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A DISCONTINUOUS PROBLEM INVOLVING THE
P-LAPLACIAN OPERATOR AND CRITICAL EXPONENT IN RN

CLAUDIANOR OLIVEIRA ALVES & ANA MARIA BERTONE

Abstract. Using convex analysis, we establish the existence of at least two
nonnegative solutions for the quasilinear problem

−∆pu = H(u− a)up∗−1 + λh(x) in RN

where ∆pu is the p-Laplacian operator, H is the Heaviside function, p∗ is the
Sobolev critical exponent, and h is a positive function.

1. Introduction

The interest in the study of nonlinear partial differential equations with discon-
tinuous nonlinearities has increased because many free boundary problems arising
in mathematical physics may be stated in this from. Among these problems, we
have the obstacle problem, the seepage surface problem, and the Elenbaas equation;
see for example [9, 10, 11].

Among the typical examples, we have chosen the model for the heat conductivity
in electrical media. This model has a discontinuity in its constitutive laws. In fact,
considering a domain Ω ⊂ R3 (which in particular could be taken as the whole space
R3 [4]) with electrical media, the thermal and electrical conductivity are denoted by
K(x, t) and σ(x, t), respectively. Here x is in Ω and t represents the temperature.
Since we are considering an electrical media, the function σ may have discontinuities
in t, and the distribution of the temperature is unknown. The differential equation
describing this distribution is

−
n∑

i=1

∂

∂xi

(
K(x, u(x))

∂u(x)
∂xi

)
= σ(x, u(x)). (1.1)

Note that this equation is related to a free boundary problem in which the jump
surface of the electrical conductivity is unknown. We describe this surface as being
the set

Γα(u) = {x ∈ Ω, u(x) = α, σ is discontinuous at α}. (1.2)
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When the thermal conductivity K is constant and the electrical conductivity σ has
a single jump and a critical growth, the model becomes

−∆u = H(u− a)u2∗−1 + λh(x) in Ω . (1.3)

Here H is the Heaviside function (i.e. H(t) = 0 if t ≤ 0 and H(t) = 1 if t > 0),
2∗ ≡ 2N/(N − 2) is the well known Sobolev critical exponent for N > 2, λ is a
positive parameter, and h is a measurable function defined in Ω.

Note that in this model the jump surface of the solution (1.2) is represented by
the set

Γa(u) = {x ∈ RN , u(x) = a}. (1.4)

Related to problem (1.3) for the special case of a = 0, i.e., without jump discon-
tinuities, we cite the works of Tarantello [17] when p=2, and Alves [2], Cao, Li &
Zhou [8] and Gonçalves & Alves [13] for the case p ≥ 2. In the case a > 0, we cite
the work of Alves, Bertone & Gonçalves [3].

In this paper we employ variational techniques to study existence and multiplicity
of nonnegative solutions of a family of elliptic equations of type (1.3) in the whole
space RN . More precisely, we shall study the quasilinear problem

−∆pu = H(u− a)up∗−1 + λh in RN , (1.5)

where here p∗ is the critical Sobolev exponent defined by pN
N−p with N > p. We

consider a > 0 and λ > 0 real parameters, h : RN → (0,∞) a positive measurable
function with

h ∈ Lθ(RN ) ∩ L1(RN ),
1
θ

+
1
p∗

= 1. (1.6)

As a solution of (1.5) we understand a function u ∈ D1,p verifying

−∆pu(x)− λh(x) ∈ f̂(u(x)) a.e in RN , (1.7)

where f̂ is the multi-valued function

f̂(s) =

{
{f(s)}, if s 6= a

[f(a−−), f(a+)], if s = a,

with f(t) = H(t−a)tp∗−1, f(t+0) = limδ→0+ f(t+ δ), f(t−0) = limδ→0+ f(t− δ).
We recall that the solutions of (1.5) are exactly the critical points of the func-

tional Iλ,a : D1,p → R given by

Iλ,a(u) =
1
p
‖u‖p −

∫
RN

F (u)dx− λ

∫
RN

h(x)udx. (1.8)

where F (u) =
∫ u

0
f(t)dt and D1,p is the closure of C∞0 (RN ) with respect to the

norm

‖φ‖p =
∫

RN

|∇φ(x)|pdx.

The set Γa(u) has a relevant role when its Lebesgue measure is zero, since the
solutions would satisfy (1.5) in the “strong” sense, i.e.,

−∆pu(x) = H(u(x)− a)u(x)p∗−1 + λh(u(x)), (1.9)

almost everywhere (a.e. for short) in RN .



EJDE–2003/42 A DISCONTINUOUS PROBLEM INVOLVING THE P-LAPLACIAN 3

Another important remark is that we are considering only nontrivial solutions
which means that the functions u 6≡ 0 and verify meas{x ∈ RN , u(x) > a} > 0.
We observe that there exists a function wλ which satisfies

−∆pu = λh(x), u(x) > 0 in RN (1.10)

and |wλ|∞ ≤ a, then it is a solution of (1.5) when λ is small. Furthermore, we will
denote by w = wλ the unique solution of (1.10).

Our main result is the following.

Theorem 1.1. Assume that h satisfies (1.6). Then, there exists λ∗ > 0 and a∗ > 0
such that if λ ∈ (0, λ∗) and a ∈ (0, a∗), problem (1.5) has two nonnegative solutions
ui, i = 1, 2 with the following properties:

(i) ∆pui ∈ Lθ(RN );
(ii) meas{x ∈ RN , ui(x) > a} > 0, i = 1, 2;
(iii) meas Γa(ui) = 0;
(iv) Iλ,a(u2) < 0 < Iλ,a(u1).

The proof of theorem (1.1) relies on some results of Convex Analysis since the
functional Iλ,a is locally Lipschitz. To get critical points for Iλ,a, we use a version
of the Mountain Pass for locally Lipschitz functional and the Ekeland Variational
Principle. However, the arguments involved are not standard ones: First of all
because we are working with the p-Laplacian operator, which is not linear, the
growth of the nonlinear part is critical, and the domain is the whole space RN . The
second reason is that the arguments used when a = 0 ( the classical case ) cannot
be used immediately in our context and because of that a new estimates appear,
for instance, to prove that the energy functional verifies the Palais-Smale condition
at some levels.

To finish this introduction, we would like to say that the our main result complete
the results obtained in [1], [2] and [3], in the following sense, in [1] and [2] was
considered the case a = 0 and in [3] was considered the situation where the operator
is the Laplacian and the Heaviside function is multiplying the term involving the
function h.

2. Basic results from convex analysis

Throughout this paper X is a Banach space, Φ ∈ Liploc(X,R) means that the
functional is Locally Lipschitzian on X. The generalized directional derivative of Φ
in u ∈ X is the function denoted by Φ0(u; ·) and defined by the formula

Φ0(u; v) = lim sup
h→0, λ↓0

Φ(u+ h+ λv)− Φ(u+ h)
λ

.

Since Φ0(u; ·) is continuous and convex it makes sense to consider the subdifferential
of Φ0(u; ·), which is, by definition,

∂Φ0(u; z) = {µ ∈ X∗ : 〈µ, v − z〉X∗,X ≤ Φ0(u; v)− Φ0(u; z) ∀v ∈ X}.

We define as generalized gradient of Φ in u the set

∂Φ(u) = {µ ∈ X∗ | 〈µ, v〉X∗,X ≤ Φ0(u; v) ∀v ∈ X},

and we shall denote it by ∂Φ(u). Since Φ0(u; 0) = 0 we have

∂Φ(u) = ∂Φ0(u; 0).
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An important property of the generalized gradient is the following: If u ∈ X then
∂Φ(u) is a nonempty convex set and it is w∗−compact. In particular, there exists
ω̂ ∈ ∂Φ(u) such that ‖ω̂‖X∗ = minω∈∂Φ(u) ‖ω‖X∗ .

We say that {un} verifies the Palais Smale Condition for the functional Φ and
the value c (denoted by (PS)c) if {un} verifies

Φ(un) → c and ‖ωn‖ = min
ω∈∂Φ(un)

‖ω‖X∗ → 0, (2.1)

then it implies that there is a subsequence of un which converges in D1,p.
Next we shall enunciate two crucial results that will be used throughout this

work. One is the well known Mountain Pass theorem, in a locally Lipchitzian
version. The other is a characterization of the elements of the generalized gradient
of a determined functional. The proof of these results can be found in [3].

Theorem 2.1. Let Φ ∈ Liploc(X,R). Suppose that Φ(0) = 0 and there is η, r1 > 0,
e ∈ X with ‖e‖ > r1 such that

Φ(u) ≥ η if ‖u‖ = r1, Φ(e) ≤ 0. (2.2)

If c ≡ infγ∈Γ max0≤t≤1 Φ(γ(t)) and

Γ ≡ {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = e},

then c > 0 and there exists a sequence {un} ⊂ X satisfying (2.1).

Proposition 2.2. Let Φ(u) =
∫

RN F (u)dx be the functional defined in (1.8). Then,
Φ ∈ Liploc(Lp∗(RN ); R), ∂Φ(u) ⊂ (Lp∗(RN ))′ and if ω ∈ ∂Φ(u), it satisfies

ω(x) ∈ f̂(u(x)), a.e. x ∈ RN . (2.3)

3. Preliminary Results

Hereafter we shall use Ls, s > 1 to represent the Lebesgue space Ls(RN ) and |·|s
its usual norm. Besides, if g is a Lebesgue integrable function, we shall write

∫
g

for
∫

RN gdx and S denotes the best Sobolev constant of the imbedding D1,p ↪→ Lp∗ ,
that is,

S = min
u∈D1,p, u 6=0

∫
|∇u|p(∫
|u|p∗

) p
p∗

Our first Lemma is a version for vectorial functions in RN of a result due to
Brezis & Lieb ( see [6] ). Its proof can be found in [1].

Lemma 3.1. Let ηn : RN → RK (K ≥ 1) with ηn ∈ Lp(RN ) × . . . × Lp(RN )
(p ≥ 2), ηn(x) → 0 a.e in RN and A(y) = |y|p−2

y, for all y ∈ RK . Then, if
|ηn|Lp(RN ) ≤ C, for all n ∈ N we have∫

RN

|A(ηn + w)−A(ηn)−A(w)|
p

p−1 = on(1),

for each w ∈ Lp(RN )× . . .× Lp(RN ) fixed.

The next lemma is standard and its proof use similar arguments to those in [3].
It shows that the functional Iλ,a verifies the mountain pass geometry.

Lemma 3.2. There is λ0 > 0 such that for λ ∈ (0, λ0) the functional Iλ,a verifies
the mountain pass geometry (2.2), for all a > 0.
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Using the lemma above, we conclude by Theorem 2.1 that there exists {un} in
D1,p such that

Iλ,a(un) → c and ‖wn‖ = min
wn∈∂Iλ,a(un)

‖w‖ → 0

Lemma 3.3. The functional Iλ,a satisfies the condition (PS)c, for

c ∈ (−∞,
1
N
S

N
p − c1λ

p
p−1 ),

where c1 = c1(N,S, θ, |h|θ) is a positive constant that verifies the following inequal-
ity

1
N
tp − λ

θ
|h|θt ≥ −c1λ

p−1
p , for all t ≥ 0.

Proof. Suppose un satisfies (2.1). One has un bounded and there exists u0 ∈ D1,p

such that un converges weakly in D1,p and a.e. in RN to u0. Let vn = un − u0 and
suppose that ‖vn‖p → l > 0. Thus,

〈wn, vn〉 =
∫
|∇un|p−2∇un∇vn − λ

∫
h(x)vn − 〈ρn, vn〉

where ρn ∈ ∂Φ(un). Using Proposition 2.1, we have

0 ≤ ρn(x) ≤ up∗−1
n (x) a.e in RN

and repeating similar arguments explored in [13], it is possible to show the existence
of a set Γ ⊂ RN empty or finite such that {un} is strongly convergent in Lp∗(K)
for all K ⊂ (RN \ Γ) compact set. The above information imply that, up to
subsequence, we can assume

ρn(x) → ρ0(x) a.e in RN .

The above properties involving the sequences {un} and {ρn} together with the
arguments explored in [13] are sufficient to show

∇un(x) → ∇u0(x) a.e in RN .

From Lemma 3.1 we have

〈wn, vn〉 =
∫
|∇vn|p +

∫
|∇u0|p−2∇u0∇vn − 〈ρn, vn〉+ on(1).

Hence, 〈wn, vn〉 = l − 〈ρn, vn〉+ on(1), which implies

lim
n→∞

〈ρn, vn〉 = l. (3.1)

Moreover, by recalling that

〈ρn, vn〉 ≤
∫
f(un + 0)vn+ +

∫
f(un − 0)(−vn−),

we get

〈ρn, vn〉 ≤
∫
up∗−1

n vn+ =
∫

un>u0

up∗−1
n (un − u0).

Consequently,

〈ρn, vn〉 ≤
∫
up∗

0 +
∫
|vn|p

∗
−

∫
un≤u0

up∗

n −
∫
up∗−1

n u0 +
∫

un≤u0

up∗−1
n u0 + on(1).

Therefore,

〈ρn, vn〉 ≤
∫
|vn|p

∗
+ on(1).
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The last inequality implies that

lim
n→∞

〈ρn, vn〉 ≤ lim
n→∞

∫
|vn|p

∗
. (3.2)

Now, from (3.1) and (3.2), we obtain that Sl
p

p∗ ≤ l, which infers

S
N
p ≤ l. (3.3)

On the other hand, we have

Iλ,a(un) + on(1) = Iλ,a(un)− 1
p∗
〈wn, un〉

that is,

Iλ,a(un) + on(1) ≥ 1
N
‖un‖p − λ

θ

∫
h(x)un.

Thus,

Iλ,a(un) + on(1) ≥ 1
N
‖vn‖p − λ

p
p−1 c1 + on(1),

where c1 = c1(N,S, θ, |h|θ) is the constant stated in the Lemma.
From the last inequality and (3.3), we get

c ≥ S
N
p

N
− λ

p
p−1 c1,

which contradicts that c ∈ (−∞, S
N
p

N − λ
p

p−1 c1). Therefore, we should have l = 0
and consequently un → u0 in D1,p. This finished the proof of the lemma. �

Lemma 3.4. There exists λ1 > 0, a∗ > 0, and e ∈ D1,p such that, for λ ∈ (0, λ1)
and a ∈ (0, a∗), we have e ∈ Bc

ρ(0) with Iλ,a(e) < 0, and

0 < r ≤ c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) <
1
N
S

N
p − c1λ

p
p−1 , (3.4)

with Γ = {γ ∈ C([0, 1],D1,p), γ(0) = 0, γ(1) = e}.

Proof. Let λ2 > 0 such that S
N
p

N − λ
p

p−1
2 c1 > 0 ∀λ ∈ (0, λ2). It is known by Talenti

in [16] that the family of functions

wε(x) =

[
Nε

(
N−p
p−1

)p−1
]N−p

p2

(ε+ |x|
p

p−1 )
N−p

p

ε > 0

satisfies
‖wε‖p = |wε|p

∗

p∗ = S
N
p .

Note that, there is t0 > 0 such that for t ≤ t0, we have

Iλ,a(twε) ≤
1
N
S

N
p − c1λ

p
p−1 ∀λ ∈ (0, λ2).

Moreover, if t ≥ t0

Ωa = {t0wε > a} ⊂ {twε > a},
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thus,

Iλ,a(twε) ≤
tp

p
S

N
p − λt

∫
h(x)wε −

∫
Ωa

F (twε)

=
tp

p
S

N
p − λt

∫
h(x)wε −

tp
∗

p∗

∫
Ωa

wp∗

ε +
ap∗

p∗
|Ωa|.

Therefore, the function

P (t) =
tp

p
S

N
p − λt

∫
h(x)wε −

tp
∗

p∗

∫
Ωa

wp∗

ε +
ap∗

p∗
|Ωa|,

has a maximum at γ1 > 0 and the function g(t) = tp

p − tp∗

p∗ attains its maximum in
t = 1. As a consequence we get

Iλ,a(twε) ≤
1
N
S

N
p − λt0

∫
h(x)wε +

γp∗

1

p∗

∫
Ωc

a

wp∗

ε +
ap∗

p∗
|Ωa|.

Now, noticing that

|Ωa| ≤
ωNKεt

N
N−p

0

a
N

N−p

,

where Kε is a constant that dependents of ε, one obtains

ap∗ |Ωa| → 0 as a→ 0.

Then, by taking λ3 > 0 such that

λt0

∫
h(x)wε > λ

p
p−1 c1,

for all λ ∈ (0, λ3), we choose a∗ = a(λ3) satisfying

−λt0
∫
h(x)wε +

γp∗

1

p∗

∫
Ωc

a

wp∗

ε +
ap∗

p∗
|Ωa| < −λ

p
p−1 c1 ∀a ∈ (0, a∗).

Finally, for a ∈ (0, a∗) and λ ∈ (0, λ1), with λ1 = min{λ2, λ3}, we have

Iλ,a(twε) ≤
1
N
S

N
p − c1λ

p
p−1 ∀λ ∈ (0, λ2) ∀t ≥ t0,

and the proof is complete �

4. Proof of Theorem 1.1

4.1. First solution (Mountain Pass). Let λ∗ = min{λ0, λ1}, where λ0 and λ1

were given by Lemmas 3.2 and 3.4. By Theorem 2.1 there exists a sequence (PS)c,
for c defined in (3.4). Therefore we obtain ρn ∈ ∂Φ(un) such that

wn = Q′(un)−Ψ′(un)− ρn, (4.1)

where here wn was defined in (2.1), and

Q(u) =
1
p

∫
|∇u|pdx, Ψ(u) = λ

∫
h(x)u(x)dx.

Using straightforward arguments, we find that {un} is bounded in D1,p. Moreover,
using the fact that

〈wn, un−〉 = on(1)
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we have ‖un−‖ → 0, where un− is the negative part of un. Then there exists a
nonnegative u1 ∈ D1,p such that un ⇀ u1, un(x) → u1(x), a.e. x ∈ RN . Besides,
there exists ρ0 ∈ Lθ such that ρn ⇀ ρ0 in Lθ. Now, since ρn ∈ ∂Φ(un), repeating
the same arguments explored in the proof of Lemma 3.3 we have

ρn(x) ∈ f̂(un(x)), a.e. x ∈ RN ,

ρ0(x) ∈ f̂(u1(x)), a.e. x ∈ RN ,

and for ϕ ∈ D1,p, ∫
|∇u1|p−2∇u1∇ϕ− λ

∫
h(x)ϕ−

∫
ρ0ϕ = 0. (4.2)

Proof of i): ∆pu1 ∈ Lθ. In this subsection, we shall adapt for our problem some
arguments that could be found in [5]. From (4.2), we have

−∆pu1 = J1 + J2 in (D1,p)′,

where J1, J2 : D1,p → R are linear functionals:

J1(v) = λ

∫
h(x)v and J2(v) =

∫
ρ0(x)v.

Note that J1, J2 ∈ (Lp∗)′ ⊂ (D1,p)′. Thus, by Riesz’s Theorem, J1, J2 ∈ Lθ and so
∆pu1 ∈ Lθ. Since (4.2) holds, then

−∆pu1 = λh+ ρ0 a.e RN

and, from this equality, we get

−∆pu1(x)− λh(x) ∈ f̂(u(x)), a.e. x ∈ RN .

This has proved that u1 is a solution of (1.5).

Proof of ii): meas{x ∈ RN ;u1 > a} > 0. Now, we shall prove that u1 is a
nontrivial solution. By Lemmas 3.3 and 3.4 we get un → u1 and I(u1) > 0, so that
u1 6≡ 0. Suppose, by contradiction, that u1 ≤ a in RN . Then, u1 would verify

‖u1‖p = λ

∫
h(x)u1, in RN ,

and as a consequence

I(u1) =
−λ(p− 1)

p

∫
h(x)u1 < 0.

This contradicts the fact that I(u1) > 0.

4.2. Proof of iii): meas(Γa(u1)) = 0. Assume by contradiction that meas(Γa(ui)) >
0. By using the Morrey-Stampacchia’s Theorem (see [14] and [15]), we have that
−∆pu(x) = 0 a.e. x ∈ Γa(u). Hence,

−λh(x) ∈ [0, ap∗ ],

which is a contradiction. Thus meas(Γa(ui)) = 0, i = 1, 2.
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4.3. Second solution (Local Minimization). To prove the existence of u2, we
observe that, fixed a positive function ψ ∈ C∞0 (RN ), we have

lim
t→0

Iλ,a(tψ) < 0.

Consequently
c̃ = inf

Bρ

Iλ,a < 0, for a ∈ (0, a∗),

and −∞ < c̃ < 0. Now, considering Iλ,a|Bρ
, we apply the Ekeland variational

principle (see [12]) to obtain uε ∈ Bρ such that

Iλ,a(uε) < inf
Bρ

Iλ,a + ε, (4.3)

and
Ia(uε) < Ia(u) + ε‖u− uε‖, u 6= uε. (4.4)

Let ε be a positive number defined by

0 < ε < inf
∂Bρ

Iλ,a − inf
Bρ

Iλ,a.

For this choice of ε, one has

Iλ,a(uε) ≤ inf
Bρ

Iλ,a + ε < inf
∂Bρ

Iλ,a,

which implies that uε ∈ Bρ. Let γ > 0 be small enough that uγ = uε + γv ∈ Bρ,
and v ∈ D1,p. From (4.4) we get

Iλ,a(uε + γv)− Iλ,a(uε) + γε‖v‖ ≥ 0.

Thus we have

−ε‖v‖ ≤ lim sup
γ↓0

Iλ,a(uε + γv)− Iλ,a(uε)
γ

≤ I0
λ,a(uε; v).

Now, since the equality below

I0
λ,a(u; v) = max

µ∈∂Iλ,a(u)
〈µ, v〉, u, v ∈ D1,p,

holds, it follows that

−ε‖v‖ ≤ I0
λ,a(uε, v) = max

ω∈∂Iλ,a(uε)
〈ω, v〉, for all v ∈ D1,p.

Interchanging v and −v we obtain

−ε‖v‖ ≤ max
ω∈∂Iλ,a(uε)

〈ω,−v〉 = − min
ω∈∂Iλ,a(uε)

〈ω, v〉, v ∈ D1,p

Therefore,
min

ω∈∂Iλ,a(uε)
〈ω, v〉 ≤ ε‖v‖, v ∈ D1,p,

concluding that
sup
‖v‖=1

min
ω∈∂Iλ,a(uε)

〈ω, v〉 ≤ ε.

Finally, by Ky Fan’s Min-max theorem ([7, Proposition 1.8]), we get

min
ω∈∂Iλ,a(uε)

sup
v∈B1

〈ω, v〉 ≤ ε,

which along with (4.3) yields the existence of un ∈ Bρ such that Iλ,a(un) → c, and
minω∈∂Iλ,a(un)‖ω‖ → 0. Therefore, by Lemma 3.3, there exists u2 ∈ D1,p and a
subsequence uni of un such that uni → u2 in D1,p and Iλ,a(u2) = c = infBρ

I < 0.
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Moreover, we have that u2 > a in a open ω ∈ RN because, otherwise, we would
have u(x) ≤ a in RN . This implies that u2 is a solution of (1.10) and by uniqueness
we would have u2 = u2(a), for all a ∈ (0, a∗). On the other hand,

S|u2|pp∗ ≤ ‖u2‖p < λ

∫
h(x)u2(x) ≤ λ|h|1a,

which implies that u2 goes to zero in D1,p as a goes to zero, hence ii) and iv)
hold for u2. The arguments to proof that u2 also verifies i) and iii) are the same
explored in the section 4.1. This conclude the proof of Theorem 1.1.
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