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Minimal and maximal solutions for two-point

boundary-value problems ∗

Myron K. Grammatikopoulos & Petio S. Kelevedjiev

Abstract

In this article we consider a boundary-value problem for the equation
f(t, x, x′, x′′) = 0 with mixed boundary conditions. Assuming the exis-
tence of suitable barrier strips, and using the monotone iterative method,
we obtain the minimal and maximal solutions.

1 Introduction

We apply the monotone iterative method to obtain minimal and maximal solu-
tions to the nonlinear boundary-value problem (BVP)

f(t, x, x′, x′′) = 0, 0 ≤ a ≤ t ≤ b,

x(a) = A, x′(b) = B,
(1.1)

where the scalar function f(t, x, p, q) is continuous and has continuous first
derivatives on suitable subsets of [a, b] × R3. For results, which guarantee the
existence of C2[a, b]-solutions to BVPs for the equation x′′ = f(t, x, x′, x′′)−y(t)
with various linear boundary conditions, see [6, 7, 17, 18, 21, 22, 23]. Concerning
the uniqueness results, we refer to [21]. A result, concerning the existence and
uniqueness of C2[a, b]-solutions to the BVP for the equation x′′ = f(t, x, x′, x′′),
with general linear boundary conditions, can be found in [27]. The results
of [19] guarantee the existence of W 2,∞[a, b]-solutions or of C2[a, b]-solutions
to the Dirichlet BVP for the equation f(t, x, x′, x′′) = 0, where the function
f(t, x, p, q)is defined on [a, b] × Rn × Rn × Y , and Y is a non-empty closed
connected or locally connected subset of Rn. Finally, the C2[a, b]-solvability of
BVPs for the equation f(t, x, x′, x′′) = 0 with fully nonlinear boundary condi-
tions is studied in [12].

Note that, in the literature, the monotone iterative method is applied on
BVPs for equations of the forms x′′ = f(t, x, x′) and (φ(x′))′ = f(t, x, x′) with
various boundary conditions (see, for example, [2, 3, 4, 5, 9, 10, 11, 13, 15,
20, 26, 28]). The sequences of iterates, considered in [2, 3, 4, 5, 10, 13, 28],
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converge to the extremal solutions, while the sequences of iterates, considered
in[9, 15, 19], converge to the unique solution. The first elements u0(t) and v0(t)
of such sequences of iterates usually are lower and upper solutions respectively
of the problems under consideration (see, for example, [2, 3, 4, 5, 10, 13, 28]. To
derive the needed monotone iterates, the authors of [2, 3, 4, 5, 10, 13, 15, 28]
use suitable growth conditions. For more applications of the monotone iterative
method, see citeb1,l1,l3,s1,y1.

In this article, following citek1, we obtain the extremal solutions to (1.1)
under assumption of the existence of suitable barrier strips (see Remarks 2.1
and 2.2 below), which immediately imply the first iterates u0(t) and v0(t). A
version of [12, Theorem 5.1] implies the existence of the next iterates, and a
suitable comparison result guarantees the monotone properties for the sequences
of iterates. Finally, the Arzela-Askoli’s theorem ensures the existence of the
extremal solutions of the problem (1.1) as limits of the sequences of iterates.

2 Basic hypotheses

The following four hypotheses will be a tool for obtaining our results.

(H1) There are constants K > 0, F, F1, L, L1 such that

Fa ≤ A ≤ La, F1 < F ≤ B ≤ L < L1 .

For the set T := {(t, x) : a ≤ t ≤ b, F t ≤ x ≤ Lt}, we assume that

f(t, x, p, q) + Kq ≥ 0

on
{
(t, x, p, q) : (t, x) ∈ T, p ∈ [L,L1], q ∈ (−∞, 0)

}
, and

f(t, x, p, q) + Kq ≤ 0

on
{
(t, x, p, q) : (t, x) ∈ T, p ∈ [F1, F ], q ∈ (0,∞)

}
.

Remark 2.1 Set Φ1(t, x, p, q) ≡ f(t, x, p, q)+Kq. Then, the strip ∆1 = [a, b]×
[L,L1], on which Φ1(t, x, p, q) ≥ 0, and the strip ∆2 = [a, b]× [F1, F ], on which
Φ1(t, x, p, q) ≤ 0, are such that the graph of the function x′(t), t ∈ [a, b], does
not cross ∆1 and ∆2, and is located between them. For this reason ∆1 and ∆2

are called barrier strips for x′(t), t ∈ [a, b].

(H2) There are constants G−
i , G+

i , H−
i , H+

i , i = 1, 2, such that

G+
2 > G+

1 ≥ 2C, G−
2 > G−

1 ≥ 2C,

H+
2 < H+

1 ≤ −2C, H−
2 < H−

1 ≤ −2C,

where C = max{|L|, |F |}/(b− a), f(t, x, p, q) and fq(t, x, p, q) are contin-
uous and fq(t, x, p, q) < 0 for

(t, x, p, q) ∈ [a, b]× [m1 − ε, M1 + ε]× [F − ε, L + ε]× [m2 − ε, M2 + ε],
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where m1 = min{Fa, Fb} M1 = max{La,Lb}, m2 = min
{
H+

2 ,H−
2

}
,

M2 = max
{
G+

2 , G−
2

}
, and ε > 0 is fixed and such that

H+
1 > H+

2 + ε, H−
1 > H−

2 + ε, G+
2 > G+

1 + ε, G−
2 > G−

1 + ε. (2.1)

ft(t, x, p, q), fx(t, x, p, q) and fp(t, x, p, q) are continuous for (t, x, p, q) in
[a, b]× [m1,M1]× [F,L]× [m2,M2];

ft(t, x, p, q) + fx(t, x, p, q)p + fp(t, x, p, q)q ≥ 0

for (t, x, p, q) in [a, b]× [m1,M1]× [F,L]×
(
[H+

2 ,H+
1 ] ∪ [G+

1 , G+
2 ]

)
, and

ft(t, x, p, q) + fx(t, x, p, q)p + fp(t, x, p, q)q ≤ 0

for (t, x, p, q) in [a, b]× [m1,M1]× [F,L]×
(
[H−

2 ,H−
1 ] ∪ [G−

1 , G−
2 ]

)
, where

F and L are the constants of H1.

Remark 2.2 Set Φ2(t, x, p, q) ≡ ft(t, x, p, q) + fx(t, x, p, q)p + fp(t, x, p, q)q.
Then, the pair of strips Ω1 = [a, b]×([H+

2 ,H+
1 ]∪[G+

1 , G+
2 ]), where Φ2(t, x, p, q) ≥

0, and the pair of strips Ω2 = [a, b]×([H−
2 ,H−

1 ]∪[G−
1 , G−

2 ]), where Φ2(t, x, p, q) ≤
0, are such that the graph of the function x′′(t), t ∈ [a, b], can not cross the outer
strips, of the four such ones, defined by Ω1 and Ω2. For this reason the outer
strips of Ω1 and Ω2 are called barrier strips for x′′(t), t ∈ [a, b].

(H3) For m3 = min{H+
1 ,H−

1 } and M3 = max{G+
1 , G−

1 }

h(λ, t, x, p, m3 − ε)h(λ, t, x, p, M3 + ε) ≤ 0

for (λ, t, x, p) in [0, 1] × [a, b] × [m1 − ε, M1 + ε] × [F − ε, L + ε], where
h(λ, t, x, p, q) = (λ− 1)Kq +λf(t, x, p, q), F,L,K are the constants of H1,
and H+

1 , H−
1 , G+

1 , G−
1 , C, m1, M1, and ε are as in H2.

(H4) For (t, x, p, q) in T×[F,L]×[min{H+
1 ,H−

1 },max{G+
1 , G−

1 }], fx(t, x, p, q) ≥
0, where the trapezoid T and the constants F and L are as in H1, and
H+

1 , H−
1 , G+

1 and G−
1 are the constants in H2, and m3 and M3 are as in

H3.

3 Main result

For a function y(t) ∈ C[a, b] bounded on [a, b], we define a mapping

Ay = x,

where x(t) ∈ C2[a, b] is a solution to the BVP

f(t, y(t), x′, x′′) = 0, t ∈ [a, b],
x(a) = A, x′(b) = B.

(3.1)



4 Minimal and maximal solutions EJDE–2003/21

We will show that under the hypotheses H1, H2, and H3, the map A is uniquely
determined. For this reason, we consider two sequences {un} and {vn}, n =
0, 1, . . . , defined by

un+1 = Aun and vn+1 = Avn,

where u0 = Ft, v0 = Lt, t ∈ [a, b], and F and L are as in H1. Now we formulate
our main result.

Theorem 3.1 Under hypotheses H1–H4, there are sequences {un} and {vn},
n = 0, 1, . . . , such that for n → +∞: un → um, vn → vM and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ um ≤ x ≤ vM ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0,

where um(t) and vM (t) are the minimal and maximal solutions of the BVP (1.1)
respectively, and x(t) ∈ C2[a, b] is a solution of (1.1).

The proof of this theorem can be found at the end of this article and is based
on the auxiliary results, which we present in the next section.

4 Auxiliary results

We begin this section with an existence result, which is a modification of [8,
Theorem 6.1, Chapter II]. Namely, we consider the family of BVPs

Kx′′ = λ
(
Kx′′ + f(t, y(t), x′, x′′)

)
, t ∈ [a, b],

x(a) = A, x′(b) = B,
(4.1)

where λ ∈ [0, 1] and K > 0.

Lemma 4.1 Assume that there are constants Qi, i = 0, 1, . . . , 5, independent
of λ such that

(i) For each solution x(t) ∈ C2[a, b] of (4.1) it holds

Q0 < x(t) < Q1, Q2 < x′(t) < Q3, Q4 < x′′(t) < Q5, t ∈ [a, b].

Also assume that:

(ii) f(t, x, p, q) and fq(t, x, p, q) are continuous, and fq(t, x, p, q) < 0 for all
(t, x, p, q) in [a, b]× [Q0, Q1]× [Q2, Q3]× [Q4, Q5]

(iii) h(λ, t, x, p, Q4)h(λ, t, x, p, Q5) ≤ 0 for (λ, t, x, p) in Λ := [0, 1] × [a, b] ×
[Q0, Q1]× [Q2, Q3], where h(λ, t, x, p, q) = (λ− 1)Kq + λf(t, x, p, q).

Then the BVP (3.1) has a C2[a, b]-solution for each y(t) ∈ C[a, b] such that
Q0 < y(t) < Q1, t ∈ [a, b].
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Proof In view of (ii) and (iii), we conclude that there is a unique function
G(λ, t, x, p) which is continuous on Λ and such that

q = G(λ, t, x, p) for (λ, t, x, p) ∈ Λ

is equivalent to the equation

h(λ, t, x, p, q) = 0 on Λ× [Q4, Q5].

Note that h(0, t, x, p, 0) = 0 yields

G(0, t, x, p) = 0 for (t, x, p) ∈ [a, b]× [Q0, Q1]× [Q2, Q3]. (4.2)

Thus, the family (4.1) is equivalent to the family of BVPs

x′′ = G(λ, t, y(t), x′), t ∈ [a, b],
x(a) = A, x′(b) = B,

(4.3)

where λ ∈ [0, 1]. Now, define the set

U =
{
x(t) ∈ C2[a, b] : x(t) ∈ (Q0, Q1), x′(t) ∈ (Q2, Q3), x′′(t) ∈ (Q4, Q5)

}
,

which is an open subset of the convex set C2
Q[a, b] of the Banach space C2[a, b]

and consider the map N : C2
Q[a, b] → C[a, b], defined by

Nx = x′′,

where C2
Q[a, b] = {x ∈ C2[a, b] : x(a) = A, x′(b) = B}. It is easy to see that the

map S : C2
Q0

[a, b] → C[a, b], defined by

Sx = x′′

with C2
Q0

[a, b] = {x ∈ C2[a, b] : x(a) = 0, x′(b) = 0}, is one-to-one and
the problem Sx = 0, x(a) = A, x′(b) = B, has a unique solution l. Then
N−1 : C[a, b] → C2

Q[a, b] exists, is continuous, and moreover

N−1s = S−1s + l.

Let Hλ : U → C2
Q[a, b] be defined by

Hλx = N−1Gλj(x), λ ∈ [0, 1],

where j : C2
Q[a, b] → C1[a, b] is defined by jx = x, Gλ : C1[a, b] → C[a, b] is

defined by
(Gλx) (t) = G

(
λ, t, y(t), x′(t)

)
, λ ∈ [0, 1] .

Clearly, Hλ is a compact homotopy, because j is a completely continuous em-
beding, and Gλ and N−1 are continuous. Moreover, Hλx = x implies

x = N−1Gλj(x).
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Hence, by the definition of N−1, we have

x = S−1Gλj(x) + l.

Finally, since Sl = 0, it follows that

Sx = Gλj(x).

Thus, the fixed points of Hλ are solutions to (4.3) and obviouslyHλ has no
fixed points on ∂U.In view of (4.2), the map H0, which has the form H0x = l,
is constant. Moreover, l, as the unique solution of (4.1)0, belongs to the set
U . Hence, by [8, Theorem 2.2], the map H0 is essential. The topological
transversality theorem of [8] implies that H1 is also essential, i.e. for λ = 1
(4.3) has a solution. Moreover, for λ = 1 (4.3) coincides with (3.1). Therefore,
the problem (3.1) has a solution. The proof of the lemma is complete. ♦

To obtain our next auxiliary results, we introduce the following two sets

V = {y(t) ∈ C[a, b] : Ft ≤ y(t) ≤ Lt, t ∈ [a, b]},
V1 = {y(t) ∈ C1[a, b] : Ft ≤ y(t) ≤ Lt, F ≤ y′(t) ≤ L, t ∈ [a, b]},

where the constants L and F are as in H1. Then we formulate the following
results.

Lemma 4.2 Let H1 hold and x(t) ∈ C2[a, b] be a solution to (4.1) with y(t) ∈
V . Then the following statements hold:

(i) If there is an interval T1 ⊆ [a, b] such that

L ≤ x′(t) ≤ L1 for t ∈ T1, (4.4)

then x′′(t) ≥ 0 for t ∈ T1.

(ii) If there is an interval T2 ⊆ [a, b] such that F1 ≤ x′(t) ≤ F for t ∈ T2, then
x′′(t) ≤ 0 for t ∈ T2.

Proof Since the proofs of (i) and (ii) are similar, it is sufficient to show that
(4.4) implies x′′(t) ≥ 0 for t ∈ T1. Indeed, the assertion is true for λ = 0. Now,
let λ ∈ (0, 1] and assume that there is a t0 ∈ T1 such that x′′(t0) < 0. Then

0 > Kx′′(t0) = λ [Kx′′(t0) + f(t0, x(t0), x′(t0), x′′(t0))] ≥ 0.

This contradiction proves the assertion. ♦

Lemma 4.3 Let H1 hold, and x(t) ∈ C2[a, b] be a solution to (4.1) with y(t) ∈
V . Then

Ft ≤ x(t) ≤ Lt, F ≤ x′(t) ≤ L for t ∈ [a, b].
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Proof Consider the sets

Y0 = {t ∈ [a, b] : L < x′(t) ≤ L1} and Y1 = {t ∈ [a, b] : F1 ≤ x′(t) < F}

and suppose that they are not empty. Then, using the continuity of x′(t) and
the inequality F ≤ x′(b) ≤ L, we easily conclude that there are closed intervals
[t0, τ0] ⊆ Y0 and [t1, τ1] ⊆ Y1 such that

x′(t0) > x′(τ0) and x′(t1) < x′(τ1). (4.5)

On the other hand, by Lemma 4.2, we have

x′′(t) ≥ 0 for t ∈ [t0, τ0] and x′′(t) ≤ 0 for t ∈ [t1, τ1]

and therefore, we have

x′(t0) ≤ x′(τ0) and x′(t1) ≥ x′(τ1).

But this contradicts (4.5). The obtained contradiction shows that Y0 and Y1are
empty, and so we see that

F ≤ x′(t) ≤ L for t ∈ [a, b].

Integrating this expression from a to t and using the fact that Fa ≤ A ≤ La,
we get

Ft ≤ x(t) ≤ Lt, t ∈ [a, b]

which concludes the proof. ♦

Remark 4.4 Let x(t) ∈ C2[a, b] be a solution to (1.1). Then, in view of Lemma
4.3, if F = L, it follows thatx′(t) = B, t ∈ [a, b]. Now, using Fa ≤ A ≤ La,
we see that x(t) = Bt, t ∈ [a, b], is the unique C2[a, b]-solution to the problem
(1.1).

Lemma 4.5 Let H1 and H2 hold, and x(t) ∈ C2[a, b] be a solution to (4.1) with
y(t) ∈ V1. Then

m3 ≤ x′′(t) ≤ M3, t ∈ [a, b],

and there is a constant D independent of λ such that

|x′′′(t)| ≤ D for t ∈ [a, b].

Proof By the mean value theorem, there is a ξ ∈ (a, b) such that x′′(ξ) =
[x′(b)− x′(a)]/(b− a). Since Lemma 4.3 implies

F ≤ x′(t) ≤ L for t ∈ [a, b], (4.6)

we see that
x′′(ξ) ≤ 2C ≤ G+

1 , (4.7)
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where C = max{|L|, |F |}/(b− a). Now suppose that the set

Y =
{
t ∈ [a, ξ] : G+

1 < x′′(t) ≤ G+
2

}
is not empty. The continuity of x′′(t) and (4.7) imply that there is a closed
interval [t0, τ0] ⊆ Y such that

x′′(t0) > x′′(τ0). (4.8)

Since (4.6) holds for t ∈ [t0, τ0] and

G+
1 < x′′(t) ≤ G+

2 for t ∈ [t0, τ0],
m1 ≤ Ft ≤ y(t) ≤ Lt ≤ M1 for t ∈ [t0, τ0],

F ≤ y′(t) ≤ L for t ∈ [t0, τ0],
(4.9)

in view of H2, we have

Ψ1(t) ≡ fq

(
t, y(t), x′(t), x′′(t)

)
< 0, t ∈ [t0, τ0],

and for t ∈ [t0, τ0],

Ψ2(t) ≡ft

(
t, y(t), x′(t), x′′(t)

)
+ fx

(
t, y(t), x′(t), x′′(t)

)
y′(t)

+ fp

(
t, y(t), x′(t), x′′(t)

)
x′′(t) ≥ 0.

Thus, using the last two inequalities and the continuity of ft, fx, fp and fq on
[t0, τ0], we conclude that x′′′ is continuous on [t0, τ0] and

x′′′(t) = λΨ2 (t)/[K(1− λ)− λΨ1(t)] ≥ 0 for t ∈ [t0, τ0]. (4.10)

Consequently, x′′(t0) ≤ x′′(τ0), which contradicts (4.8). Thus,

x′′(t) ≤ G+
1 for t ∈ [a, ξ].

The inequality H−
1 ≤ x′′(t), t ∈ [a, ξ] can be obtained in the same manner.

Similarly, it is easy to show that

H+
1 ≤ x′′(t) ≤ G−

1 , t ∈ [ξ, b].

Finally, using (4.6), (4.9), the fact that x′′is bounded on [a, b] and the continuity
of the partial derivatives of f(t, x, p, q) on the set [a, b] × [m1,M1] × [F,L] ×
[m3,M3], from (4.10) it follows that there is a constant D independent of λ such
that

|x′′′(t)| ≤ D for t ∈ [a, b].

The proof of the lemma is complete. ♦

Lemma 4.6 Suppose that H1, H2 and H3 hold. Then the BVP (3.1) has a
C2[a, b]-solution, if y(t) ∈ V1.
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Proof Let x(t) ∈ C2[a, b] be a solution to (4.1)λ. Then, by Lemma 4.3, we
have

F − ε < x′(t) < L + ε for t ∈ [a, b]
m1 − ε < x(t) < M1 + ε for t ∈ [a, b],

while, by Lemma 4.5,

m3 − ε < x′′(t) < M3 + ε for t ∈ [a, b],

where ε > 0 is as in H2. Thus, the condition (i) of Lemma 4.1 holds for
Q0 = m1 − ε, Q1 = M1 + ε, Q2 = F − ε, Q3 = L + ε, Q4 = m3 − ε and
Q5 = M3 + ε. Moreover, from (2.1) and H3 it follows that the conditions (ii)
and (iii) of Lemma 4.1 are satisfied. Also,

m1 − ε < y(t) < M1 + ε for t ∈ [a, b].

So, we can apply Lemma 4.1 to conclude that the problem (3.1) has a solution
in C2[a, b]. The proof of the lemma is complete. ♦

We need the following two lemmas which are adopted from [24].

Lemma 4.7 ([24, Chapter I, Theorem 1]) Suppose φ(t) satisfies the differ-
ential inequality

φ′′ + g(t)φ′ ≥ 0 for a < t < b, (4.11)

with g(t) a bounded function. If φ(t) ≤ M in (a, b) and if the maximum M of
φ is attained at an interior point c of (a, b), then φ ≡ M .

Lemma 4.8 ([24, Chapter I, Theorem 2]) Suppose φ(t) is a nonconstant
function which satisfies the inequality (4.11) and has one-sided derivatives at
a and b, and suppose g is bounded on every closed subinterval of (a, b). If the
maximum of φ occurs at t = a and g is bounded below at t = a, then φ′(a) < 0.
If the maximum occurs at t = b and g is bounded above at t = b, then φ′(b) > 0.

Lemma 4.9 Suppose that φ ∈ C2(a, b) ∩ C1[a, b] satisfies the inequality

φ′′(t) + g(t)φ′(t) ≥ 0 for t ∈ (a, b),

where g(t) is bounded on (a, b). If φ(a) ≤ 0 and

φ′(b) ≤ 0, (4.12)

then

φ(t) ≤ 0 for t ∈ [a, b]. (4.13)
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Proof First, assume that φ(t)achieves its maximum at t0 ∈ (a, b). By Lemma
4.7, for t ∈ [a, b] we obtain φ(t) ≡ φ(t0) = φ(a) ≤ 0 and so (4.13) holds.

Next, suppose that φ(t) achieves its maximum at the ends of the interval
[a, b]. If we assume φ(t) ≤ φ(b), t ∈ [a, b], the application of Lemma 4.8 shows
that φ′(b) > 0, which contradicts (4.12). Thus, by our assumtions, φ(t) ≤
φ(a) ≤ 0, t ∈ [a, b], and so (4.13) follows. The proof is complete. ♦

In the last two lemmas we use the map A defined in the section 3.

Lemma 4.10 Under assumptions H1, H2, and H3, for any y ∈ V1, the image
x by the map A exists and it is unique.

Proof The existence of the image of x follows from Lemma 4.6. In order to
see that x is unique, fix y and assume thatzis an other image of y by A and
consider the function φ(t) = x(t)− z(t), t ∈ [a, b]. Then, it is evident that

f
(
t, y(t), x′(t), x′′(t)

)
− f

(
t, y(t), z′(t), z′′(t)

)
= 0, t ∈ [a, b].

Next, we construct the equality

f
(
t, y(t), x′(t), x′′(t)

)
− f

(
t, y(t), z′(t), x′′(t)

)
+f

(
t, y(t), z′(t), x′′(t)

)
− f

(
t, y(t), z′(t), z′′(t)

)
= 0,

which can be rewritten in the form I1(t)φ′(t) + I2(t)φ′′(t) = 0, where

I1(t) =
∫ 1

0

fp

(
t, y(t), z′(t) + θ(x′(t)− z′(t)), x′′(t)

)
dθ,

I2(t) =
∫ 1

0

fq

(
t, y(t), z′(t), z′′(t) + θ(x′′(t)− z′′(t))

)
dθ.

Hence, the function φ(t) is a solution to the BVP

φ′′(t) +
I1(t)
I2(t)

φ′(t) = 0, t ∈ [a, b],

φ(a) = 0, φ′(b) = 0.

Moreover, it is easy to conclude that φ(t) ≡ 0, t ∈ [a, b], is the unique solution
of the above BVP. Consequently, x(t) ≡ z(t), t ∈ [a, b]. The proof of the lemma
is complete. ♦

Lemma 4.11 Under the hypotheses H1–H4, if y1(t), y2(t) ∈ V1 are such that
y1(t) ≤ y2(t) for t ∈ [a, b], then

x1(t) ≤ x2(t) for t ∈ [a, b],

where xi = Ayi, i = 1, 2.
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Proof Observe that, by Lemma 4.3, we have F ≤ x′1(t) ≤ L, t ∈ [a, b], and,
by Lemma 4.5,

m3 ≤ x1
′′(t) ≤ M3, t ∈ [a, b].

Moreover,
Ft ≤ y1(t) ≤ y2(t) ≤ Lt, t ∈ [a, b].

Thus, from fx(t, x, p, q) ≥ 0 for (t, x, p, q) in T × [F,L]× [m3,M3] it follows that

0 = f
(
t, y1(t), x′1(t), x

′′
1(t)

)
≤ f

(
t, y2(t), x′1(t), x

′′
1(t)

)
, t ∈ [a, b].

Hence, for t ∈ [a, b] we have

f
(
t, y2(t), x′2(t), x

′′
2(t)

)
− f

(
t, y2(t), x′1(t), x

′′
1(t)

)
≤ 0

and then, as in Lemma 4.10, we construct the inequality

f
(
t, y2(t), x′1(t), x

′′
1(t)

)
− f

(
t, y2(t), x′2(t), x

′′
1(t)

)
+f

(
t, y2(t), x′2(t), x

′′
1(t)

)
− f

(
t, y2(t), x′2(t), x

′′
2(t)

)
≥ 0

from which for φ(t) = x1(t)− x2(t), t ∈ [a, b], we find

φ′′(t) +
J1(t)
J2(t)

φ′(t) ≥ 0, t ∈ [a, b],

where

J1(t) =
∫ 1

0

fp

(
t, y2(t), x′2(t) + θ(x′1(t)− x′2(t)), x

′′
1(t)

)
dθ,

J2(t) =
∫ 1

0

fq

(
t, y2(t), x′2(t), x

′′
2(t) + θ(x′′1(t)− x′′2(t))

)
dθ.

Furthermore, φ(a) = 0, φ′(b) = 0. Finally, applying Lemma 4.9, we see that
φ(t) ≤ 0 for t ∈ [a, b], which completes the proof. ♦

5 Proof of Theorem 3.1

Consider the sequences {un } and {vn }, defined by

un+1 = Aun and vn+1 = Avn, n = 0, 1, . . .

In view of Lemma 4.6, from Lemma 4.3 it follows that Ft = u0 ≤ u1 and
v1 ≤ v0 = Lt. Moreover, Lemma 4.11 and induction arguments imply that

un−1 ≤ un, vn ≤ vn−1, n = 1, 2, . . .

On the other hand, since u0 ≤ v0, by Lemma 4.11 and induction arguments, we
conclude that un ≤ vn, n = 0, 1, . . . . ¿From this observation it follows that

u0 ≤ un ≤ v0, n = 0, 1, . . . .
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Therefore, {un} is uniformly bounded. Furthermore, since, by Lemma 4.3,
{u′n } is uniformly bounded, we see that {un } is equicontinuous. Finally,
since, by Lemma 4.5, {u′′′n } is uniformly bounded, it follows that the sequence
{u′′n} is uniformly bounded and equicontinuous. Thus, we can apply the Arzela-
Ascoli theorem to conclude that there are a subsequence {uni

} and a function
u ∈ C2[a, b] such that {uni

}, {u′ni
} and {u′′ni

} are uniformly convergent on [a, b]
to u, u′ and u′′ respectively. Now, using the fact that uni = Auni−1can be
rewritten equivalently in the form

uni(t) =
1
K

∫ t

a

( ∫ r

b

(
Ku′′ni

(s) + f(s, uni−1(s), u
′
ni

(s), u′′ni
(s))

)
ds

)
dr

+ B(t− a) + A,

letting i → +∞, we obtain

u(t) =
1
K

∫ t

a

( ∫ r

b

(
Ku′′(s) + f(s, u(s), u′(s), u′′(s))

)
ds

)
dr + B(t− a) + A,

from which it follows that u(t) is a solution to the BVP (1.1).
Remark that, if x(t) is a solution of (1.1), then, by Lemma 4.3, we have

u0(t) ≤ x(t) for t ∈ [a, b]. Applying Lemma 4.11 (it is possible, because x = Ax),
by induction we obtain

un(t) ≤ x(t), t ∈ [a, b], n = 0, 1, . . . ,

and then u(t) ≤ x(t), t ∈ [a, b], which holds for each solution x(t) ∈ C2[a, b] of
the problem (1.1). Consequently, it follows that

u(t) ≡ um(t), t ∈ [a, b].

By similar arguments, we conclude that lim vn = vM (t), t ∈ [a, b]. Thus, the
proof is complete. ♦
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