$, Comment. Math. Univ. Carolin 29 (1988), 285-291.
[28] M.X. Wang, A. Cabada, J.J. Nieto, Monotone method for nonlinear second order periodic boundary value problems with Caratheodory functions, Ann. Polon. Math. 58 (1993), 221-235.
[29] Y. Yin, Monotone iterative technique and quasilinearization for some antiperiodic problems, Nonlinear World. 3 (1996), 253-266.
Myron K. Grammatikopoulos
Department of Mathematics, University of Ioannina
45110 Ioannina, Hellas, Greece
e-mail: mgrammat@cc.uoi.gr
Petio S. Kelevedjiev
Department of Mathematics, Technical University of Sliven
8800 Sliven, Bulgaria
e-mail: keleved@mailcity.com

[^0]: * Mathematics Subject Classifications: 34B15.

 Key words: Boundary-value problems, minimal and maximal solutions, monotone method, barrier strips.
 (C)2003 Southwest Texas State University.

 Submitted December 12, 2002. Published February 28, 2003.

