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BOUNDARY-VALUE PROBLEMS FOR FIRST AND SECOND
ORDER FUNCTIONAL DIFFERENTIAL INCLUSIONS

SHIHUANG HONG

Abstract. This paper presents sufficient conditions for the existence of solu-

tions to boundary-value problems of first and second order multi-valued dif-

ferential equations in Banach spaces. Our results obtained using fixed point
theorems, and lead to new existence principles.

1. Introduction

This paper is concerned with the existence of solutions for the multi-valued
functional differential systems

x′ ∈ F (t, xt), a.e. t ∈ [0, T ]
x0 = xT

(1.1)

and
x′′ ∈ F (t, xt, x′(t)), a.e. t ∈ [0, T ]

x(t) = ϕ(t), t ∈ [−r, 0], x(T ) = η,
(1.2)

where F : J ×C([−r, 0], E) → P(E) is a multi-valued map, J = [0, T ] is a compact
real interval, E is a Banach space with norm | · |, ϕ ∈ C([−r, 0], E), η ∈ E and
P(E) is the family of all subsets of E.

For a continuous function x defined on the interval [−r, T ] and any t ∈ J , we
denote by xt the element of C([−r, 0], E) defined by

xt(s) = x(t+ s), s ∈ [−r, 0].

Here xt(·) represents the history of the state from time t− r to the time t.
The existence of solutions for functional differential equations in Banach space

has been widely investigated. We refer for instance to [4-6, 9, 10]. Existence results
for functional differential inclusions received much attention in the recent years.
We refer to [1-3]. For instance, Benchohra and Ntouyas have studied initial and
boundary problems for functional differential inclusions in [1] on a compact interval
with the map F satisfying Lipschitz’s contractive conditions of multivalued map and
for Neutral functional differential and integrodifferential inclusions in [2].

This paper is organized as follows. In section 2, we introduce some definitions
and preliminary facts from multivalued analysis which are used later. In section 3,
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we give existence results of positive and negative solutions on compact intervals for
the first order boundary value problem (1.1). In section 4, some existence theorems
are given for the second order boundary value problem (1.2).

The fundamental tools used in the existence proofs of all the above mentioned
works are essentially fixed point theorems: Covitz and Nadler’s in [1], Martelli’s
in [2]. Here we use a fixed point theorem (Lemma 2.2) in ordered Banach space.
However, the hypotheses imposed on the multivalued map F and methods of the
proof in this paper are different from all the above cited works.

2. Preliminaries

In this section, we introduce notations, definitions and preliminaries facts from
multi-valued analysis which are used throughout this paper.

Let (E, | · |) be a Banach space with a partial order introduced by a cone P of
E, that is, x ≤ y if and only if y − x ∈ P , x < y if and only if x ≤ y and x 6= y. A
cone P is said to be normal if there exists a constant N > 0 such that |x| ≤ N |y|
for any x, y ∈ P with x ≤ y.

The set C([−r, 0], E) is a Banach space consisting of all continuous functions
from [−r, 0] to E with the norm

‖x‖ = sup{|x(t)| : −r ≤ t ≤ 0}.
For any x, y ∈ C([−r, b], E) for b ≥ 0, define x ≤ y if and only if x(t) ≤ y(t) for
each t ∈ [−r, b], x < y if and only if x ≤ y and there exists some t ∈ [−r, b] such
that x(t) 6= y(t).

Let L1(J,E) denote the Banach space of measurable functions x : J → E which
are Bochner integrable with norm

‖x‖1 =
∫ T

0

|x(t)|dt.

The partial order in L1(J,E) is defined as x ≤ y ⇔ x(t) ≤ y(t) a.e. for t ∈ J .
AC(J,E) denotes the Banach space of absolutely continuous functions defined

on J with values in E.
We denote by bcf(E) the set of all bounded, closed, convex and nonempty subsets

of E.
A multi-valued map G : E → 2E is said to be convex (closed) if G(x) is convex

(closed) for all x ∈ E. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is
bounded in E for any bounded set B of E (i.e. supx∈B{sup{|y| : y ∈ G(x)}} <∞).

the function G is called upper semi-continuous (u.s.c.) on E if for each u ∈ E
the set G(u) is a nonempty, closed subset of E, and if for each open set B of E
containing G(u), there exists an open neighbourhood V of u such that G(V ) ⊆ B.

The function G is said to be completely continuous if G(B) is relatively compact
for every bounded subset B ⊆ E.

For two points x and y of E, we write G(x) ≤ G(y) if for any u ∈ G(x) there
exists v ∈ G(y) such that u ≤ v.

The function G has a fixed point if there is x ∈ E such that x ∈ G(x).
The function G : J → bcf(E) is said to be measurable if for each x ∈ E the

distance between x and G(t) is a measurable function on J .
Throughout this paper θ stands for the zero element of E.
Our results are based on Lemma 2.2 which will be obtained by the following

fixed point theorem [7] for multi-valued operators.
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Theorem 2.1. Let E be a Banach space and G : E → bcf(E) be a condensing
map. If the set

M := {y ∈ E : λy ∈ Gy for some λ > 1}
is bounded, then G has a fixed point.

Lemma 2.2. Let P be a closed and convex cone of E and G : P → bcf(P ) a u.s.c.
and completely continuous multi-valued map. If

α := sup{|x| : x ∈ P and there exists λ ∈ (0, 1) such that x ∈ λG(x)} <∞, (2.1)

where λG(x) = {λg : g ∈ G(x)}, then G has a fixed point x ∈ P .

Proof. Define the map G̃ : E → bcf(P ) by

G̃(x) =

{
G(x) if x ∈ P,
G(θ) if x /∈ P .

Evidently, G̃ is u.s.c. and completely continuous on E, therefore, G̃ is condensing.
Let β = sup{|y| : y ∈ G(θ)}, then for any y belongs to M given in the above
theorem, we have y ∈ λG̃(y) for some λ ∈ (0, 1). If y ∈ P , then |y| ≤ α. Otherwise,
y ∈ λG(θ), which yields that |y| ≤ β. Hence, M is bounded. By the theorem G̃

has a fixed point x. From G̃(x) ∈ bcf(P ) it follows that x ∈ P . �

3. First Order Boundary Value Problems

In this section we consider the existence of positive and negative solutions for
first order boundary value problems of the functional differential inclusion (1.1).
Definition A function x : [−r, 0] → E is a solution of (1.1) if x ∈ C([−r, T ], E) ∩
AC([0, T ], E) and satisfies the differential inclusion (1.1) a.e. on [0, T ].

Let us impose the following hypotheses on the multi-valued map F : J × E →
bcf(E).

(H1) (t, u) → F (t, u) is measurable with respect to t for each u ∈ C([−r, 0], E),
u.s.c. with respect to u for each t ∈ J and for each fixed u ∈ C([−r, 0], E)
the set

SF (u) = {g ∈ L1(J,E) : g(t) ∈ F (t, u) a.e. t ∈ J}
is nonempty.

(H2) There exist functions α ∈ L1(J,R+), β ∈ L1(J,E) and δ ∈ [0, 1] such that
|α(t)| > 0 for all t ∈ J and

β(t)[|ψ(0)|δ + 1] ≤ f ≤ α(t)ψ(0)

for all t ∈ J , ψ ∈ C([−r, 0], P ) and f ∈ SF (ψ).
(H3) There exists a real number k > 0 such that

∫ T
0
f(t)dt > θ for any f ∈ SF (x)

with

SF (x) = {g ∈ L1(J,E) : g(t) ∈ F (t, xt) a.e. t ∈ J}
for all x ∈ C([−r, T ], P ) with supt∈J |x(t)| > k.

(H4) For each bounded B ⊂ C([−r, T ], E), u ∈ B and t ∈ J the set{∫ T

0

[f(s)− α(s)u(s)]ds : f ∈ SF (u)

}
is relatively compact.
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Remark 3.1. If F is measurable, then the function Y : J → R, defined by

Y (t) = inf{|v| : v ∈ F (t, u)},

belongs to L1(J, (R)). So SF (u) is nonempty [12].

Remark 3.2. Let E = R, h(t) ∈ L1(J,R+), G : R →bcf([0, ρ]), F (t, ψ) =
h(t)ψ(0)G(ψ(−r)) for t ∈ J, ψ ∈ C([−r, 0],R) and G continuous, then F satisfies
the condition (H1). Take α(t) = ρh(t), β(t) = 0, δ = 0, then F satisfies the
condition (H2). For any f ∈ SF (x), by Fatou’s theorem we obtain that condition
(H3) holds.

Theorem 3.3. Assume that closed convex cone P is normal. If the conditions
(H1)–(H4) hold, then (1.1) has at least one (positive) solution x on [−r, T ] with
x(t) ∈ P .

Proof. Step 1. Let X = {x ∈ C(J,E) : x(0) = x(T )} with the norm

‖x‖J = sup{|x(t)| : 0 ≤ t ≤ T}

and X+ = {x ∈ X : x(t) ∈ P for t ∈ J}. It is obvious that X is a Banach space
and X+ is a closed convex cone of X, moreover, x ∈ X+ if x(t) ≥ θ for every t ∈ J .
Let us introduce the differential operator L : AC(J,X) → L1(J,E) by

Lx = x′ − α(t)x

with α given in (H2). From the well known results of ordinary differential equations
it follows that for any y ∈ L1(J,E) the boundary value problem

Lx(t) = y(t), x(0) = x(T )

has an unique solution x := Ky ∈ AC(J,X) with the operator K defined by

(Ky)(t) =
∫ T

0

G(t, s)y(s)ds for t ∈ J, (3.1)

where the Green function G(t, s) satisfies

(α̃(T )− 1)α̃(t)G(t, s) =

{
α̃(T )α̃(s), s ≤ t

α̃(s), s > t
(3.2)

with α̃(t) = exp(−
∫ t
0
α(s)ds). Thus we have that K = L−1 and (3.1) guarantees

that K is a bounded linear operator from L1(J,E) to X.
Step 2. For any x ∈ X+, from x(0) = x(T ) it follows that x can uniquely be
extended to a T−periodic function on R, written as x∗. Let x̃ = x∗|[−r,T ] and
xt = x̃t for each t ∈ J . It immediately follows that xt ∈ C([−r, 0], P ), x0 =
xT , xt(0) = x(t), ‖xt‖ ≤ ‖x‖J and t→ xt is continuous for t ∈ J .

For any x ∈ X+, define the multi-valued map as follows:

H(t, x) = {f(t)− α(t)x(t) : f ∈ SF (x), t ∈ J}

with SF (x) given in (H3). By (H1) we have that H(t, x) is measurable with respect
to t. For each g ∈ H(t, x), by (H2) we have that

β(t)[|x(t)|δ + 1]− α(t)x(t) ≤ g(t) ≤ θ, (3.3)

This inequality and the normality of P imply that

|g(t)| ≤ N |β(t)|[|x(t)|δ +1]+Nα(t)|x(t)| ≤ N |β(t)|(‖x‖δJ +1)+Nα(t)‖x‖J , (3.4)



EJDE–2003/32 BOUNDARY-VALUE PROBLEMS 5

here N is the normal constant of P . This implies that H : X+ → P(L1(J,E)) is
bounded.
Step 3. Let A = KH be a multivalued map from X+ to X defined by

A(t, x) = KH(t, x) =
{ ∫ T

0

G(t, s)g(s)ds : g ∈ H(t, x)
}

for x ∈ X+ and t ∈ J . It is clear that A is bounded. Moreover, for any x ∈ X+

and h(t) ∈ A(t, x), by (3.1), (3.3), and G(t, s) ≤ 0, there exists g(t) ∈ H(t, x) for
t ∈ J such that

h(t) =
∫ T

0

G(t, s)g(s)ds ≥ θ.

This implies that h ∈ X+, i.e., A(t, x) ⊂ X+. It is easy to see that A(t, x) ⊂
AC(J,X). Thus, AX+ ⊂ AC(J,X) ∩X+.

Now, we are in a position to prove that A is a u.s.c. and completely continuous
multi-valued map with convex closed values.
A(t, x) is convex for each x ∈ X+. In fact, if h1, h2 ∈ A(t, x), then there exist

f1, f2 ∈ SF (x) such that for each t ∈ J we have

h1(t) =
∫ T

0

G(t, s)[f1(s)− α(s)x(s)]ds ,

h2(t) =
∫ T

0

G(t, s)[f2(s)− α(s)x(s)]ds .

Let 0 ≤ k ≤ 1. Then for each t ∈ J we have

(kh1 + (1− k)h2)(t) =
∫ T

0

G(t, s)[kf1(s) + (1− k)f2(s)− α(s)x(s)]ds.

Since SF (x) is convex (because F has convex values), so kh1 + (1− k)h2 ∈ A(t, x).
We next shall prove that A is a completely continuous operator. For any bounded

set M ⊂ X+, let Q = AM , m = supx∈M ‖x‖J , q = supz∈Q ‖z‖J . For any t, τ ∈
[0, T ] with t < τ and x ∈M , if z ∈ A(t, x), then there exists g ∈ H(t, x) such that
z =

∫ T
0
G(t, s)g(s)ds, hence z′ = α(t)z + g. By means of (3.4), we have

|z(τ)− z(t)| ≤
∫ τ

t

|z′(s)|ds

≤
∫ τ

t

[α(s)‖z‖J + |g(s)| ]ds

≤
∫ τ

t

[(m+Nq)α(s) +N |β(s)|(M δ + 1)]ds,

which shows that Q is equi-continuous on J . In virtue of (H4) together with the
Ascoli-Arzela theorem we can conclude that Q is a relatively compact subset in X,
therefore, A is completely continuous.

Finally, similar to [8] we can prove that A has closed graph. Hence, A is u.s.c.
(see [8]).
Step 4. To prove that the equations (1.1) has solutions, we show that A satisfies
(2.1). Suppose that this is not the case, then there exist (λn, xn) ∈ (0, 1)×X+ such
that xn ∈ λnA(t, xn), µn = ‖xn‖J ≥ n for n = 1, 2, . . . . In Step 3 we proved that
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xn ∈ AC(J,X)∩X+. There exist fn ∈ SF (xn) such that xn = λnK(fn − αxn), i.e.
Lxn = λn(fn − αxn) for n = 1, 2, . . . , that is,

x′n(t) = (1− λn)α(t)xn(t) + λnfn(t, (xn)t). (3.5)

By integrating (3.5) with respect to t we obtain

θ = (1− λn)
∫ T

0

α(t)xn(t)dt+ λn

∫ T

0

fn(t, (xn)t)dt,

so ∫ T

0

fn(t, (xn)t)dt =
λn − 1
λn

∫ T

0

α(t)xn(t)dt ≤ θ for n = 1, 2, . . . . (3.6)

On the other hand, from the condition (H3), it follows that∫ T

0

fn(t, (xn)t)dt > θ

for large enough n. This contradicts (3.6), which completes the proof of (2.1). By
Lemma 2.2, A has a fixed point x ∈ X+, which is a solution to (1.1). The proof is
complete. �

Similarly we can prove the next theorem under the following assumptions:
(H’2) There exist functions α ∈ L1(J,R+), β ∈ L1(J,E) and δ ∈ [0, 1] satisfy

that |α(t)| > 0 for all t ∈ J and

β(t)[|ψ(0)|δ + 1] ≤ f ≤ −α(t)ψ(0)

for all t ∈ J , −ψ ∈ C([−r, 0], P ) and ∈ SF (ψ)
(H’3) There exists a real number k > 0 such that

∫ T
0
f(t)dt > θ for any f ∈ SF (x)

(see (H3)) if x = −y with supt∈J |x(t)| > k, where y ∈ C([−r, T ], P ) .

Theorem 3.4. Let the closed convex cone P be normal. Assume conditions (H1)–
(H4) and (H’2), (H’3) hold. Then (1.1) has at least one (negative) solution x on
[−r, T ] with −x(t) ∈ P .

Remark 3.5. Let r = 0, E = R, and F be a single valued function, then results
for ordinary differential equations in [11] can be deduced from Theorems 3.3 and
3.4. Therefore, the results presented in this section are the generalization and
improvement of the corresponding results in [11].

4. Second order Boundary Value Problems

In this section, we consider existence of solutions for (1.2). A function x ∈
C([−r, T ], E) is called the solution if x0 = ϕ x(T ) = η, for any t ∈ J , x′(t) exists
and is absolutely continuous and (1.2) is satisfied. The following hypotheses will
be used.

(H’1) The mapping (t, ψ, u) → F (t, ψ, u) is measurable with respect to t for each
(ψ, u) ∈ C([−r, 0], E)× E, u.s.c. with respect to (ψ, u) for each t ∈ J and
for each fixed (ψ, u) ∈ C([−r, 0], E)× E the set

SF (ψ,u) = {g ∈ L1(J,E) : g(t) ∈ F (t, ψ, u) for a.e. t ∈ J}

is nonempty.
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(H’4) For each bounded set B ⊂ C([−r, T ], E) × E, x ∈ C([−r, T ], E) with
(xt, x′(t)) ∈ B for t ∈ J , then the set{∫ T

0

[f(s)− α(s)x(s)]ds : f ∈ SF (x)

}
is relatively compact, where

SF (x) = {g ∈ L1(J,E) : g(t) ∈ F (t, xt, x′(t)) for a.e. t ∈ J}.

(H5) There exist α > 0, β ∈ L1(J,E), δ ∈ [0, 1) such that

β(t)[|ψ(0)− ξ(t)|δ + |y − µ|δ + 1] ≤ f ≤ α[ψ(0)− ξ(t)],

where f ∈ SF (ψ,y), ξ(t) = ϕ(0) + t
T [η − ϕ(0)], µ = η−ϕ(0)

T , t ∈ J, ψ ∈
C([−r, 0], E), y ∈ E, ψ(0) ≥ ξ(t).

Theorem 4.1. Assume that the closed convex cone P is normal. If the conditions
(H’1), (H3),(H’4) and (H5) hold, then (1.2) has at least one solution x on [−r, T ]
with x(t) ≥ ξ(t) (t ∈ J).

Proof. Step 1. Let z = x− ξ, then (1.2) is transformed into

z′′(t) ∈ F (t, zt + ξt, z
′(t) + µ) := F̃ (t, zt, z′(t)) t ∈ J,

z0 = ϕ− ξ0 := ϕ̂, z(T ) = θ.

Here ϕ̂ ∈ C([−r, 0], E) and ϕ̂(0) = θ. The condition (H5) implies that F̃ (t, ψ, y) =
F (t, ψ + ξt, y + µ) satisfies

β(t)[|ψ(0)|δ + |y|δ + 1] ≤ F̃ (t, ψ, y) ≤ αψ(0) ψ ∈ C([−r, 0], E), ψ(0) ∈ P.
Since x(t) ≥ ξ(t) is equivalent to z(t) ≥ θ, for the sake of convenience, we assume
that ϕ(0) = η = θ, which shows that ξ(t) ≡ θ, µ = θ.

Let X = {x ∈ C1(J,E) : x(0) = x(T ) = θ, x′(0) = x′(T )} with the norm
‖x‖X = ‖x‖J + ‖x′‖J , X+ = {x ∈ X : x ∈ P}, Y = L1(J,E), Z = {x ∈ X :
x′ is absolutely continuous}. Defining

L : Z → Y, x→ x′′ − αx,

where α is given in (H5). Similar to the proof of Theorem 3.3, there exists the
operator K = L−1 defined by

(Ky)(t) =
∫ T

0

G(t, s)y(s)ds for t ∈ J, y ∈ Y,

where Green’s function G(t, s) satisfies

√
α sh

√
αG(t, s) =

{
sh
√
α(t− T ) sh

√
α s, s ≤ t,

sh
√
α(s− T ) sh

√
α t, s > t.

Step 2. For x ∈ X+, t ∈ J , let

xt(s) =

{
x(t+ s), max{−r,−t} ≤ s ≤ 0,
ϕ(t+ s), −r ≤ s ≤ −t.

Since x(0) = ϕ(0) = θ, we have that xt ∈ C([−r, 0], E) and ‖xt‖ ≤ ‖x‖J + ‖ϕ‖,
t→ xt is continuous for (t ∈ J).

For x ∈ X+, define the multi-valued map

H(t, x) = {f(t)− αx(t) : f ∈ SF (x), t ∈ J}
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with SF (x) given in (H’4). (H’1) guarantees that H(t, x) is measurable with respect
to t ∈ J . For each g ∈ H(t, x), from the condition (H5) it follows that

β(t)[|x(t)|δ + |x′(t)|δ + 1]− αx(t) ≤ g(t) ≤ θ.

This, and the normality of P , implies that |g(t)| ≤ N |β(t)|(2‖x‖δX + 1) +Nα‖x‖X .
This shows that H : X+ → 2Y is bounded. Let A = KH be a multi-valued map
from X+ to X defined by

A(t, x) = KH(t, x) =
{ ∫ T

0

G(t, s)g(s)ds : g ∈ H(t, x)
}

for x ∈ X+ and t ∈ J . It is clear that A is bounded. Similar to Theorem 3.3 we
can prove that AX+ ⊂ AC(J,X) ∩X+ and A is u.s.c., completely continuous and
has convex closed values.
Step 3. We will now show that A satisfies (2.1). Suppose that this is not the case,
then there exist λn ∈ (0, 1), xn ∈ λnA(t, xn) ∈ Z ∩X+ such that µn = ‖xn‖X ≥ n
for n = 1, 2, . . . . In Step 2 we proved that xn ∈ AC(J,X)∩X+. There exists fn ∈
SF (xn) such that xn = λnK(fn − αxn), i.e. Lxn = λn(fn − αxn) for n = 1, 2, . . . ,
that is,

x′′n(t) = (1− λn)αxn(t) + λnfn(t, (xn)t, x′n(t)). (4.1)
By integrating this expression with respect to t we obtain

θ = (1− λn)
∫ T

0

αxn(t)dt+ λn

∫ T

0

fn(t, (xn)t, x′n(t))dt,

so ∫ T

0

fn(t, (xn)t, x′(t))dt =
λn − 1
λn

∫ T

0

αxn(t)dt ≤ θ for n = 1, 2, . . . . (4.2)

On the other hand, the condition (H3) guarantees that∫ T

0

fn(t, (xn)t, x′(t))dt > θ

for large enough n. This contradicts (4.2), which completes the proof of (2.1). By
Lemma 2.2, A has a fixed point x ∈ X+, which is a solution to (1.2). The proof is
completed. �

Remark 4.2. In fact, we can allow that 0 ≤ δ ≤ 1 in (H5).

(H6) If B ⊂ W (t) := {x(t) : x ∈ C1(J,E), x(0) = x(T ) = θ} is bounded, then B
is relatively compact.

Theorem 4.3. Assume that the closed convex cone P is normal. If the conditions
(H’1), (H’4), (H5) and (H6) hold, then (1.2) has at least one solution x on [−r, T ]
with x(t) ≥ ξ(t) (t ∈ J).

Proof. According to Theorem 4.1 it suffices to prove that (2.1) is true. Suppose
that this is not the case, then there exist λn ∈ (0, 1), xn ∈ λnA(t, xn) ∈ Z ∩ X+

such that µn = ‖xn‖X ≥ n for n = 1, 2, . . . . Let yn = 1
µn
xn, ρn = λn

µn
, then

‖yn‖X = 1. Similar to (12) we obtain

y′′n(t) = (1− λn)αyn(t) + ρnfn(t, (xn)t, x′n(t)). (4.3)

This and (H5) guarantee

ρnβ(t)[|xn(t)|δ + |x′n(t)|δ + 1] ≤ y′′n(t)− (1− λn)αyn(t) ≤ λnαyn(t),
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that is

|y′′n(t)|

≤ N(1− λn)α|yn(t)|+Nλnα|yn(t)|+ 2Nρn|β(t)|[|xn(t)|δ + |x′n(t)|δ + 1]

≤ Nα+ 6N |β(t)|.
(4.4)

This inequality implies that {y′n}∞n=1 is equicontinuous on J . Note that |yn(t) −
yn(s)| ≤ |t − s| ‖y′n‖J (t, s ∈ J), we have that {yn}∞n=1 is also equicontinuous on
J . For each t ∈ J , since {yn(t)}∞n=1 ⊂ W (t) is bounded, by (H6) {yn(t)}∞n=1 is
relatively compact. By Arzelá -Ascoli’s theorem, one has that {yn}∞n=1 is relatively
compact in X. Without loss of generality, let yn → y with some y ∈ X and
λn → λ ∈ J for n→∞.

Integrating (4.3) with respect to t, we obtain

y′n(t) = yn(0) + (1− λn)α
∫ t

0

yn(s)ds+ ρn

∫ t

0

fn(s, (xn)s, x′n(s))ds.

Letting n approach ∞, we obtain

y′(t) = y(0) + (1− λ)α
∫ t

0

y(s)ds+ g(t) (4.5)

with g(t) = limn→∞ ρn
∫ t
0
fn(s, (xn)s, x′n(s))ds, which exists for 0 ≤ t < τ ≤ T . By

(H5) we have that

ρn

∫ τ

t

fn(s, (xn)s, x′n(s))ds ≥ ρn

∫ τ

t

β(s)[|(xn)(s)|δ + |x′n(s)|δ + 1)]ds

and

|ρn
∫ τ

t

β(s)[|(xn)(s)|δ + |x′n(s)|δ + 1)]ds|

≤ ρn

∫ τ

t

|β(s)|(2µδn + 1)ds

≤ (2µδ−1
n + ρn)

∫ τ

t

|β(s)| ds→ 0 (n→∞),

which yields g(τ)− g(t) ≥ θ, that is, g(t) is monotone increasing on J . Especially,
g(t) ≥ g(0) = θ for each t ∈ J . For any t ∈ J , y(t) ∈ X+ deduces that y(t) ≥
θ = y(0), which implies that y′(0) ≥ θ. Summing up, from (4.5), it follows that
y′(t) ≥ θ (t ∈ J). This shows that y is a increasing function on J . Note that
y(0) = y(T ) = θ, we have y(t) ≡ θ on J , which contradicts ‖y‖X = 1. The proof is
completed. �

Corollary 4.4. Let E = Rn. If the conditions (H’1) and (H5) hold, then (1.2) has
at least one solution x on [−r, T ] with x(t) ≥ ξ(t) (t ∈ J).

Corollary 4.5. . Let r = 0 and F : J×Rn×Rn → 2Rn

. If F satisfies the condition
(H’1), and there exist α > 0, β ∈ L1(J,Rn), δ ∈ [0, 1) such that

β(t)
[
|x− ξ(t)|δ +

∣∣y − B −A

T

∣∣δ + 1
]
≤ f(t, x, y) ≤ α[x− ξ(t)]
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for t ∈ J , x, y ∈ Rn, x ≥ ξ(t) := A+ (t/T )(B − A) and f ∈ {g ∈ L1(J,E) : g(t) ∈
F (t, x, y) for a.e. t ∈ J}, then second order ordinary differential inclusion

x′′(t) ∈ F (t, x(t), x′(t)) (t ∈ J),

x(0) = A, x(T ) = B,

has at least a solution x ∈ C1(J,Rn), with x(t) ≥ ξ(t) on J .
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