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HOMOGENIZATION OF NONLINEAR MONOTONE
OPERATORS BEYOND THE PERIODIC SETTING

GABRIEL NGUETSENG & HUBERT NNANG

Abstract. We study the homogenization of nonlinear monotone operators

beyond the classical periodic setting. The usual periodicity hypothesis is here

replaced by an abstract assumption covering a wide range of concrete be-
haviours such as the periodicity, the almost periodicity, the convergence at

infinity, and many more besides. Our approach is based on the recent theory

of homogenization structures by the first author. The exactness of the results
confirms the major role the homogenization structures are destined to play in a

general deterministic homogenization theory equipped to consider the physical
problems in their true perspective.

1. Introduction

Let 1 < p ≤ 2. Let (y, λ) → a(y, λ) be a function from RN ×RN to RN with the
following properties:

For each fixed λ ∈ RN , the function y → a(y, λ) (denoted by
a(·, λ)) from RN to RN is measurable

(1.1)

a(y, ω) = ω almost everywhere (a.e.) in y ∈ RN , where ω denotes
the origin in RN

(1.2)

There exist two constants α, c > 0 such that, a.e. in y ∈ RN :
(i) (a(y, λ)− a(y, µ)) · (λ− µ) ≥ α|λ− µ|p
(ii) |a(y, λ)− a(y, µ)| ≤ c|λ− µ|p−1

for all λ, µ ∈ RN , where the dot denotes the usual Euclidean inner
product in RN .

(1.3)

Let Ω be a bounded open set in RNx (the space RN of variables x = (x1, · · · , xN )),
and let f ∈ W−1,p′(Ω; R), p′ = p

p−1 . For each given real ε > 0, we consider the
boundary value problem

−div a
(x
ε
,Duε

)
= f in Ω, uε ∈W 1,p

0 (Ω; R), (1.4)

which uniquely determines uε (see Section 6 of [18]). Here D denotes the usual
gradient, i.e., D = (Dxi

)1≤i≤N , where Dxi
= ∂

∂xi
.
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We are interested in the homogenization of (1.4) (i.e., the analysis of the be-
haviour of uε when ε→ 0) under a suitable assumption on the behaviour of a(y, λ)
in y ∈ RN . Such an assumption will be referred to as a structure hypothesis [19, 20].

The common structure hypothesis is the so-called periodicity hypothesis, that
is, the assumption that a(y + k, λ) = a(y, λ) a.e. in y ∈ RN , where k is any
arbitrary point in ZN (Z denotes the integers). The homogenization of (1.4) under
the periodicity hypothesis has been widely studied (see, e.g., [9, 10, 17, 18, 26]).

However, there is no doubt that in a great number of physical situations the
periodicity hypothesis is inappropriate and should be therefore substituted by a
realistic structure hypothesis. A few examples of such structure hypotheses will
perhaps help us to have a clear idea of what a non periodic homogenization setting
(for problem (1.4)) may look like. In what follows, ai denotes the ith component of
the function (y, λ) → a(y, λ).

Example 1.1. Let B(RN ) denote the space of all bounded continuous complex
functions on RN , and let B∞(RN ) be the space of all ϕ ∈ B(RN ) such that ϕ(y)
has a (finite) limit when |y| → +∞. We define B∞,per(Y ) (with Y = (0, 1)N )
to be the closure in B(RN ) (with the supremum norm) of the set of all functions
u ∈ B(RN ) of the form

u(y) =
∑
k∈F

ϕk(y)e2iπk·y (y ∈ RN ) with ϕk ∈ B∞(RN )

where F is any arbitrary finite subset of S = ZN . Then one natural structure
hypothesis is that

ai(·, λ) ∈ B∞,per(Y ) for any λ ∈ RN (1 ≤ i ≤ N). (1.5)

Remark 1.1. The structure hypothesis (1.5) includes two particular cases of major
interest: 1) the case where ai(·, λ) ∈ B∞(RN ) for any λ ∈ RN (1 ≤ i ≤ N), and 2)
the case of the periodicity hypothesis. However, (1.5) does not reduce to these two
particular cases (see Remark 3.1 of [21]).

Example 1.2. Let Cper(Y ′) (with Y ′ = (0, 1)N−1, N ≥ 2) be the space of all
continuous complex functions u on RN−1 such that u(y′ + k′) = u(y′) for all y′ =
(y1, · · · , yN−1) ∈ RN−1 and all k′ ∈ ZN−1 (such a function is said to be Y ′-
periodic). Let B∞(R; Cper(Y ′)) denote the space of all continuous functions u :
R → Cper(Y ′) such that u(yN ) converges in Cper(Y ′) (with the supremum norm)
when |yN | → +∞. Then, we may consider the homogenization of (1.4) under the
structure hypothesis

ai(·, λ) ∈ B∞(R; Cper(Y ′)) for any λ ∈ RN (1 ≤ i ≤ N). (1.6)

Example 1.3. One may as well investigate the behaviour, as ε → 0, of uε (the
solution of (1.4)) under the structure hypothesis

ai(·, λ) ∈ AP (RN ) for any λ ∈ RN (1 ≤ i ≤ N) (1.7)

where AP (RN ) denotes the usual space of all almost periodic continuous complex
functions on RN [3, 14, 16]. Let us point out two cases of practical interest that
reduce to (1.7).
(1) Suppose there exists a family of networks Si in RN (1 ≤ i ≤ N) such that
ai(·, λ) is Si-periodic for any λ ∈ RN . Then (1.7) is fulfilled.
(2) Suppose that to each λ ∈ RN there is assigned a network Sλ in RN such that
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ai(·, λ) is Sλ-periodic (1 ≤ i ≤ N). This assumption naturally leads to (1.7), once
again.

Remark 1.2. Given a function f on RN and a network S in RN (S is also termed a
réseau [4, 11]), by f to be S-periodic we mean that f(y+k) = f(y) for y ∈ RN and
k ∈ S. In the literature of periodic homogenization one often says f is Y -periodic
in place of f is S-periodic, Y being a suitable parallelepiped attached to S (see
[22]).

Example 1.4. As will be seen later, it is also possible to study the homogenization
of (1.4) for p = 2 under the more general almost periodicity hypothesis

ai(·, λ) ∈ L2
AP (RN ) for any λ ∈ RN (1 ≤ i ≤ N) (1.8)

provided the following condition is fulfilled:

For Ψ ∈ AP (RN ; R)N = AP (RN ; R) × · · · × AP (RN ; R) (N times),
we have supk∈ZN

∫
k+Y

|a(y− r,Ψ(y))−a(y,Ψ(y))|2dy → 0 as |r| → 0 (1.9)

where Y = (0, 1)N . It should be recalled that L2
AP (RN ) denotes the space of all

functions in L2
loc(RN ) that are almost periodic in the sense of Stepanoff (cf. [3, 22]).

The novelty of this article is to study the homogenization of (1.4) under diverse
structure hypotheses such as (1.5)-(1.9) instead of the classical periodicity hypoth-
esis. In fact, the real scope of the present study is much wider. We investigate here
the behaviour, as ε→ 0, of uε (the solution of (1.4)) under an abstract assumption
on a(·, λ) (for fixed λ) covering a variety of concrete structure hypotheses beyond
the periodic setting. Our main tool is the recent theory of homogenization struc-
tures [19, 20] and our basic approach is an adaptation of the two-scale convergence
method [1, 18]. The achieved results are quite similar to those provided by periodic
homogenization theory (see, e.g., [9, 17]), which confirms, as was anticipated in [19],
that the recent homogenization approach earlier presented in [19, 20] fits nonlinear
partial differential equations as well. Thus, this work falls within the scope of the
new deterministic homogenization theory especially framed in [19, 20] to bridge the
gap between periodic and stochastic homogenization [2, 8].

The layout of the paper is as follows: Section 2 is devoted to some preliminary
results and remarks about the justification of such expressions as a(xε ,v(x)). Among
other things this permits us to give a rigorous meaning to the left-hand side of (1.4).
In Section 3 we recall the fundamentals of homogenization structures and point out
the main results underlying our homogenization approach. Attention is drawn to
the particular case of proper homogenization structures. In Section 4 we prove
a homogenization result for problem (1.4) under an abstract structure hypothesis
(in place of the usual periodicity hypothesis). Finally, Section 5 deals with the
homogenization of (1.4) under various concrete structure hypotheses such as those
presented in the preceding examples.

Except where otherwise stated, the vector spaces throughout are assumed to be
complex vector spaces, and the scalar functions are assumed to take values in C (the
complex field). This permits us to make use of basic tools provided by the classical
Banach algebras theory. For basic concepts and notations about integration theory
we refer to [5, 6]. We shall always assume that the N -dimensional numerical space
RN and its open sets are each equipped with the Lebesgue measure.
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2. Preliminaries

Throughout this section, Ω denotes a bounded open set in RNx and ε is a positive
real number. Let us begin by recalling a standard notation. For u ∈ L1

loc(Ω×RNy ),
we set

uε(x) = u
(
x,
x

ε

)
(x ∈ Ω) (2.1)

whenever the right-hand side has meaning. On this point it seems useful to recall
the main cases in which (2.1) actually determines a function (for further details see
[18, 22].

The most evident two cases are when u is a continuous (real or complex) function
on Ω×RNy (or Ω×RNy , Ω the closure of Ω) and when u lies in Lploc(Ω)⊗Lp

′

loc(RNy )
(1 ≤ p ≤ ∞, 1

p′ = 1− 1
p ), i.e., is of the form

u =
∑
finite

ϕi ⊗ ui with ϕi ∈ Lploc(Ω) and ui ∈ Lp
′

loc(R
N
y ).

Next comes the less obvious case of the spaces Lp(Ω;A) (1 ≤ p ≤ ∞) where A
denotes a closed vector subspace of the space B(RNy ) (equipped with the supremum
norm) of bounded continuous complex functions on RNy . Given u ∈ Lp(Ω;A), there
clearly exists a negligible set N ⊂ Ω such that for each x ∈ Ω\N the mapping
y → u(x, y) lies in A. Hence the complex number u(x, xε ) is well defined and so
we may consider the function x → u(x, xε ) defined almost everywhere in Ω and
belonging to Lp(Ω). Thus, uε ∈ Lp(Ω) is well defined by (2.1) when u ∈ Lp(Ω;A).
This yields a linear mapping u → uε that sends continuously Lp(Ω;A) into Lp(Ω)
and has norm exactly 1.

We turn finally to the still less obvious case of the space C(Ω;L∞(RNy )). By all
probability, in the present case the right-hand side of (2.1) cannot be apprehended
directly as we did before. One can nevertheless define u(x, xε ), x ∈ Ω, by extension
by continuity thanks to two facts : on one hand, the space C(Ω)⊗L∞(RNy ) is dense
in C(Ω;L∞(RNy )) (cf. [5, p.46]), on the other hand, as pointed out thereinbefore,
the right-hand side of (2.1) is well defined for u ∈ C(Ω)⊗L∞(RNy ). More precisely,
we have the following lemma whose proof can be found in [22].

Lemma 2.1. The transformation u → uε (see (2.1)) considered as a mapping of
C(Ω)⊗L∞(RNy ) into L∞(Ω) extends by continuity to a linear mapping, still denoted
by u→ uε, of C(Ω;L∞(RNy )) into L∞(Ω) with

‖uε‖L∞(Ω) ≤ sup
x∈Ω

‖u(x)‖L∞(RN ), u ∈ C(Ω;L∞(RNy )).

The next result will prove to be of great interest.

Lemma 2.2. Let u ∈ C(Ω;L∞(RNy )). Suppose that for each x ∈ Ω we have
u(x, y) ≥ 0 a.e in y ∈ RN . Then uε(x) ≥ 0 a.e. in x ∈ Ω, uε (given by (2.1)) being
defined in the sense of Lemma 2.1.

Proof. Let un (integers n ≥ 0) be a sequence in C(Ω)⊗L∞(RNy ) such that un → u

in C(Ω;L∞(RN )) when n → ∞. Set qn = supx∈Ω ‖un(x) − u(x)‖L∞(RN ) (integers
n ≥ 0). Fix an integer n ≥ 0 and let x ∈ Ω. Then un(x, y) + qn ≥ 0 a.e. in
y ∈ RN . According to Lemma 1.2 of [22], we deduce that there is a negligible set
Nn ⊂ RNy (Nn independent of x) such that un(x, y) + qn ≥ 0 for all y ∈ RN\Nn.
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Hence, letting N =
⋃
n∈N Nn, it follows un(x, y) + qn ≥ 0 for all y ∈ RN\N , x ∈ Ω

and n ∈ N. Therefore uεn(x) + qn ≥ 0 for any x ∈ Ω\εN and any integer n ≥ 0.
But, as n → ∞, we have uεn → uε in L∞(Ω) (Lemma 2.1) and qn → 0. Hence,
by extraction of a suitable subsequence it follows that uε(x) ≥ 0 a.e. in x ∈ Ω, as
claimed. �

Now, let G : RN × RN → R be a function with the following properties :

For each λ ∈ RN , the function G(·, λ) is measurable (2.2)

G(y, ω) = 0 a.e. in y ∈ RN (2.3)

There is a positive constant c such that |G(y, λ) − G(y, µ)| ≤
c|λ − µ|p−1 for all λ, µ ∈ RN and for almost all y ∈ RN , where
1 < p ≤ 2.

(2.4)

Given Ψ ∈ C(Ω; R)N = C(Ω; R) × · · · × C(Ω; R) (N times), it is an easy task to
check, using (2.2)-(2.4), that the function (x, y) → u(x, y) = G(y,Ψ(x)) of Ω×RNy
into R belongs to C(Ω;L∞(RNy )). Hence, the function x→ G(xε ,Ψ(x)) of Ω into R,
denoted below by Gε(·,Ψ), is well defined as a function in L∞(Ω) (cf. Lemma 2.1).
This leads us to the following proposition and corollary.

Proposition 2.1. The transformation Ψ → Gε(·,Ψ) of C(Ω; R)N into L∞(Ω) ex-
tends by continuity to a mapping, still denoted by Ψ → Gε(·,Ψ), of Lp(Ω; R)N into
Lp

′
(Ω) with the property:

‖Gε(·,Ψ)−Gε(·,Φ)‖Lp′ (Ω) ≤ c‖Ψ− Φ‖p−1
Lp(Ω)N (2.5)

for all Ψ,Φ ∈ Lp(Ω; R)N , where 1 < p ≤ 2 and p′ = p
p−1 .

Proof. Let Ψ,Φ ∈ C(Ω; R)N . By applying Lemma 2.2 with

u(x, y) = c|Ψ(x)− Φ(x)|p−1 − |G(y,Ψ(x))−G(y,Φ(x))|

(cf. (2.4)), we get

|G
(x
ε
,Ψ(x)

)
−G

(x
ε
,Φ(x)

)
| ≤ c|Ψ(x)− Φ(x)|p−1 a.e. in x ∈ Ω.

Hence (2.5) follows immediately and that for all Ψ,Φ ∈ C(Ω; R)N . Therefore, since
C(Ω; R)N is dense in Lp(Ω; R)N , the proposition follows by extension by continuity.

�

Corollary 2.1. Under the preceding notation, we have[
a
(x
ε
,Du(x)

)
− a

(x
ε
,Dv(x)

)]
· (Du(x)−Dv(x)) ≥ α|Du(x)−Dv(x)|p (2.6)

a.e. in x ∈ Ω and

‖aε(·, Du)− aε(·, Dv)‖Lp′ (Ω)N ≤ c‖Du−Dv‖p−1
Lp(Ω)N (2.7)

for all u, v ∈W 1,p(Ω; R), where aε(·, Du) = (aεi (·, Du))1≤i≤N .

This corollary follows by Proposition 2.1 with G = ai (the ith component of the
function a in Section 1) and use of (1.1)-(1.3) together with Lemma 2.2.

Remark 2.1. Thanks to Corollary 2.1, the left-hand side of (1.4) is now justified.

We also need to define Gε(·,Ψ) for Ψ ∈ B(RN ; R)N instead of Ψ ∈ C(Ω; R)N .
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Proposition 2.2. For Ψ ∈ B(RNx ; R)N , the function x → G(xε ,Ψ(x)) of RNx into
R can be defined as an element of L∞(RNx ) denoted by Gε(·,Ψ).

Proof. For each integer n ≥ 1, let Bn ⊂ RN denote the open ball of center ω (the
origin of RN ) and of radius n. Let Gn(x) = G(·,Ψ(x)) for x ∈ Bn, which gives a
function Gn ∈ C(Bn;L∞(RNy )), thanks to (2.2)-(2.4). Thus, we can define, in the
sense of Lemma 2.1, the function x → Gn(xε ,Ψ(x)) of Bn into R as an element
of L∞(Bn) denoted by Gεn(·,Ψ). This yields a sequence of functions Gεn(·,Ψ) ∈
L∞(Bn) (integers n ≥ 1) verifying Gεn(·,Ψ) = Gεn+1(·,Ψ)

∣∣
Bn

(the restriction of
Gεn+1(·,Ψ) to Bn). Let Gε(·,Ψ) denote the function in L∞(RNx ) uniquely defined
as Gε(·,Ψ)

∣∣
Bn

= Gεn(·,Ψ) (integers n ≥ 1). Clearly Gε(·,Ψ)(x) = G(xε ,Ψ(x)) a.e.
in x ∈ Bn (integers n ≥ 1). Therefore, the proposition follows. �

As a consequence of this, we have the following

Corollary 2.2. Let w ∈ C(Ω;B(RN ; R)N ). Then one can define, in the sense of
Lemma 2.1, the function x → ai(xε ,w(x, xε )) of Ω into R as an element of L∞(Ω)
denoted by aεi (·,wε).

Proof. For each x ∈ Ω, let ai(·,w(x, ·)) denote the function y → ai(y,w(x, y)) de-
fined as in Proposition 2.2 with G = ai, Ψ = w(x, ·) and ε = 1. Then ai(·,w(x, ·)) ∈
L∞(RNy ) and (by applying Lemma 2.2 as in the proof of Proposition 2.1)

‖ai(·,w(x, ·))− ai(·,w(x′, ·))‖L∞(RN
y ) ≤ c‖w(x, ·)−w(x′, ·)‖p−1

∞

for all x, x′ ∈ Ω. Hence it follows that the function x → ai(·,w(x, ·)) lies in
C(Ω;L∞(RNy )). Therefore the corollary follows by Lemma 2.1. �

We conclude the present section with one further result.

Proposition 2.3. Let ψ ∈ B(RNx ;L∞(RNy )). One can suitably define ψε(x) =
ψ(x, xε ), x ∈ RN , as a function ψε ∈ L∞(RNx ) such that ‖ψε‖L∞(RN ) ≤ supx∈RN

‖ψ(x)‖L∞(RN
y ). Furthermore, if for each x ∈ RN we have ψ(x, y) ≥ 0 a.e. in

y ∈ RN , then ψε(x) ≥ 0 a.e. in x ∈ RN .

Proof. The first part of the proposition proceeds by the same line of argument as
in the proof of Proposition 2.2 [consider the sequence of functions ψn = ψ

∣∣
Bn

∈
C(Bn;L∞(RNy ))], and the next part is a direct consequence of Lemma 2.2. �

3. Proper homogenization structures

3.1. Fundamentals of homogenization structures. By a structural represen-
tation on RNy is meant any subset Γ of B(RNy ) with the following properties:

(HS1) Γ is a group under multiplication in B(RNy )
(HS2) Γ is countable
(HS3) If γ ∈ Γ then γ ∈ Γ (γ the complex conjugate of γ)
(HS4) Γ ⊂ Π∞

where Π∞ denotes the space of all u ∈ B(RNy ) with the property that uε → M(u)
in L∞(RNx )-weak∗ as ε→ 0 (ε > 0), M(u) a complex number and

uε(x) = u
(x
ε

)
for x ∈ RN (ε > 0). (3.1)
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It is worth recalling that Π∞ contains the constants and is translation invariant,
and further the mapping u → M(u) of Π∞ into C is a positive linear form with
M(1) = 1 and M(τau) = M(u) for u ∈ Π∞ and a ∈ RN , where τau(y) = u(y − a)
for y ∈ RN . See [21] for further details.

Now, by an H-structure on RNy (H stands for homogenization) is meant any
equivalence class modulo ∼, where the equivalence relation ∼ in the collection of
all structural representations on RNy is defined as Γ ∼ Γ′ if and only if CLS(Γ) =
CLS(Γ′), CLS(Γ) standing for the closed vector subspace of B(RNy ) spanned by Γ.
If Σ is a given H-structure on RNy , we let A = CLS(Γ), where Γ is any equivalence
class representative of Σ (such a Γ is termed a representation of Σ). A is a so-called
H-algebra on RNy , that is, a closed subalgebra of B(RNy ) with the properties:

(HA1) A with the supremum norm is separable
(HA2) A contains the constants
(HA3) u ∈ A implies u ∈ A
(HA4) A ⊂ Π∞.
Furthermore, A depends only on Σ and not on the chosen representation Γ of Σ.
Thus, we may set A = J (Σ) (image of Σ). This yields a mapping Σ → J (Σ)
that carries the collection of all H-structures bijectively over the collection of all
H-algebras on RNy (see Theorem 3.1 of [19]).

Given an H-algebra A on RNy , we will denote by ∆(A) the spectrum of A and by
G the Gelfand transformation on A, i.e., the mapping u→ G(u) of A into C(∆(A))
such that G(u)(s) = 〈s, u〉 for s ∈ ∆(A) and u ∈ A, where 〈, 〉 stands for the duality
between A′ (the topological dual of A) and A. It is worth noting that ∆(A) is here
a metrizable compact space and G is an isometric isomorphism of the C∗-algebra
A onto the C∗-algebra C(∆(A)) (see, e.g., [16, p. 277]). The appropriate measure
on ∆(A) is the so-called M -measure for A, that is, the Radon measure β on ∆(A)
such that M(u) =

∫
∆(A)

G(u)dβ for u ∈ A.

Let A1 = {ψ ∈ C1(RNy ) : ψ,Dyi
ψ ∈ A (1 ≤ i ≤ N)} where Dyi

ψ = ∂ψ
∂yi

. The
partial derivative of index i (1 ≤ i ≤ N) on ∆(A) is defined to be the mapping
∂i = G◦Dyi

◦G−1 (usual composition) of D1(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A1}
into C(∆(A)), where G−1 (the inverse of G) is viewed as defined on D1(∆(A)).
Higher order derivatives are defined analogously (see [19]). Now, let A∞ be the
space of all ψ ∈ C∞(RNy ) such that Dα

yψ = ∂|α|ψ

∂y
α1
1 ···∂yαN

N

∈ A for each multi-index

α = (α1, · · · , αN ) ∈ NN . Let D(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞}. Endowed
with a suitable locally convex topology (see [19]), A∞ (resp. D(∆(A))) is a Fréchet
space and, further, G viewed as defined on A∞ is a topological isomorphism of A∞

onto D(∆(A)).
Any continuous linear form on D(∆(A)) is referred to as a distribution on ∆(A).

The space D′(∆(A)) (topological dual of D(∆(A))) of all distributions on ∆(A)
is endowed with the strong dual topology. If we assume that A∞ is dense in
A (this amounts to assuming that D(∆(A)) is dense in C(∆(A))), then we have
Lp(∆(A)) ⊂ D′(∆(A)) (1 ≤ p ≤ ∞) with continuous embedding. Hence we may
define

W 1,p(∆(A)) = {u ∈ Lp(∆(A)) : ∂iu ∈ Lp(∆(A)), 1 ≤ i ≤ N}

where the derivative ∂iu is taken in the distribution sense on ∆(A) [19]. We equip
W 1,p(∆(A)) with the norm
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||u||W 1,p(∆(A)) = ||u||Lp(∆(A)) +
N∑
i=1

||∂iu||Lp(∆(A)) (u ∈W 1,p(∆(A))),

Which makes it a Banach space. However, we will be mostly concerned with the
space

W 1,p(∆(A))/C =
{
u ∈W 1,p(∆(A)) :

∫
∆(A)

u(s)dβ(s) = 0
}

provided with the seminorm

||u||W 1,p(∆(A))/C =
N∑
i=1

||∂iu||Lp(∆(A)) (u ∈W 1,p(∆(A))/C).

So topologized, W 1,p(∆(A))/C is in general nonseparated and noncomplete. We
denote by W 1,p

# (∆(A)) the separated completion of W 1,p(∆(A))/C and by J the
canonical mapping of W 1,p(∆(A))/C into its separated completion (see, e.g., chap-
ter II of [7] and page 29 of [12]). W 1,p

# (∆(A)) is a Banach space and W 1,2
# (∆(A)) is

a Hilbert space. Furthermore, as pointed out in [19], the distribution derivative ∂i
viewed as a mapping of W 1,p(∆(A))/C into Lp(∆(A)) extends to a unique contin-
uous linear mapping, still denoted by ∂i, of W 1,p

# (∆(A)) into Lp(∆(A)) such that
∂iJ(v) = ∂iv for v ∈W 1,p(∆(A))/C and

||u||W 1,p
# (∆(A)) =

N∑
i=1

||∂iu||Lp(∆(A)) for u ∈W 1,p
# (∆(A)).

To an H-structure Σ on RN there are attached the important concepts of weak
and strong Σ-convergence in Lp (1 ≤ p < ∞), see [19]. Likewise it is possible and
even desirable to introduce the concept of weak Σ-convergence in W 1,p.

Let Σ be an H-structure on RN . Let A = J (Σ). We assume that Σ is of class
C∞ [19], i.e., A∞ is dense in A. Let 1 ≤ p < ∞, and let Ω be a bounded open set
in RNx . First of all, we set

W 1,p(Ω;Lp(∆(A))) = {u ∈ Lp(Ω×∆(A)) : Dxi
u ∈ Lp(Ω×∆(A)), 1 ≤ i ≤ N}

where the derivatives Dxiu = ∂u
∂xi

are taken in the sense of vector distributions
D′(Ω;Lp(∆(A))) [24] (see also [25]), since Lp(Ω × ∆(A)) = Lp(Ω;Lp(∆(A))) ⊂
D′(Ω;Lp(∆(A))). We equip W 1,p(Ω;Lp(∆(A))) with the norm

||u||W 1,p(Ω;Lp∆(A))) = ||u||Lp(Ω×∆(A)) +
N∑
i=1

||Dxiu||Lp(Ω×∆(A)),

which makes it a Banach space.
Before we can define the concept of weak Σ-convergence in W 1,p, we also need

to give a meaning to ∂iu for u ∈ Lp(Ω;W 1,p
# (∆(A))). This is straightforward.

Indeed, considering ∂i (1 ≤ i ≤ N) as a mapping of W 1,p
# (∆(A)) into Lp∆(A)) (as

seen above) and using a classical result (see Theorem 4 of page 132 in [5]), we see
that ∂i ◦ u ∈ Lp(Ω × ∆(A)) for u ∈ Lp(Ω;W 1,p

# (∆(A))), and the transformation
u→ ∂i ◦ u (usual composition) maps continuously and linearly Lp(Ω;W 1,p

# (∆(A)))
into Lp(Ω×∆(A)). In the sequel we set ∂iu = ∂i ◦ u for u ∈ Lp(Ω;W 1,p

# (∆(A))).
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Finally, the letter E throughout will denote exclusively a family of positive real
numbers admitting 0 as an accumulation point. For example E = R∗+ (the positive
real numbers) or E = (εn) (integers n ≥ 0), where εn > 0 with εn → 0 when
n→ +∞. In the last case E is referred to as a fundamental sequence.

Definition 3.1. A sequence of functions uε ∈W 1,p(Ω) (ε ∈ E) is said to be weakly
Σ-convergent in W 1,p(Ω) to some u0 ∈W 1,p(Ω;Lp(∆(A))) if there exists a function
u1 ∈ Lp(Ω;W 1,p

# (∆(A))) such that as E 3 ε→ 0, we have:
(i) uε → u0 in Lp(Ω)-weak Σ
(ii) Dxi

uε → Dxi
u0 + ∂iu1 in Lp(Ω)-weak Σ, 1 ≤ i ≤ N .

We then write uε → u0 in W 1,p(Ω)-weak Σ and we refer to u0 (which is necessarily
unique) as the weak Σ-limit in W 1,p of the sequence (uε)ε∈E . The function u1 is
called a corrector for (uε)ε∈E .

Remark 3.1. The concept of weak Σ-convergence in W 1,p(Ω) is a natural gener-
alization of the usual notion of weak convergence in W 1,p(Ω). Indeed, a sequence
uε ∈ W 1,p(Ω) (ε ∈ E) is weakly convergent in W 1,p(Ω) to some u0 ∈ W 1,p(Ω) as
ε→ 0 if and only if as ε→ 0, we have uε → u0 in Lp(Ω)-weak and Dxiuε → Dxiu0

in Lp(Ω)-weak for i = 1, · · · , N . But then it amounts to saying that uε → u0 in
W 1,p(Ω)-weak Σ0, where Σ0 is the trivial H-structure on RN (see Example 3.1 of
[19]).

Proposition 3.1. Suppose that D(∆(A)) is dense in W 1,p(∆(A)). If the sequence
uε ∈ W 1,p(Ω) (ε ∈ E) is weakly Σ-convergent in W 1,p(Ω) to some function u0 ∈
W 1,p(Ω; Lp(∆(A))), then uε → ũ0 in W 1,p(Ω)-weak as E 3 ε → 0, where ũ0 is
given by ũ0(x) =

∫
∆(A)

u0(x, s)dβ(s) for x ∈ Ω.

Proof. By Definition 3.1 and use of Proposition 4.4 of [19] we have, in the weak
topology in Lp(Ω), uε → ũ0 and Dxiuε → (Dxiu0)∼+(∂iu1)∼ (i = 1, · · · , N) when
E 3 ε → 0. But (Dxiu0)∼ = Dxi ũ0 (this can be easily shown) and (∂iu1)∼ = 0
(this follows by the same line of reasoning as in the case of Proposition 4.8 in [19]).
Hence the proposition follows. �

This proposition has two useful corollaries.

Corollary 3.1. Let the hypotheses be as in Proposition 3.1. Assume moreover that
W 1,p(Ω) is compactly embedded in Lp(Ω). Then u0 ∈W 1,p(Ω).

Proof. By Proposition 3.1 and use of the above compactness hypothesis we have
uε → ũ0 in Lp(Ω) as E 3 ε → 0, hence uε → ũ0 in Lp(Ω)-weak Σ (use Example
4.2 and Proposition 4.6 of [19]). Therefore u0 = ũ0, according to the unicity of the
weak Σ-limit. The corollary follows. �

Corollary 3.2. Let the hypotheses be as in Proposition 3.1, and let us assume
further that each uε lies in W 1,p

0 (Ω) (the closure of D(Ω) in W 1,p(Ω)). Then u0 ∈
W 1,p

0 (Ω).

Proof. Indeed, since Ω is bounded, we have that W 1,p
0 (Ω) is compactly embedded

in Lp(Ω) (this is classical). Therefore the corollary follows in the same way as
above. �

Remark 3.2. If Σ is an almost periodic H-structure (cf.Example 3.3 of [19]) then
we arrive at the conclusion of Corollary 3.1 without assuming that W 1,p(Ω) is
compactly embedded in Lp(Ω) (proceed as in the proof of Theorem 4.1 of [22]).
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3.2. Proper H-structures. In what follows, Σ denotes an H-structure on RN .
We set A = J (Σ). We assume that Σ is of class C∞ (see Subsection 3.1). Let
1 < p <∞.

Definition 3.2. Given a bounded open set Ω in RNx , the Sobolev space W 1,p(Ω)
is said to be Σ-reflexive if the following holds: Given a fundamental sequence E
and a sequence (uε)ε∈E which is bounded in W 1,p(Ω), a subsequence E′ can be ex-
tracted from E such that the sequence (uε)ε∈E′ is weakly Σ-convergent in W 1,p(Ω)
(Definition 3.1).

Remark 3.3. The notion of Σ-reflexivity (for W 1,2(Ω)) stated in [19] (Definition
4.4) turns out to be restricted because the corresponding weak Σ-limit u0 was
straight off subject to lie in W 1,2(Ω), which is not the case in Definition 3.2. No
doubt, the concept of Σ-reflexivity framed above (in Definition 3.2) is both general
and better.

Remark 3.4. Assuming 1 < p <∞ implies thatW 1,p(Ω) is reflexive, as is classical.
But this is equivalent to saying that W 1,p(Ω) is Σ0-reflexive (Σ0 as in Remark 3.1).

We are now in a position to define the notion of a proper H-structure when
1 < p <∞.

Definition 3.3. The H-structure (of class C∞) Σ on RN is said to be proper for
some given real p > 1 if the following two conditions are satisfied:

(P1) Σ is total (for p), i.e., D(∆(A)) is dense in W 1,p(∆(A))
(P2) For each bounded open set Ω ⊂ RNx , W 1,p(Ω) is Σ-reflexive.

Remark 3.5. If Σ is total (for p), then J(D(∆(A))/C) is dense in W 1,p
# (∆(A)),

whereD(∆(A))/C = {ϕ ∈ D(∆(A)) :
∫
∆(A)

ϕdβ = 0}. Furthermore,
∫
∆(A)

∂iudβ =

0 (1 ≤ i ≤ N) for u ∈ W 1,p
# (∆(A)). Indeed, this follows by the same arguments as

in the proof of Proposition 4.8 in [19].

Several examples of proper H-structures for p = 2 are available in [19, 20].
However, in the present study we need to discuss the properness for a wide range of
reals p > 1. Indeed, the more the proper H-structures (for p) at our disposal, the
wider the range of those homogenization problems (for (1.4)) that can be worked
out beyond the classical periodic setting. In [19] our quest of proper H-structures
led us to a general properness result (see Theorem 4.2 of [19]) whose practicality
has been established in the case p = 2. Of course, there is much to be gained by
extending such a result to 1 < p <∞.

To this end, let Σ2 be a furtherH-structure of class C∞ on RNy , and let A2 =
J (Σ2). We assume that hypothesis (H) below is satisfied.

(H) There exist an isometric isomorphism L of Lp(∆(A)) onto Lp(∆(A2)), a
dense vector subspace V of A, a surjective linear mapping ` : V → A2 and
a vector subspace V∞ of A∞ ∩ V such that:

L(G(v)) = G(`v) for v ∈ V, (3.2)

where G is the Gelfand transformation on A and on A2.

L(v̂u) = L(v̂)L(u) for v ∈ V and u ∈ Lp(∆(A))), where v̂ = G(v) (3.3)

(v − `v)ε → 0 in Lploc(R
N
x ) as ε→ 0 (v ∈ V) (3.4)

If v ∈ V∞ then Dα
y v ∈ V (α ∈ NN ) (3.5)
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The restriction of ` to V∞ maps V∞ onto A∞2 (3.6)

Dα
y (`v) = `(Dα

y v) for v ∈ V∞ (α ∈ NN ). (3.7)
Our goal is to prove that under this hypothesis if Σ2 is proper for some given

p > 1, then so also is Σ. Before we can do this, however, we need a few notations
and lemmas. To begin with, if u ∈ Lp(Ω;Lp(∆(A))), where Ω is as thereinbefore,
we set LΩu(x) = L(u(x)) (x ∈ Ω), which defines an isometric isomorphism LΩ of
Lp(Ω;Lp(∆(A))) onto Lp(Ω;Lp(∆(A2))), according to (H). We will denote by J2 the
canonical mapping of W 1,p(∆(A2))/C into its separated completion W 1,p

# (∆(A2)),
whereas J denotes the canonical mapping of W 1,p(∆(A))/C into W 1,p

# (∆(A)), as
stated above.

Each of the following three lemmas can be obtained by simple adaptation of the
proof of its analog in [19]. The details are left to the reader.

Lemma 3.1. Suppose Σ2 is total (for p). Then the following assertions are true:
(i) If u ∈ W 1,p(∆(A)), then Lu ∈ W 1,p(∆(A2)) and further ∂i(Lu) = L(∂iu)

(1 ≤ i ≤ N).
(ii) The restriction of the operator L to W 1,p(∆(A)) is an isometric isomor-

phism of W 1,p(∆(A)) onto W 1,p(∆(A2)).
(iii) Σ is total (for p).

Lemma 3.2. Suppose Σ2 is total (for p). Then there exists an isometric iso-
morphism L# : W 1,p

# (∆(A)) → W 1,p
# (∆(A2)) such that L#(Jf) = J2(Lf) for

f ∈W 1,p(∆(A))/C and ∂iL#(u) = L(∂iu) for u ∈W 1,p
# (∆(A)) (1 ≤ i ≤ N).

Lemma 3.3. Suppose E is a fundamental sequence, and let (uε)ε∈E be a sequence
in Lp(Ω) (Ω as in Definition 3.2) such that uε → v0 in Lp(Ω)-weak Σ2 as E 3
ε → 0, where v0 ∈ Lp(Ω ×∆(A2)). Then uε → L−1

Ω v0 in Lp(Ω)-weak Σ (L−1
Ω the

inverse isomorphism of LΩ).

We turn now to the statement and proof of the desired result.

Theorem 3.1. Suppose Σ2 is proper (for p). Then Σ is proper (for p).

Proof. Since Σ is total for p (according to Lemma 3.1), the whole problem amounts
to verifying thatW 1,p(Ω) is Σ-reflexive for each given bounded open set Ω ⊂ RNx . To
do this, let (uε)ε∈E (E a fundamental sequence) be a bounded sequence in W 1,p(Ω).
According to the Σ2-reflexivity of W 1,p(Ω), there exist a subsequence E′ extracted
from E and two functions v0 ∈ W 1,p(Ω;Lp(∆(A2))) and v1 ∈ Lp(Ω,W 1,p

# (∆(A2)))
such that if E′ 3 ε→ 0, then uε → v0 in Lp(Ω)-weak Σ2 and Dxi

uε → Dxi
v0 +∂iv1

in Lp(Ω)-weak Σ2 (1 ≤ i ≤ N). Let u0 = L−1
Ω v0 and u1 = L−1

#Ωv1, where L#Ω

denotes the isometric isomorphism of Lp(Ω,W 1,p
# (∆(A))) onto Lp(Ω,W 1,p

# (∆(A2)))
defined by L#Ωu = L# ◦ u, u ∈ Lp(Ω,W 1,p

# (∆(A))). By applying [5, Theorem
1 of page 142] with X = Ω, F = Lp(∆(A2)), G = Lp(∆(A)) and u = L−1,
we see immediately that L−1

Ω Dxi
v0 = Dxi

L−1
Ω v0 (i = 1, · · · , N). Hence u0 ∈

W 1,p(Ω;Lp(∆(A))) with Dxi
u0 = L−1

Ω Dxi
v0 (i = 1, · · · , N). On the other hand,

it is clear that u1 ∈ Lp(Ω,W 1,p
# (∆(A))) with ∂iu1 = L−1

Ω (∂iv1) (i = 1, · · · , N).
Hence, recalling Lemma 3.3, it follows that as E′ 3 ε → 0, we have uε → u0 in
Lp(Ω)-weak Σ and Dxi

uε → Dxi
u0 + ∂iu1 (i = 1, · · · , N) in Lp(Ω)-weak Σ, which

completes the proof. �
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In the next subsection we will use the preceding theorem to establish the proper-
ness of some specific H-structures.

3.3. Examples of proper H-structures. We present here five basic examples of
proper H-structures.

Example 3.1. Periodic H-structures. Let ΣS be the periodic H-structure on
RN represented by the network S = ZN (cf.Example 3.2 of [19]). We intend
showing that ΣS is proper for each p > 1. We will set Y = (0, 1)N (the open
unit cube in RNy ). We recall that the image J (ΣS) is here A = Cper(Y ) (the
space of Y -periodic continuous complex functions on RNy ). On the other hand, we
have (up to an isometric isomorphism) Lp(∆(A)) ≡ Lpper(Y ) = {v ∈ Lploc(RNy ):
v Y -periodic}, W 1,p(∆(A)) ≡ W 1,p

per(Y ) = {v ∈ W 1,p
loc (RNy ): v Y -periodic} and

W 1,p
# (∆(A)) ≡ W 1,p

# (Y ) = {v ∈ W 1,p
per(Y ) :

∫
Y
v(y)dy = 0}. This follows by simple

arguments that can be found in [22]. We also draw attention to the fact that
ΣS-convergence in the present context is nothing else but two-scale convergence
[1, 18]. Each of the spaces Lpper(Y ), W 1,p

per(Y ) and W 1,p
# (Y ) is a Banach space under

a standard norm:

‖u‖Lp(Y ) =
( ∫

Y

|u(y)|pdy
)1/p

(u ∈ Lpper(Y )),

‖u‖W 1,p(Y ) = ‖u‖Lp(Y ) +
N∑
i=1

‖Dyi
u‖Lp(Y ) (u ∈W 1,p

per(Y ))

and

‖u‖W 1,p
# (Y ) =

N∑
i=1

‖Dyi
u‖Lp(Y ) (u ∈W 1,p

# (Y )).

Finally, we conclude this preliminary step by recalling that ΣS is of class C∞.

Having made this point, let us begin by showing that ΣS is total for any arbitrary
real p > 1.

Proposition 3.2. ΣS is total for p > 1.

Proof. Let θ ∈ D(RNy ) = C∞0 (RNy ) with θ ≥ 0,
∫
θ(y)dy = 1, θ having support in the

closed unit ball of RN . For each integer n ≥ 1, we put θn(x) = nNθ(nx), x ∈ RN ,
which gives a sequence of functions θn ∈ D(RNx ). This being so, let u ∈ Lpper(Y ),

where 1 < p < +∞. By applying Hölder’s inequality to the functions x→ θn(x)
1
p′

and x→ θn(x)
1
p (u(y − x)− u(y)) for fixed y ∈ RN , where 1

p′ = 1− 1
p , we get

‖u ∗ θn − u‖pLp(Y ) ≤
∫
θn(x)‖u− τxu‖pLp(Y )dx.

Hence u ∗ θn → u in Lpper(Y ) when n → ∞, as is easily seen by noting that θn

has support in 1
n

−
BN (

−
BN the closed unit ball of RN ) and using the fact that for

f ∈ Lploc(RN ), τxf → f in Lploc(RN ) when |x| → 0.
We deduce immediately that for u ∈W 1,p

per(Y ), u∗θn → u in W 1,p
per(Y ) as n→∞.

This shows that ΣS is total, since u ∗ θn ∈ C∞per(Y ) = C∞(RN ) ∩ Cper(Y ). �

The next point is to show that for each bounded open set Ω ⊂ RN , the space
W 1,p(Ω) is ΣS-reflexive for any arbitrary real p > 1. We need one basic lemma.
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Lemma 3.4. Let f = (fi) ∈ Lpper(Y )N . Suppose∫
Y

f ·Ψdy ≡
N∑
i=1

∫
Y

fiψidy = 0 (Ψ ∈ Vper) (3.8)

where Vper = {Ψ = (ψi) ∈ C∞per(Y )N : divy Ψ = 0}. Then there is a unique
q ∈W 1,p

# (Y ) such that
Dyq = f . (3.9)

Proof. Consider again the sequence (θn) in the proof of Proposition 3.2. Let ϕn =
f ∗ θn (integers n ≥ 1), and bear in mind that ϕn ∈ C∞per(Y )N and ϕn → f in
Lpper(Y )N when n→∞. Now, for Ψ ∈ Vper, note that∫

Y

ϕn ·Ψdy =
∫
θn(x)

(∫
Y−x

f(y) ·Ψx(y)dy
)
dx

where Ψx(y) = Ψ(y + x). But∫
Y−x

f(y) ·Ψx(y)dy =
∫
Y

f(y) ·Ψx(y)dy = 0 (use (3.8)), since Ψx ∈ Vper.

Hence (3.8) still holds when f is replaced by ϕn. Consequently, by a well-known
result there exists qn ∈ W 1,2

# (Y ) such that Dyqn = ϕn. Furthermore, thanks to
a classical regularity result (see [23, page 61]), qn belongs to C1

per(Y ) = C1(RN ) ∩
Cper(Y ), thus qn ∈W 1,p

# (Y ) and that for any integer n ≥ 1. But then the sequence
(qn) is Cauchy in W 1,p

# (Y ). Therefore qn → q in W 1,p
# (Y ) as n→∞, and it is clear

that q is the sole function in W 1,p
# (Y ) satisfying (3.9). �

This leads to the claimed result.

Proposition 3.3. For each Ω ⊂ RNx as above, W 1,p(Ω) is ΣS-reflexive for any
arbitrary real p > 1.

Proof. Once we have Lemma 3.4 at our disposal, the proposition follows by a clas-
sical way (see, e.g., [18, Theorem 13]). �

We are now justified in stating the final conclusion.

Proposition 3.4. ΣS is proper for any arbitrary p > 1.

Example 3.2. Any almost periodic H-structure on RN is proper for p = 2 (cf.
Theorem 4.1 and Proposition 4.3 of [22]).

Example 3.3. Let Σ∞,S (S = ZN ) be the H-structure (of class C∞) on RN defined
by J (Σ∞,S) = B∞,S(RN ), where B∞,S(RN ) denotes the closure in B(RN ) of the
space of all finite sums∑

finite

ϕiui with ϕi ∈ A1 = B∞(RN ) and ui ∈ A2 = Cper(Y ) (Y = (0, 1)N ).

The H-structure Σ∞,S is proper for p = 2 (cf. [19, Corollary 4.2]). Our purpose
is to show that Σ∞,S is actually proper for any p > 1. Let V = B0(RN )⊕ Cper(Y )
(direct sum), where B0(RN ) denotes the space of those functions in C(RN ) that
vanish at infinity. It is worth noting that V is dense in A = B∞,S(RN ) (cf.[19]). In
the sequel we use the same G to denote the Gelfand transformation on A and on A2,
as well. This being so, define the mapping `2 : V → V as being the projection on A2
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along B0(RN ). Thus, each ψ ∈ V admits the unique decomposition ψ = ψ0 + `2(ψ)
with ψ0 ∈ B0(RN ). Let L2 be the mapping of G(V) into C(∆(A2)) defined by
L2(G(ψ)) = G(`2(ψ)) for ψ ∈ V. In view of Proposition 3.4, the desired properness
result will follow by Theorem 3.1 exactly in the same way as Corollary 4.2 of [19]
was obtained by Theorem 4.2 of the same reference provided we check that L2

extends by continuity to an isometric isomorphism L of Lp(∆(A)) onto Lp(∆(A2)).
This is straightforward by the classical inequality ||a|p−|b|p| ≤ p|a− b|(|a|+ |b|)p−1

(a, b ∈ C). Indeed, if ψ ∈ V then by choosing a = ψ(y) and b = `2(ψ)(y) for
fixed y ∈ RN , we get |M(|ψ|p) − M(|`2(ψ)|p)| ≤ CM(|ψ0|), where C denotes
the supremum of the function p(|ψ| + |`2(ψ)|)p−1. Since M(|ψ0|) = 0, we deduce
M(|ψ|p) = M(|`2(ψ)|p), i.e., ‖L2(ψ̂)‖Lp(∆(A2)) = ‖ψ̂‖Lp(∆(A)) with ψ̂ = G(ψ), and
that for all ψ ∈ V. Therefore, thanks to the density of G(V) in Lp(∆(A)), the
isometric isomorphism L follows.

Example 3.4. For any countable subgroup R of RN , the H-structure (of class
C∞) Σ∞,R on RN [19, Example 3.5] is proper for p = 2 (cf. [19, Corollary 4.2]).
In particular the H-structure Σ∞ [19, Example 3.4] is proper for p = 2, since it
coincides with Σ∞,R for R = {ω} (ω the origin of RN ).

Example 3.5. Let Σ∞ be the H-structure of the convergence at infinity on R, and
let ΣR′ be the almost periodic H-structure on RN−1 represented by a countable
subgroup R′ of RN−1. Then the product H-structure Σ = ΣR′ × Σ∞ on RN is
proper for p = 2 (see [19, Example 4.4]).

4. The abstract homogenization problem

Throughout this section, Σ denotes an H-structure of class C∞ on RN . We put
A = J (Σ) and we denote by G the Gelfand transformation on A and by β the
M -measure (on ∆(A)) for A. Finally, Ω denotes a bounded open set in RNx .

4.1. Preliminaries. Let 1 ≤ p <∞. We begin by introducing the space Ξp of all
u ∈ Lploc(RNy ) for which the sequence (uε)0<ε≤1 is bounded in Lploc(RNx ) (uε defined
in (2.1)). We provide Ξp with the norm

‖u‖Ξp = sup
o<ε≤1

( ∫
BN

|u
(x
ε

)
|pdx

)1/p

(u ∈ Ξp)

where BN denotes the open unit ball in RNx , which makes it a Banach space. This
being so, we define XpΣ to be the closure of A in Ξp. Provided with the Ξp-norm,
XpΣ is a Banach space. Furthermore, the Gelfand transformation on A extends by
continuity to a continuous linear mapping, still denoted by G, of XpΣ into Lp(∆(A))
(cf. [19]). This is referred to as the canonical mapping of XpΣ into Lp(∆(A)).

Given a locally compact space X (equipped with a positive Radon measure),
we will most of the time put LpR(X) = Lp(X; R), CR(X) = C(X; R). In particular
we will write DR(Ω) = D(Ω; R). Likewise we will put AR = A ∩ CR(RN ) and
A∞R = A∞ ∩ CR(RN ).

The main purpose of this section is to investigate the behaviour, as ε→ 0, of uε
(the solution of (1.4)) under the abstract structure hypothesis

ai(·,Ψ) ∈ Xp
′

Σ for all Ψ ∈ (AR)N (1 ≤ i ≤ N) (4.1)

where p′ = p
p−1 with 1 < p ≤ 2, and where ai(·,Ψ) denotes the function y →

ai(y,Ψ(y)) of RN into R (cf.Proposition 2.2).
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This problem will be referred to as the abstract homogenization problem for (1.4).
We will see that it is quite solvable provided the H-structure Σ is proper. However,
before embarking upon the analysis of this homogenization problem as such, we
need further notation and basic results.

We define

W 1,p
# (∆(A); R) = {u ∈W 1,p

# (∆(A)) : ∂ju ∈ LpR(∆(A)) (1 ≤ j ≤ N)}.

Equipped with the W 1,p
# (∆(A))-norm, W 1,p

# (∆(A); R) is a Banach space. Next, we
set

F1,p
0 = W 1,p

0 (Ω; R)× Lp(Ω;W 1,p
# (∆(A); R)),

and we provide F1,p
0 with the norm

‖v‖F1,p
0

=
N∑
i=1

[
‖Dxiv0‖Lp(Ω) + ‖∂iv1‖Lp(Ω×∆(A))

]
(v = (v0, v1) ∈ F1,p

0 ),

which makes it a Banach space. Furthermore, if we assume that Σ is total (for p),
then the space

F∞0 = DR(Ω)× [DR(Ω)⊗ J(DR(∆(A))/C)]

is dense in F1,p
0 (use Remark 3.5).

Now, let the index 1 ≤ i ≤ N be arbitrarily fixed. For ϕ = (ϕj)1≤j≤N ∈
CR(∆(A))N , let

bi(ϕ) = G(ai(·,G−1ϕ)) (4.2)

where G−1ϕ = (G−1ϕj)1≤j≤N , and where we recall that for θ ∈ (AR)N , ai(·, θ) de-
notes the function y → ai(y, θ(y)) (cf.Proposition 2.2) of RN into R, which belongs
to Xp

′,∞
Σ = Xp

′

Σ ∩ L∞(RNy ) provided (4.1) holds. Thus, under hypothesis (4.1) we
see that (4.2) defines a mapping bi of CR(∆(A))N into L∞(∆(A)) (see Corollary 2.2
of [19]).

Proposition 4.1. Let 1 < p ≤ 2. Suppose (4.1) holds. For Ψ = (ψj)1≤j≤N in
C(Ω; (AR)N ), let bi ◦ Ψ̂ = G(ai(·,Ψ)), i.e., bi(Ψ̂(x)) = G(ai(·,Ψ(x))) for x ∈ Ω,
where Ψ̂ = (G ◦ ψj)1≤j≤N . The following assertions are true :

(i) We have bi ◦ Ψ̂ ∈ C(Ω;L∞(∆(A))) and

aεi (·,Ψε) → bi ◦ Ψ̂ in Lp
′
(Ω)-weak Σ when ε→ 0. (4.3)

(ii) The mapping Φ → b(Φ) = (bi ◦ Φ)1≤i≤N of
C(Ω; CR(∆(A))N ) into Lp

′
(Ω×∆(A))N extends by continuity to a mapping,

still denoted by b, of Lp(Ω;LpR(∆(A))N ) into Lp
′
(Ω×∆(A))N such that

‖b(u)− b(v)‖Lp′ (Ω×∆(A))N ≤ c‖u− v‖p−1
Lp(Ω;Lp(∆(A))N )

(4.4)

and

(b(u)− b(v)) · (u− v) ≥ α|u− v|p a.e. in Ω×∆(A) (4.5)

for all u,v ∈ Lp(Ω;LpR(∆(A))N ).

Proof. The function x→ ai(·,Ψ(x)) lies in C(Ω; Xp
′,∞

Σ ) (see the proof of Corollary
2.2) (Xp

′,∞
Σ equipped with the L∞-norm) and thus bi ◦ Ψ̂ ∈ C(Ω;L∞(∆(A))), ac-

cording to [19, Corollary 2.2]. Furthermore, thanks to [19, Corollary 4.1], we have
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aεi (·,Ψε) → bi ◦ Ψ̂ in Lp
′
(Ω)-weak Σ as ε→ 0. With this in mind, we now concen-

trate on (1.3) where we may assume that | · | denotes precisely that norm on RN

which is given by |ζ| =
∑N
j=1 |ζj | for ζ = (ζj). Based on this, we next use Lemma

2.2 (proceed as in the proof of Proposition 2.1) to see that if f ,g ∈ C(Ω; (AR)N ),
then

|aε(·, fε)− aε(·,gε)| ≤ c|fε − gε|p−1 a.e. in Ω

and
[aε(·, fε)− aε(·,gε)] · (fε − gε) ≥ α|fε − gε|p a.e. in Ω

for any ε > 0. Letting ε → 0, it follows by [19, Corollary 4.1] and use of Remark
4.1 below that

|b(f̂)− b(ĝ)| ≤ c|̂f − ĝ|p−1 a.e. in Ω×∆(A) (4.6)

and
[b(f̂)− b(ĝ)] · (f̂ − ĝ) ≥ α|̂f − ĝ|p a.e. in Ω×∆(A) (4.7)

where b(f̂) = (bi ◦ f̂)1≤i≤N . Immediately (4.6) yields

‖b(f̂)− b(ĝ)‖Lp′ (Ω×∆(A))N ≤ c‖f̂ − ĝ‖p−1
Lp(Ω;Lp(∆(A))N )

and that for any f ,g ∈ C(Ω; (AR)N ). Hence, thanks to the fact that C(Ω; CR(∆(A))N )
is (identifiable with) a dense subspace of Lp(Ω;LpR(∆(A))N ), it follows that b
extends by continuity to a mapping, still denoted b, of Lp(Ω;LpR(∆(A))N ) into
Lp

′
(Ω × ∆(A))N such that (4.4) holds for all u,v ∈ Lp(Ω;LpR(∆(A))N ). Finally,

(4.5) follows from (4.7) by the above density argument combined with the con-
tinuity of b : Lp(Ω;LpR(∆(A))N ) → Lp

′
(Ω × ∆(A))N and use of the fact that

Lp(Ω;LpR(∆(A))N ) may be identified with LpR(Ω × ∆(A))N . This completes the
proof. �

Remark 4.1. If vε ∈ Lp(Ω) (ε > 0) with vε → v0 in Lp(Ω)-weak Σ (as ε→ 0) and
if for each ε > 0 we have vε ≥ 0 a.e. in Ω, then v0 ≥ 0 a.e. in Ω×∆(A).

The preceding proposition has an important corollary.

Corollary 4.1. Let φε = ψ0 + εψε1, i.e., φε(x) = ψ0(x) + εψ1(x, xε ), x ∈ Ω, where
ψ0 ∈ DR(Ω) and ψ1 ∈ DR(Ω)⊗A∞R . Then, when ε→ 0,

aεi (·, Dφε) → bi(Dxψ0 + ∂ψ̂1) in Lp
′
(Ω)-weak Σ (1 ≤ i ≤ N) (4.8)

where ∂ψ̂1 = (∂iψ̂1)1≤i≤N . Furthermore, if (vε)ε∈E is a sequence in Lp(Ω) such
that vε → v0 in Lp(Ω)-weak Σ as E 3 ε→ 0, then, as E 3 ε→ 0,∫

Ω

aεi (·, Dφε)vεdx→
∫ ∫

Ω×∆(A)

bi(Dxψ0 + ∂ψ̂1)v0dxdβ (1 ≤ i ≤ N).

Proof. Since Dφε = Dxψ0 + ε(Dxψ1)ε + (Dyψ1)ε, it is clear that

‖aε(·, Dφε)− aε(·, Dxψ0 + (Dyψ1)ε)‖Lp′ (Ω) ≤ cεp−1‖Dxψ1‖p−1
Lp(Ω;B(RN ))

.

Therefore (4.8) follows by Proposition 4.1 (see especially (4.3)). Finally, recalling
that for Ψ = Dxψ0 +Dyψ1 the function x→ ai(·,Ψ(x, ·)) lies in C(Ω; Xp

′,∞
Σ ), we see

that the last part of the corollary follows immediately by [19, Proposition 4.5]. �
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4.2. The abstract homogenization result. The main purpose of this subsection
is to state and prove the following theorem.

Theorem 4.1. Let 1 < p ≤ 2. Suppose (4.1) holds and Σ is proper (for p). For
each real ε > 0, let uε be the solution of (1.4). As ε→ 0, we have

uε → u0 in W 1,p
0 (Ω)-weak (4.9)

and
Dxiuε → Dxiu0 + ∂iu1 in Lp(Ω)-weak Σ (1 ≤ i ≤ N), (4.10)

where u = (u0, u1) is uniquely defined by u = (u0, u1) ∈ F1,p
0 and∫∫

Ω×∆(A)

b(Dxu0 + ∂u1) · (Dxv0 + ∂v1)dxdβ = 〈f, v0〉 (4.11)

for all v = (v0, v1) ∈ F1,p
0 .

Proof. It is a routine exercise to verify that the sequence (uε)ε>0 is bounded in
W 1,p

0 (Ω). Therefore, given an arbitrary fundamental sequence E, the properness of
Σ and the compactness of the embedding W 1,p

0 (Ω) → Lp(Ω) yield a subsequence
E′ from E and a couple u = (u0, u1) ∈ F1,p

0 such that (4.9) and (4.10) hold when
E′ 3 ε→ 0 (use Corollary 3.2). If we prove that u = (u0, u1) verifies the variational
equation in (4.11), since such an equation admits at most one solution by virtue of
(4.5), then it will turn out that (4.9) and (4.10) hold not only when E 3 ε→ 0 but
merely when 0 < ε→ 0. To this end let Φ ∈ F∞0 , that is, let Φ = (ψ0, J(ψ̂1)) with
ψ0 ∈ DR(Ω), ψ1 ∈ DR(Ω)⊗ (A∞R /C) and J(ψ̂1) = J ◦ ψ̂1. Define φε as in Corollary
4.1. Clearly

0 ≤ 〈f, uε − φε〉 −
∫

Ω

aε(·, Dφε) · (Duε −Dφε)dx. (4.12)

Indeed, the right-hand side is equal to∫
Ω

[aε(·, Duε)− aε(·, Dφε)] · (Duε −Dφε)dx

and the latter is nonnegative. Now, noting that φε → ψ0 in W 1,p
0 (Ω)-weak as ε→ 0,

we next pass to the limit (as E′ 3 ε→ 0) in (4.12) using (4.9), (4.10) and Corollary
4.1, and we obtain

0 ≤ 〈f, u0 − ψ0〉 −
∫∫

Ω×∆(A)

b(DΦ) · D(u− Φ) dx dβ (4.13)

where DΦ = Dxψ0 +∂ψ̂1 and D(u−Φ) = Dx(u0−ψ0)+∂(u1− ψ̂1). Thanks to the
density of F∞0 in F1,p

0 , (4.13) still holds for any Φ ∈ F1,p
0 . Finally, take in (4.13) the

particular Φ = u− tv with t > 0 and v = (v0, v1) ∈ F1,p
0 , then divide both sides of

the resultant inequality by t and, letting t→ 0, pass to the limit using (4.4). Hence
(4.11) follows at once. �

The variational problem (4.11) is referred to as the global homogenized problem
for (1.4) under the structure hypothesis (4.1) (where Σ is assumed to be proper
for p). It is immediate that the variational equation in (4.11) is equivalent to the
system of the two equations :∫∫

Ω×∆(A)

b(Dxu0+∂u1)·∂v1 dxdβ = 0 for all v1 ∈ Lp(Ω;W 1,p
# (∆(A); R)) (4.14)
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and∫
Ω

[ ∫
∆(A)

b(Dxu0 + ∂u1)dβ
]
·Dxv0dx = 〈f, v0〉 for all v0 ∈W 1,p

0 (Ω; R). (4.15)

The next point is to derive the macroscopic homogenized problem for (1.4) under
hypothesis (4.1). To this end, let r ∈ RN be freely fixed, and let π(r) be defined
by the so-called cell problem: π(r) ∈W 1,p

# (∆(A); R) and∫
∆(A)

b(r + ∂π(r)) · ∂θ dβ = 0 for all θ ∈W 1,p
# (∆(A); R). (4.16)

Thanks to (4.4) and (4.5), the existence and unicity of π(r) follow by adaptation
of a classical line of argument (see, e.g., [15]). This yields a mapping π of RN into
W 1,p

# (∆(A); R).
Now, in (4.14) choose v1 of the form v1(x) = ϕ(x)θ (x ∈ Ω) with ϕ ∈ DR(Ω) and

θ ∈W 1,p
# (∆(A); R). Then, almost everywhere in x ∈ Ω,∫

∆(A)

b(Du0(x) + ∂u1(x)) · ∂θ dβ = 0 for all θ ∈W 1,p
# (∆(A); R).

Comparing with (4.16) for r = Du0(x) (x arbitrarily fixed), it follows (by the
unicity argument) that u1 = π(Du0), where the right-hand side stands for the
function x→ π(Du0(x)) of Ω into W 1,p

# (∆(A); R). Hence, letting

q(r) =
∫

∆(A)

b(r + ∂π(r))dβ (r ∈ RN ),

we see by (4.15) that u0 is a solution of the boundary value problem

−div q(Du0) = f in Ω, u0 ∈W 1,p
0 (Ω; R). (4.17)

Remark 4.2. By a method similar to that which is commonly followed in the
periodic case (see, e.g., [17]), it is possible to show that the homogenized operator,
i.e., the operator v → div q(Dv) of W 1,p

0 (Ω) into W−1,p′

0 (Ω), is lipschitz continuous
and strictly monotone as in (1.3), so that u0 is uniquely defined by (4.17).

Application. By way of illustration, let us suppose that a(y, λ) verifies the classical
periodicity hypothesis (see Section 1). We want to show that the abstract hypoth-
esis (4.1) is then verified so that Theorem 4.1 holds. Let 1 < p ≤ 2, and fix freely
1 ≤ i ≤ N . For each λ ∈ RN , we have ai(·, λ) ∈ Lp′per(Y ) (cf.Subsection 3.3), since
ai(·, λ) ∈ L∞(RNy ), as is quickly seen by using (1.1), (1.2) and part (ii) of (1.3). But

Lp
′

per(Y ) = Xp
′

Σ (use [22, Lemma 1.3]) with Σ = ΣS (and AR = Cper(Y ) ∩ CR(RN ),
of course). Thanks to Proposition 3.4, this leads us to the conclusion of Theorem
4.1 with Σ = ΣS , with Y in place of ∆(A), dy in place of dβ, and Dy in that of ∂
(see Subsection 3.3).

5. Concrete homogenization problems for (1.4)

5.1. Introduction. First of all, it is worth recalling that a homogenization problem
is posed as soon as one has on one hand a suitable boundary value problem, on the
other hand a so-called structure hypothesis. Thus, each of the structure hypotheses
presented in Examples 1.1-1.4 (see also the periodicity hypothesis) determines a
specific homogenization problem for the boundary value problem (1.4). Such a
homogenization problem is said to be concrete because the associated structure
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hypothesis appears under a natural form, as opposed to the abstract hypothesis
(4.1).

The present section deals with the study of a few concrete homogenization prob-
lems for (1.4). Thanks to the results achieved in the precedent section (see espe-
cially Theorem 4.1), the whole problem in each case will reduce to showing that
the associated concrete structure hypothesis can write as (4.1) for a suitable proper
H-structure Σ (to be determined).

5.2. Problem I. Here, our purpose is to work out the homogenization of (1.4)
under the structure hypothesis : For each fixed λ ∈ RN , a(·, λ) lies in C(RN ; RN )
and further a(y, λ) converges in RN when |y| → +∞. Let us begin by noting that
this structure hypothesis again writes as

ai(·, λ) ∈ B∞(RNy ) for each fixed λ ∈ RN (1 ≤ i ≤ N).

This suggests that we should introduce the H-structure Σ = Σ∞ of the conver-
gence at infinity on RN [19]. Accordingly A = B∞(RNy ) (the image of Σ∞). Now,
let Ψ ∈ (AR)N . Put r = lim|y|→+∞Ψ(y). By (1.3) we have |ai(y,Ψ(y))−ai(y, r)| ≤
c|Ψ(y) − r|p−1 for y ∈ RN . Hence ai(y,Ψ(y)) = ai(y, r) + ϕ(y) for y ∈ RN , where
ϕ ∈ B0(RN ) [observe that ai ∈ C(RNλ ;B(RNy )), which implies that ai is continuous
on RN×RN ]. Therefore ai(·,Ψ) ∈ A (1 ≤ i ≤ N) for every Ψ ∈ (AR)N . Thus, (4.1)
holds with Σ = Σ∞. Since the H-structure Σ∞ is proper for p = 2 (Example 3.4),
it follows that the conclusion of Theorem 4.1 and the subsequent developments
hold when p = 2 and Σ = Σ∞. This solves the homogenization problem under
consideration.

5.3. Problem II. The present subsection deals with the homogenization of (1.4)
under the structure hypothesis (1.5). Noting that the space B∞,S(RN ) in Example
3.3 is none other than B∞,per(Y ), we see that the appropriate H-structure is Σ =
Σ∞,S , and the latter is a proper H-structure for each real p > 1 (Example 3.3).
Thus, the solution of the homogenization problem under consideration is provided
by Theorem 4.1 if we can check that (4.1) holds with Σ = Σ∞,S . In fact, we want
to show a better result namely

Proposition 5.1. Suppose (1.5) holds. Then, for all Ψ ∈ (AR)N ,

ai(·,Ψ) ∈ A = B∞,S(RN ) (1 ≤ i ≤ N). (5.1)

Proof. We begin by proving (5.1) for Ψ of the form

Ψ = Ψ1 + Ψ2 with Ψ1 ∈ (A1)N and Ψ2 ∈ (A2)N (5.2)

where A1 = B∞(RN ) ∩ CR(RN ) and A2 = Cper(Y ) ∩ CR(RN ).
This will be done in two steps.
1) For fixed 1 ≤ i ≤ N , let us assume that ai is of the form

ai(y, λ) = χ(λ)ϕ(y) (y, λ ∈ RN ) (5.3)

where ϕ ∈ AR and χ ∈ CR(RN ) (see (1.5)). Let r1 = lim|y|→∞Ψ1(y). Clearly
ai(·, r1 +Ψ2) ∈ A. Next, since Ψ1 and Ψ2 are bounded, we may consider a compact
set K ⊂ RN such that Ψ(y) = Ψ1(y) + Ψ2(y) ∈ K for all y ∈ RN . On the
other hand, let c1 > 0 be a constant such that ‖ϕ‖∞ ≤ c1. Finally, let η > 0.
Since the function χ is uniformly continuous on K, there is some γ > 0 such that
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|χ(λ) − χ(µ)| ≤ η
c1

for all λ, µ ∈ K with |λ − µ| ≤ γ. Furthermore, let ρ > 0 be
such that |Ψ1(y)− r1| ≤ γ for y ∈ RN with |y| ≥ ρ. Then

|ai(y,Ψ(y))− ai(y, r1 + Ψ2(y))| ≤ η for y ∈ RN with |y| ≥ ρ.

Therefore ai(·,Ψ) = ai(·, r1 + Ψ2) + φ with φ ∈ B0(RN ), which shows (5.1). But
then, clearly (5.1) still holds true for ai in CR(RN )⊗AR (the finite sums

∑
χj ⊗ϕj

with ϕj ∈ AR and χj ∈ CR(RN )).
2) Now, we consider the general case where we know merely that a (in addition

to (1.1)-(1.3)) satisfies (1.5). Let Ψ be given with (5.2), and let K be as above. For
convenience we still denote the restriction ai

∣∣
K

by ai. Then, clearly ai ∈ C(K;AR).
Thanks to the density of CR(K)⊗ AR in C(K;AR) (see, e.g., page 46 of [5]), there
exists a sequence of functions ζn ∈ CR(K)⊗AR (integers n ≥ 0) such that

‖ζn − ai‖C(K;A) ≡ sup
y∈RN , λ∈K

|ζn(y, λ)− ai(y, λ)| → 0 as n→∞.

It follows immediately that ζn(·,Ψ) → ai(·,Ψ) in B(RN ) (with the supremum
norm) as n → ∞. But ζn(·,Ψ) ∈ A, according to step 1). Hence (5.1) follows for
Ψ of the form (5.2). This completes step 2).

Finally, let Ψ ∈ (AR)N be arbitrarily fixed. Remarking that B∞(RN ) + Cper(Y )
is dense in A, we see that (A1)N +(A2)N is dense in (AR)N so that we may consider
a sequence of functions fn of the form (5.2) such that fn → Ψ in B(RN )N as n→∞.
Therefore (5.1) follows by ‖ai(·,Ψ)−ai(·, fn)‖∞ ≤ c‖Ψ−fn‖p−1

∞ (according to (1.3))
and use of the fact that ai(·, fn) ∈ A, as established previously. �

5.4. Problem III. In this subsection we assume that the family {a(·, λ)}λ∈RN is
uniformly equicontinuous, i.e.,

(UE) Given η > 0, there exists ρ > 0 such that |a(y − r, λ)− a(y, λ)| ≤ η for all
y, λ ∈ RN provided |r| ≤ ρ.

Our purpose is to investigate the behaviour (as ε→ 0) of uε (the solution of (1.4))
under the structure hypothesis (1.6). To this end we first note that B∞(R; Cper(Y ′))
is the image of the product H-structure Σ = ΣR′ × Σ∞ (R′ = ZN−1) on RN =
RN−1 × R and further that the latter is proper for p = 2 (Example 3.5). Thus,
for p = 2, the homogenization problem under consideration will have been solved
through Theorem 4.1 if we can show that (4.1) holds (with p = 2). But this will be
a direct consequence of a stronger result.

Proposition 5.2. Suppose (1.6) holds. Then

ai(·,Ψ) ∈ A = B∞(R; Cper(Y ′)) for all Ψ ∈ (AR)N (1 ≤ i ≤ N). (5.4)

Proof. Let Ψ ∈ (AR)N . Let θ = lim|yN |→∞Ψ(·, yN ), where the limit is taken in
B(RN−1) (with the supremum norm) and where Ψ(·, yN ) stands for the function
y′ = (y1, · · · , yN−1) → Ψ(y′, yN ) of RN−1 into R. Let us begin by verifying that
the function y → ai(y, θ(y′)) of RN into R, denoted by ai(·, θ′), lies in A. For fixed
yN ∈ R, let ai(·, yN , θ) denote the function y′ → ai(y′, yN , θ(y′)) of RN−1 into R.
It is an easy matter to check, using (UE), that the mapping yN → ai(·, yN , θ) sends
continuously R into Cper(Y ′). Thus, we will claim that ai(·, θ′) lies in A if we have
shown that ai(·, yN , θ) has a limit in B(RN−1) when |yN | → ∞. We proceed in two
steps: 1) Suppose ai is of the form (5.3). Let h ∈ Cper(Y ′) be the limit of ϕ(·, yN )
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in B(RN−1) as |yN | → ∞. The mapping y′ → h(y′)χ(θ(y′)) of RN−1 into R lies in
Cper(Y ′) and

|ai(y, θ(y′))− h(y′)χ(θ(y′))| ≤ C|ϕ(y)− h(y′)| (y ∈ RN )

where C = maxλ∈K |χ(λ)|, K being a compact set in RN such that θ(y′) ∈ K for
all y′ ∈ RN−1. This shows that when |yN | → ∞, ai(·, yN , θ) converges in B(RN−1)
to the preceding function. 2) We now consider the general case where we know
merely that, in addition to (1.1)-(1.3) and (UE), a satisfies (1.6). For convenience
we still write ai for ai

∣∣
K

, K being as above. Then ai belongs to C(K;AR). By the
same line of argument as followed in proving Proposition 5.1, we are immediately
led to the desired result.

We are now in a position to show that ai(·,Ψ) lies in A. This is straightforward.
Indeed, by

|ai(y,Ψ(y))− ai(y, θ(y′))| ≤ c|Ψ(y)− θ(y′)|p−1 (y ∈ RN )

we are quickly led to ai(·,Ψ) = ai(·, θ′)+φ, where φ ∈ B0(R; Cper(Y ′)) [it is an easy
matter to show, using (1.3)(ii) and (UE), that ai(·,Ψ) ∈ C(R; Cper(Y ′))]. Hence
(5.4) follows. �

5.5. Problem IV. The matter in hand is the homogenization of (1.4) under the
structure hypothesis (1.7). For this purpose, starting from (1.7) we begin by con-
sidering (exactly as in Lemma 5.1 of [22]) a countable subgroup R of RN such that
[19, 22]

ai(·, λ) ∈ A = APR(RN ) for any λ ∈ RN (1 ≤ i ≤ N).

Let ΣR be the almost periodic H-structure on RN represented by R. We have
J (ΣR) = A = APR(RN ) and ΣR is proper for p = 2, as pointed out in Example
3.2. Therefore, if we show that

ai(·,Ψ) ∈ A for all Ψ ∈ (AR)N (1 ≤ i ≤ N), (5.5)

which implies (4.1) with Σ = ΣR, then for p = 2 the solution of the homogenization
problem under examination follows at once by Subsection 4.2.

To do this, let us fix freely Ψ ∈ (AR)N . Let K be a compact set in RN such that
Ψ(y) ∈ K for all y ∈ RN . For an obvious reason we may here view ai as belonging
to C(K;AR). Let us first assume that ai is of the form

ai(λ) = χ(λ)ϕ (λ ∈ K) with χ ∈ CR(K) and ϕ ∈ AR.

By the Stone-Weierstrass theorem (see chapter X, page 37 of [4]) there is a sequence
(fn) of polynomials in λ = (λ1, · · · , λN ) such that fn → χ in C(K) when n → ∞.
Thus, fn(Ψ) → χ(Ψ) in B(RN ) as n→∞. It follows that χ(Ψ) ∈ AR, since fn(Ψ) ∈
AR. Hence ai(·,Ψ) ∈ A. But then this is still manifestly true if ai(λ) =

∑
χ(λ)ϕ

for λ ∈ K, where χ (resp. ϕ) ranges over a finite subset of CR(K) (resp. AR).
Hence the same routine argument as used in Step 2) of the proof of Proposition 5.1
leads us to (5.5).

5.6. Problem V. We assume here that a(y, λ) satisfies (1.8) and (1.9), and we
want to study the homogenization of (1.4) for p = 2. As is now well known,
this problem reduces to the abstract problem of Section 4 if for some proper H-
structure Σ, condition (4.1) is fulfilled. To achieve this, let θ ∈ D(RN ) with θ ≥ 0,
Suppθ ⊂ BN (closed unit ball of RN ) and

∫
θ(y)dy = 1. For each integer n ≥ 1,
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set θn(y) = nNθ(ny) (y ∈ RN ), which gives a sequence of functions θn ∈ D(RN ).
Now, define

ζin(y, λ) =
∫
θn(r)ai(y − r, λ)dr for y, λ ∈ RN (1 ≤ i ≤ N).

It is easily checked that ζin(·, λ) ∈ AP (RNy ) for λ ∈ RN and further

|ζn(y, λ)− ζn(y, µ)| ≤ c|λ− µ|p−1 (λ, µ, y ∈ RN ) (5.6)

where ζn = (ζin)1≤i≤N . Therefore, according to Subsection 5.5, there is a countable
subgroup R of RN such that ζin(·,Ψ) ∈ A = APR(RNy ) for Ψ ∈ (AR)N , 1 ≤ i ≤ N ,
and all integers n ≥ 1. Furthermore, given Ψ ∈ (AR)N and 1 ≤ i ≤ N , a quick
calculation reveals that

‖ζin(·,Ψ)− ai(·,Ψ)‖2
2,∞

≤
∫

1
nBN

θn(r)
[

sup
k∈ZN

∫
k+Y

|ai(y − r,Ψ(y))− ai(y,Ψ(y))|2dy
]
dr (5.7)

for any integer n ≥ 1, where ‖·‖2,∞ is the norm in the amalgam space (L2, `∞)(RN )
[13, 22] (see also [19, Example 5.4]). Hence, if η > 0 is given, then by (1.9) we are
led to some integer γ ≥ 1 such that ‖ζin(·,Ψ)−ai(·,Ψ)‖2,∞ ≤ η for any n ≥ γ. Since
(L2, `∞)(RN ) is continuously embedded in Ξ2(RN ) [19] (use [22, Lemma 1.3]), we
deduce that (4.1) follows with Σ = ΣR (as in Subsection 5.5) and p = 2.

Remark 5.1. Condition (1.9) is fulfilled if the following holds : Given η > 0, there
exists ρ > 0 such that |a(y − r, λ) − a(y, λ)| ≤ η for all λ ∈ RN and for almost all
y ∈ RN provided |r| ≤ ρ.

5.7. Problem VI. This subsection is intended to study the homogenization of
(1.4) for p = 2 under the following hypotheses:

ai(·, λ) ∈ B∞(R;L∞per(Y
′)) for each λ ∈ RN (1 ≤ i ≤ N) (5.8)

Given η > 0, a real ρ > 0 exists such that |a(y−r, λ)−a(y, λ)| ≤ η
for all λ ∈ RN and for almost all y ∈ RN provided |r| ≤ ρ

(5.9)

where Y ′ is as in (1.6). As we are now familiar with the approach, the whole
problem reduces to verifying that (4.1) holds with p = 2 and Σ = ΣR′=ZN−1 ×Σ∞,
hence A = B∞(R; Cper(Y ′)). This proceeds by adaptation of what we did earlier in
Subsection 5.6.

Let (ζn)n≥1 with ζn = (ζin)1≤i≤N for each integer n ≥ 1, where ζin is defined in
Subsection 5.6. Let λ ∈ RN be fixed. Clearly

ai(y, λ) = ti(y′, λ) + gi(y, λ) for y ∈ RN (1 ≤ i ≤ N)

where the functions y′ = (y1, · · · , yN−1) → ti(y′, λ) from RN−1 to R and y →
gi(y, λ) from RN to R lie in L∞per(Y

′) and B0(R;L∞per(Y
′)) (those functions in

B∞(R;L∞per(Y
′)) that vanish at infinity), respectively. Hence

ζin(y, λ) = ϕin(y
′, λ) + γin(y, λ) for y ∈ RN (1 ≤ i ≤ N)

where
ϕin(y

′, λ) =
∫
θn(r)ti(y − r, λ)dr (y ∈ RN )

and
γin(y, λ) =

∫
θn(r)gi(y − r, λ)dr (y ∈ RN ), (5.10)
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ti(·, λ) being considered as a function in L∞(RN ) independent of the N th variable.
It is immediate that the function y′ → ϕin(y

′, λ) lies in Cper(Y ′). On the other
hand, whereas γin(·, λ), considered as a function of the variable yN , belongs to
B(R; Cper(Y ′)) (this follows at once by classical properties of the convolution), it
is not clear, however, that the latter function vanishes at infinity. To see this, let
η > 0. Let ρ > 0 be such that

‖gi(zN , λ)‖L∞(RN−1) ≤ η (5.11)

for all zN ∈ R verifying |zN | ≥ ρ, where gi(·, λ) is viewed as a function of zN ∈ R
with values in L∞per(Y

′), of course. Fix y = (y′, yN ) ∈ RN = RN−1 × R where y′

is arbitrary and yN is subject to the condition |yN | ≥ 1 + ρ. Since the variable

r = (r1, · · · , rN ) in (5.10) actually runs through 1
n

−
BN , it follows from (5.11) that

‖gi(yN − rN , λ)‖L∞(RN−1) ≤ η

for |yN | ≥ 1 + ρ provided r lies in 1
n

−
BN . Based on (5.10), we deduce that

‖γin(yN , λ)‖∞ ≤ η for |yN | ≥ 1 + ρ and so γin(·, λ) lies in B0(R; Cper(Y ′)). Hence
ζin(·, λ) ∈ A = B∞(R; Cper(Y ′)).

On the other hand, it is clear that (5.6) holds true. Finally, for each fixed integer
n ≥ 1, the family {ζn(·, λ)}λ∈RN is uniformly equicontinuous (see Subsection 5.4),
as is easily seen by using (5.9). Consequently, we are justified in replacing a(·, λ)
by ζn(·, λ) in Proposition 5.2, so that ζin(·,Ψ) ∈ A (1 ≤ i ≤ N) for all Ψ ∈ (AR)N .

With this in mind, fix freely Ψ ∈ (AR)N . Clearly (5.7) holds true for 1 ≤ i ≤ N .
On the other hand, by (5.9) one easily gets

sup
k∈ZN

∫
k+Y

|a(y − r,Ψ(y))− a(y,Ψ(y))|2dy → 0 as |r| → 0.

Therefore, given η > 0, there is an integer γ ≥ 1 such that ‖ζin(·,Ψ)−ai(·,Ψ)‖2,∞ ≤
η for any n ≥ γ. Hence the desired conclusion follows in the same manner as in
Subsection 5.6.

Remark 5.2. Hypothesis (5.8) generalizes (1.6). Condition (5.9) is equivalent to
lim|r|→0 ‖ar(·, λ) − a(·, λ)‖L∞(RN ) = 0 for any λ ∈ RN , where ar(·, λ) denotes the
function y → a(y − r, λ).
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