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MULTIDIMENSIONAL SINGULAR λ-LEMMA

VICTORIA RAYSKIN

Abstract. The well known λ-Lemma [3] states the following: Let f be a
C1-diffeomorphism of Rn with a hyperbolic fixed point at 0 and m- and p-
dimensional stable and unstable manifolds W S and W U , respectively (m+p =
n). Let D be a p-disk in W U and w be another p-disk in W U meeting W S

at some point A transversely. Then
⋃

n≥0 fn(w) contains p-disks arbitrarily

C1-close to D. In this paper we will show that the same assertion still holds
outside of an arbitrarily small neighborhood of 0, even in the case of non-

transverse homoclinic intersections with finite order of contact, if we assume
that 0 is a low order non-resonant point.

1. Introduction

Let M be a smooth manifold without boundary and f : M → M be a C1

map that has a hyperbolic fixed point at the origin. The well known λ-Lemma [3]
gives an important description of chaotic dynamics. The basic assumption of this
theorem is the presence of a transverse homoclinic point.

Theorem 1.1 (Palis). Let f be a C1 diffeomorphism of Rn with a hyperbolic fixed
point at 0 and m- and p-dimensional stable and unstable manifolds WS and WU

(m + p = n). Let D be a p-disk in WU , and w be another p-disk in WU meeting
WS at some point A transversely. Then

⋃
n≥0 f

n(w) contains p-disks arbitrarily
C1-close to D.

The assumption of transversality is not easy to verify for a concrete dynamical
system. Obviously, the conclusion of the Theorem of Palis is not true for an arbi-
trary degenerate (non-transverse) crossing. Example by Newhouse illustrates this
situation (See picture 1).

In this paper we prove an analog of the λ-Lemma for the non-transverse case in
arbitrary dimension. Suppose WS and WU are sufficiently smooth and cross non-
transversally at an isolated homoclinic point, i.e. they have a singular homoclinic
crossing. In Section 2 we define the order of contact for this crossing (Definition 2.3)
and show that it is preserved under a diffeomorphic transformation (Lemma 2.5).
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Figure 1. Newhouse example. Branches of WU are not C1-close
near 0

We prove Singular λ-Lemma for the case of singular finite order homoclinic crossing
of manifolds which have a graph portion (see Definition 2.6), under non-resonance
restriction. See Lemma 3.1 in Section 3.

2. Definitions and Lemmas

In this section we are considering two immersed Cr manifolds in Rn, r > 1.
Suppose they meet at an isolated point A. We will discuss the structure of these
manifolds in the neighborhood of the point A. First, assume that each manifold is
a curve.

Hirsch in his work [2] describes the order of contact for two curves and formulates
the following definition:

Definition 2.1. Let Λi (i = 1, 2) denote two immersed Cr curves in R2 , r > 1.
Suppose the two curves meet at point A. Let t 7→ ui(t) be a Cr parameterization of
Λi, both defined for t in some interval I, with non-vanishing tangent vectors u′i(t).
Suppose 0 ∈ I and A = ui(0). The order of contact of the two curves at A is the
unique real number l in the range 1 ≤ l ≤ r, if it exists, such that u1 − u2 has a
root of order l at 0.

For our higher-dimensional proof we can reformulate this definition for two curves
in Rn:

Definition 2.2. Let Λi (i = 1, 2) denote two immersed Cr curves in Rn, r > 1.
Suppose the two curves meet at point A. Let t 7→ ui(t) be a Cr parameterization of
Λi, both defined for t in some interval I, with non-vanishing tangent vectors u′i(t).
Suppose 0 ∈ I and A = ui(0). The order of contact of the two curves at A is the
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unique real number l in the range 1 ≤ l ≤ r, if it exists, such that |u1 − u2| has a
root of order l at 0.

Now we can define the order of contact for two manifolds of arbitrary dimensions.

Definition 2.3. Let WS and WU denote two immersed Cr manifolds in Rn, r > 1.
Suppose the two manifolds meet at an isolated point A. The order of contact α at
A is the unique real number α in the range 1 ≤ α ≤ r, if it exists, such that

α = sup
{
l|Cr-curve γ1 ∈WS has order of contact l with another

Cr-curve γ2 ∈WU and A ∈ γ1 ∩ γ2

}
The order of contact is preserved under a diffeomorphism. This result is first

proven for curves (Lemma 2.4).

Lemma 2.4. Consider a C∞ surface without boundary and a Cr diffeomorphism
φ that maps a neighborhood N ′ of this surface onto some neighborhood N ⊂ R2.
Assume that u(t), v(t) are Cr curves, such that u(0) = v(0). Then, φ preserves the
order of contact of these curves.

Proof. Without lost of generality, we assume that u(0) = v(0) = 0. We have curves

φ ◦ u(t), φ ◦ v(t),
transformed by the diffeomorphism φ. There are positive constants m and M such
that

m ≤ |u(t)− v(t)|
|t|l

≤M, as t→ 0.

By the C1 Mean Value Theorem,

φ(x)− φ(y) =
[ ∫ 1

0

(Dφ)σ(s)ds
]
(x− y),

where σ(s) = (1− s)x+ sy. Then

(φ ◦ u)(t)− (φ ◦ v)(t) =
[ ∫ 1

0

(Dφ)σ(s)ds
]
(u(t)− v(t)),

where σ(s) = (1− s)u(t) + sv(t). Therefore,

(φ ◦ u)(t)− (φ ◦ v)(t)
tl

=
[ ∫ 1

0

(Dφ)σ(s)ds
]
(
u(t)− v(t)

tl
)

As t→ 0, σ(s)→ u(0) and the matrix
∫ 1

0
(Dφ)σ(s)ds tends to the invertible matrix

(Dφ)u(0). The ratio u(t)−v(t)
tl is a vector whose norm is bounded by M and m,

0 < m ≤M <∞. Hence

m ≤
[ ∫ 1

0

(Dφ)σ(s)ds
](u(t)− v(t)

tl
)
≤M.

�

This lemma can easily be generalized for higher dimensions.

Lemma 2.5. Consider a C∞ surface without boundary and a Cr diffeomorphism
φ that maps a neighborhood N ′ of this surface onto some neighborhood N ⊂ Rn.
Assume that u(t), v(t) are Cr manifolds, such that u(0) = v(0). Then, φ preserves
the order of contact of these manifolds.
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This Lemma follows from Lemma 2.4 and Definition 2.3.
For the estimates in the proof of the Singular λ-Lemma we need the following

definition of a graph portion.

Definition 2.6. Let f be a Cr diffeomorphism of Rn with a hyperbolic fixed point
at the origin. Denote by WS (resp., WU ) the associated stable (resp., unstable)
manifold, and by m (resp., p) its dimension (m + p = n, p < m). Let A be a
homoclinic point of WS and WU . Suppose that there exists a small p-disk in WU

around point A (call it U), and there exists another small p-disk in WU around
the origin (call it V). Define a local coordinate system E1 at 0, which spans V.
Similarly, define a local coordinate system E2 in some neighborhood of 0 (we can
assume that A belongs to this neighborhood), centered at 0, which spans WS in
this neighborhood. Let E = E1 +E2. If U is a graph of a bijective (in E) function
defined on V, then U will be called a graph portion.

0 W

f(f(A))

U

f(A)

A

WS

Figure 2. In this picture the iterated part of the WU manifold
is not a graph portion of the manifold WU . It will not become
C1-close to the bottom part with the iterations.

There is another assumption that we have to make for the proof of our λ-Lemma.
The assumption is stronger than the regular first order non-resonance condition,
but weaker than the second order non-resonance. We will call our restriction one-
and-a-half order resonance.
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Definition 2.7. Let f be a C2-diffeomorphism of Rn with a hyperbolic fixed point
at 0 and m- and p-dimensional stable and unstable manifolds, and f(x, y) : Rn →
Rn has the linear part ((Ax)1, . . . , (Ax)p, (By)1, . . . , (By)m). Then, the following
condition will be called one-and-a-half order non-resonance condition:
If a ∈ specA and b ∈ specB, then ab /∈ (specA ∪ specB).

3. Singular λ-Lemma

Using the above definitions we formulate the following Singular λ-Lemma.

Lemma 3.1. Let f be a Cr-diffeomorphism of Rn with a hyperbolic fixed point at
0 and m- and p-dimensional stable and unstable manifolds WS and WU (p ≤ m,
m + p = n). Let V be a p-disk in WU and Λ be a graph portion in WU having
a homoclinic crossing with WS at some point A. Assume that Λ and WS have
order of contact r (1 < r < ∞) at A. Also assume that f is one-and-a-half order
non-resonant. Then for any ρ > 0, for an arbitrarily small ε-neighborhood U ⊂ Rn

of the origin and for the graph portion Λ, (
⋃

n≥0 f
n(Λ)) \ U contains disks ρ-C1

close to V \ U .

Remark 3.2. There is no loss of generality to assume that p ≤ m, because we can
always replace f with f−1.

→

↓

↑

Y

A

f(A)

f(f(A))

WU

WS

Λ(x)

f(x,Λ(x))

f(f(x,Λ(x)))

X
←

Figure 3. Iterations of the graph portion Λ with the diffeomor-
phism f

Proof of Lemma 3.1. Let α = 1/l (0 < α < 1). Since Λ is a graph portion that has
finite order of contact with WS , we can assume that locally Λ is represented by the
graph of the following form:

Λ(x) = A+ r(x) : Rp → Rm, r(0) = 0,

and for any sufficiently small σ > 0

|r(x)| ≤ const ·|x|α and | ∂
∂xi

r(x)| ≤ const ·|x|α−1
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for all |x| < σ, i = 1, . . . , p. Let x = (x1, . . . , xp) ∈ Rp, y = (y1, . . . , ym) ∈ Rm

(p+m = n) and f(x, y) : Rn → Rn has the linear part

((Ax)1, . . . , (Ax)p, (By)1, . . . , (By)m).

Assume that ‖A−1‖, ‖B‖ < λ < 1. Choose an arbitrarily small ∆. If there is a
cross terms const ·xiyj in the power expansion of this map around 0, then we assume
one-and-a-half-order non-resonance condition. Then, by Flattening Theorem (See
[4]) there exists smooth change of coordinates, such that locally f can be written
in the form f(x, y) = (S1(x, y), S2(x, y)), where

S1(x, y) =
((

(Ax)1 + φ1(x) +
∑

i=1,...,p;j=1,...,m

xiyjU
1
ij(x, y)

)
, . . . ,

(
(Ax)p + φp(x) +

∑
i=1,...,p;j=1,...,m

xiyjU
p
ij(x, y)

))
and

S2(x, y) =
((

(By)1 + ψ1(y) +
∑

i=1,...,p;j=1,...,m

xiyjV
1
ij(x, y)

)
, . . . ,

(
(By)m + ψm(y) +

∑
i=1,...,p;j=1,...,m

xiyjV
m
ij (x, y)

))
.

Here U(0) = V (0) = 0, ‖φ‖C1 , ‖ψ‖C1 , ‖U‖C0 , ‖V ‖C0 ≤ ∆, and ‖U‖C1 , ‖V ‖C1

are bounded.
Consider f(x,Λ(x)) = (TΛ

1 (x), TΛ
2 (x)). We will work with (x, TΛ

2 ◦ (TΛ
1 )−1(x))

and deduce that fn(x,Λ(x)) is C1-small for n big enough and σ > 0 sufficiently
small. First we will show that in C1-topology (TΛ

1 )−1 is ∆-close to A−1. For
simplicity we will denote TΛ

1 by T1 and TΛ
2 by T2.

T1(x) =
(
(Ax)1 + φ1(x) +

∑
i=1,...,p;j=1,...,m

xiΛj(x)U1
ij(x,Λ(x)), . . . ,

(Ax)p + φp(x) +
∑

i=1,...,p;j=1,...,m

xiΛj(x)U
p
ij(x,Λ(x))

)
.

Claim 3.3.

‖
∑

i=1,...,p;j=1,...,m

xiΛj(x)U t
ij(x,Λ(x))‖C1 < K ·∆

for |x| < σ (σ > 0 sufficiently small, K > 0).

Proof. Fix some l ∈ {1, . . . , p}. Recall that Λ(x) = A+ r(x).∣∣ ∂
∂xl

xiΛj(x)
∣∣ ≤ δil|Λ(x)|+ |xi| · |

∂

∂xl
Λj(x)|

≤ δil(|A|+ |x|α) + |x| ·O(1)|x|α−1

≤ |A|δil + (δil +O(1))|x|α = O(1)

Here

δil =

{
1 if i = l,

0 if i 6= l.
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Through the proof of this Theorem, O(1) will be the set

O(1) =
{
γ(ζ) : R 7→ R such that there exists a positive constant c with

|γ(ζ)| ≤ c for all sufficiently small ζ
}

Also,∣∣ ∂
∂xl

U t
ij(x,Λ(x))

∣∣ =
∣∣ ∂
∂xl

U t
ij(x, y) +

m∑
k=1

∂

∂yk
U t

ij(x, y) ·
∂

∂xl
Λk(x)

∣∣ = O(1) .

Therefore,∥∥ ∑
i=1,...,p;j=1,...,m

xiΛj(x)U t
ij(x,Λ(x))

∥∥
C1

≤
∑

i=1,...,p;j=1,...,m

∣∣ p∑
l=1

∂

∂xl
(xiΛj(x)U t

ij(x,Λ(x)))
∣∣

≤
∑

i=1,...,p;j=1,...,m

p∑
l=1

∣∣ ∂
∂xl

(xiΛj(x)) · U t
ij(x,Λ(x)) + xiΛj(x) ·

∂

∂xl
U t

ij(x,Λ(x))
∣∣

≤ ∆ ·O(1),

if σ is sufficiently small and |x| < σ (Arbitrarily small ∆ was chosen above). The
estimate proves the claim. �

Now, we continue the proof of Lemma 3.1. As it was noted earlier in the proof,
‖φ‖C1 ≤ ∆, by Flattening Theorem. This estimate and the assertion of the Claim
imply that ‖A−T1‖C1 = O(1)·∆. This obviously implies ‖A−1−T−1

1 ‖C1 = O(1)·∆.
Now we can do the main estimate, – the estimate for ‖T2 ◦ T−1

1 ‖Ck (k = 0, 1).

T2 ◦ T−1
1 =

(
(BΛ(T−1

1 ))1 + ψ1(Λ(T−1
1 ))

+
∑

i=1,...,p;j=1,...,m

(T−1
1 )i(Λ(T−1

1 ))jV
1
ij(T

−1
1 ,Λ(T−1

1 )), . . . ,

(BΛ(T−1
1 ))m + ψm(Λ(T−1

1 ))

+
∑

i=1,...,p;j=1,...,m

(T−1
1 )i(Λ(T−1

1 ))jV
m
ij (T−1

1 ,Λ(T−1
1 ))

)
We will begin by estimating each term of this vector.

BΛ(T−1
1 ) = B ·A+ B · r(T−1

1 (x)).

|B · r(T−1
1 (x))| = O(1) · ‖B‖|T−1

1 (x)|α = O(1) · ‖B‖(‖A−1‖+ ∆)α|x|α.
By the chain rule,∣∣ ∂

∂xl
B · r(T−1

1 (x))
∣∣

= O(1) · ‖B‖‖T−1
1 ‖C1 |T−1

1 (x)|α−1

= O(1) · ‖B‖(‖A−1‖+ ∆)(‖A−1‖+ ∆)α−1|x|α−1

= O(1) · ‖B‖(‖A−1‖+ ∆)α|x|α−1

= O(1) · λ|x|α−1
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with λ < 1. Moreover,

| ∂
∂xl
Bn · r(T−n

1 (x))| = O(1) · ‖B‖n(‖A−1‖n + ∆)α|x|α−1 = O(1) · λn|x|α−1

This term can be made small if we perform enough iterations by the map f . I.e.,
(BnΛT−n

1 )m is C1-small outside of a fixed neighborhood of 0, if n is big enough.
For the estimates of the next term one can use the following expansion:

ψ1(Λ(T−1
1 (x))) = ψ1(A+ r(T−1

1 (x))) = ψ1(A) +Dψ1(A) · r(T−1
1 (x)) +R(T−1

1 (x)),

where R(T−1
1 (x)) = o(|(T−1

1 (x))α)|. Here the set o(1) is the following set of func-
tions:

o(1) =
{
γ(ζ) : R 7→ R such that for any positive constant c

and for all sufficiently small ζ < σ, |γ(ζ)| < c
}

Similar to the previous calculations ψ1(Λ(T−1
1 (x))) can be made small in C1-norm

if we perform enough iterations with the map f . Finally, we will note that the last
term ∑

i=1,...,p;j=1,...,m

(T−1
1 )i(Λ(T−1

1 ))jV
t
ij(T

−1
1 ,Λ(T−1

1 ))

can be written as a composition Σt ◦ T−1
1 (x), where

Σt(x) =
∑

i=1,...,p;j=1,...,m

xiΛj(x)V t
ij(x,Λ(x)).

Consider ∂
∂xl

Σt ◦ T−1
1 (x).

∂

∂xl
Σt ◦ T−1

1 (x) =
p∑

i=1

∂

∂xi
Σt ◦ T−1

1 (x) · ∂
∂xl

(T−1
1 (x))i.

We have already shown that∥∥ ∑
i=1,...,p;j=1,...,m

xiΛj(x)U t
ij(x,Λ(x))

∥∥
C1 = O(1) ·∆.

Similar, one can show that

‖Σt‖C1 =
∥∥ ∑

i=1,...,p;j=1,...,m

xiΛj(x)V t
ij(x,Λ(x))

∥∥
C1 = O(1) ·∆.

Also,

‖T−1
1 ‖C1 ≤ ‖A−1‖C1 + ‖T−1

1 −A−1‖C1 ≤ ‖A−1‖C1 +O(1) ·∆.

The estimates on ‖Σt‖C1 and ‖T−1
1 ‖C1 , together with the fact that T (0) = 0, imply

that
‖Σt ◦ T−1

1 ‖C1 = O(1) ·∆.
Thus, for any small positive number ρ and for any small (but bigger than a fixed
ε) |x| one can find n such that (x, (TΛ

2 )n ◦ (TΛ
1 )−n(x)) is ρ-C1-close to V. This

implies that for any ρ > 0 and for an arbitrarily small ε-neighborhood U ⊂ Rn of
the origin, (

⋃
n≥0 f

n(Λ)) \ U contains p-disks ρ-C1-close to V \ U . �
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