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OSCILLATION FOR EQUATIONS WITH POSITIVE AND
NEGATIVE COEFFICIENTS AND DISTRIBUTED DELAY II:

APPLICATIONS

LEONID BEREZANSKY & ELENA BRAVERMAN

Abstract. We apply the results of our previous paper “Oscillation of equa-

tions with positive and negative coefficients and distributed delay I: General

results” to the study of oscillation properties of equations with several delays
and positive and negative coefficients

ẋ(t) +

n∑
k=1

ak(t)x(hk(t))−
m∑

l=1

bl(t)x(gl(t)) = 0, ak(t) ≥ 0, bl(t) ≥ 0,

integrodifferential equations with oscillating kernels and mixed equations com-

bining two above equations. Comparison theorems, explicit non-oscillation and
oscillation results are presented.

1. Introduction

The study of oscillation properties of delay differential equations with positive
and negative coefficients began in the eighties [12, 14] and was inspired by the study
of equations with oscillating coefficients. This research was later developed in [7, 13],
neutral equations with positive and negative coefficients were studied in [10, 15, 17],
see also recent publications [1, 11, 20]. In [14, 6, 7] the first order equation with
two constant concentrated delays and a positive and a negative coefficient was
studied, while paper [19] considered oscillation of integrodifferential equations with
oscillatory kernels.

In [6] for the equation

ẋ(t) + a(t)x(t− τ)− b(t)x(t− σ) = 0, t ≥ t0, (1.1)

where a(t) ≥ 0, b(t) ≥ 0 are continuous functions, τ > σ > 0, the following result
was obtained: Suppose∫ t

t−τ+σ

b(s)ds ≤ 1, a(t) ≥ b(t− τ + σ), (1.2)
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lim inf
t→∞

∫ t

t−τ

[a(s)− b(s− τ + σ)]ds >
1
e
. (1.3)

Then all solutions of (1.1) are oscillatory.
In [17] the inequality (1.3) was improved:

lim inf
t→∞

( ∫ t

t−τ

[a(s)− b(s− τ + σ)]ds +
1
e

∫ t

t−τ+σ

b(s− τ)ds
)

>
1
e
. (1.4)

Recently numerous publications on the oscillation of delay equations with pos-
itive and negative coefficients have appeared (in addition to [1, 4, 5, 11, 16, 20]
see [9] and references therein). However all the publications except [8, 4] consider
equations with constant delays only. Paper [4] deals with a more general case when
the delays are not constant.

Our previous paper [3] gave a general insight into the problem. In [3] we consid-
ered the equation with a distributed delay

ẋ(t) +
∫ t

0

x(s) dsR(t, s)−
∫ t

0

x(s) dsT (t, s) = 0, t ≥ 0, (1.5)

where both R(t, s) and T (t, s) are nondecreasing in s for each t.
As special cases, (1.5) includes delay differential equations with variable concen-

trated delays, integrodifferential equations and mixed differential equations. The
basic result of the paper [3] was the relation between the following properties for
(1.5): the existence of a nonoscillatory solution of (1.5), the existence of an eventu-
ally positive solution of the corresponding differential inequality and the existence
of a nonnegative solution of some nonlinear integral inequality which is explicitly
constructed by (1.5). Theorems of this kind are well known and widely applied for
delay differential equations with positive coefficients.

In the present paper we apply general results obtained in [3] to specific classes of
equations. Section 2 contains preliminaries and relevant results from paper [3]. In
Section 3 equations with positive and negative coefficients and several concentrated
delays are considered. In Section 4 oscillation and nonoscillation results are deduced
for integrodifferential equations with oscillatory kernels. Section 5 deals with mixed
equations containing both several concentrated delays and an integral term.

2. Preliminaries and General Results

We consider a scalar delay differential equation (1.5) under the following condi-
tions:

(a1) R(t, ·), T (t, ·) are left continuous functions of bounded variation and for
each s their variations on the segment [0, s]

PR(t, s) = varτ∈[0,s]R(t, τ), PT (t, s) = varτ∈[0,s]T (t, τ) (2.1)

are locally integrable functions in t, R(t, s) = R(t, t+), T (t, s) = T (t, t+),
t < s;

(a2) R(t, ·), T (t, ·) are nondecreasing functions for each t, R(t, s) ≥ T (t, s) for
each t, s;

(a3) For each t1 there exist s1 = s(t1) ≤ t1, r1 = r(t1) ≤ t1, such that R(t, s) = 0
for s < s1, t > t1, T (t, s) = 0 for s < r1, t > t1; in addition, functions s(t),
r(t) satisfy

lim
t→∞

s(t) = ∞, lim
t→∞

r(t) = ∞.
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If (a3) holds then we can introduce the following functions

h(t) = inf
s

{
s : R(t, s) 6= 0

}
, g(t) = inf

s

{
s : T (t, s) 6= 0

}
, (2.2)

such that limt→∞ h(t) = ∞, limt→∞ g(t) = ∞, and (1.5) can be rewritten as

ẋ(t) +
∫ t

h(t)

x(s) dsR(t, s)−
∫ t

g(t)

x(s) dsT (t, s) = 0, t ≥ 0. (2.3)

If (a2) and (a3) hold, then obviously h(t) ≤ g(t).
Together with (2.3) we consider for each t0 ≥ 0 an initial-value problem

ẋ(t) +
∫ t

h(t)

x(s) dsR(t, s)−
∫ t

g(t)

x(s) dsT (t, s) = 0, t ≥ t0. (2.4)

x(t) = ϕ(t), t < t0, x(t0) = x0, (2.5)

where ϕ(t) is a Borel measurable bounded function.
Definition. An absolutely continuous on each interval [t0, c] function x : R → R is
called a solution of problem (2.4), (2.5), if it satisfies (2.4) for almost all t ∈ [t0,∞)
and equalities (2.5) for t ≤ t0.
Definition. For each s ≥ 0 solution X(t, s) of the problem

ẋ(t)+
∫ t

h(t)

x(s) dsR(t, s)−
∫ t

g(t)

x(s) dsT (t, s) = 0, x(t) = 0, t < s, x(s) = 1, (2.6)

is called a fundamental function of (2.3).
We assume X(t, s) = 0, 0 ≤ t < s.

Definition. We will say that equation (2.3) has a nonoscillatory solution if for
some t0, ϕ(t) and x0 the solution of (2.4)-(2.5) is eventually positive or eventually
negative. Otherwise all solutions of this equation are oscillatory.

Below we present the results obtained in [3] on oscillation of equation (2.3) with
a distributed delay.

Consider together with (2.3) the following delay differential inequality

ẏ(t) +
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s) ≤ 0, t ≥ 0. (2.7)

The following theorem establishes sufficient nonoscillation conditions.

Lemma 2.1. [3] Suppose (a1)-(a3) hold. Consider the following hypotheses:
(1) There exists t1 ≥ 0 such that for t ≥ t1 the following inequality

u(t) ≥
∫ t

h(t)

exp
{ ∫ t

s

u(τ)dτ
}

dsR(t, s)−
∫ t

g(t)

exp
{ ∫ t

s

u(τ)dτ
}

dsT (t, s) (2.8)

has a nonnegative locally integrable solution (we assume u(t) = 0 for t <
t1);

(2) There exists t2 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t2;
(3) Equation (2.3) has a nonoscillatory solution;
(4) Inequality (2.7) has an eventually positive solution.

Then the implication (1) ⇒ (2) ⇒ (3) ⇒ (4) is valid.

Necessary nonoscillation (sufficient oscillation) conditions require some more con-
straints on R, T . Let
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(a4) for any t R(t, s)− T (t, s− h(t) + g(t)) is nondecreasing in s and

lim sup
t→∞

T (t, t+)[g(t)− h(t)] ≤ l < 1.

Lemma 2.2 ([3]). Suppose (a1)–(a4) hold. Then hypotheses (1)–(4) of Theorem
1 are equivalent.

To obtain other necessary oscillation conditions we consider the following form
of equation (2.3):

ẋ(t) +
n∑

k=1

∫ t

hk(t)

x(s) dsRk(t, s)−
m∑

l=1

∫ t

gl(t)

x(s) dsTl(t, s) = 0, t ≥ 0, (2.9)

where Rk, Tl, hk, gl satisfy the following conditions:

(a1?) Rk(t, ·), Tl(t, ·) are left continuous functions of bounded variation and for
each s their variations on the segment [0, s] PRk

(t, s), PTl
(t, s) are locally

integrable functions in t, Rk(t, s) = Rk(t, t+), Tl(t, s) = Tl(t, t+), t < s;
(a2?) Rk(t, ·), Tl(t, ·) are nondecreasing functions for each t,∑

k Rk(t, s) ≥
∑

l Tl(t, s) for each t, s;
(a3?) For each k, l limt→∞ hk(t) = ∞, limt→∞ gl(t) = ∞.

Denote

R(t, s) =
n∑

k=1

Rk(t, s), T (t, s) =
m∑

l=1

Tl(t, s), (2.10)

h(t) = max
k

hk(t), g(t) = min
l

gl(t). (2.11)

Let us also introduce the following additional constraints:

(add1) m = n, Rk(t, s) ≥ Tk(t, s) for each t, s, k = 1, . . . , n; for any t, k, function
Rk(t, s)− Tk(t, s− hk(t) + gk(t)) is nondecreasing in s and

lim sup
t→∞

n∑
k=1

Tk(t, t+)[gk(t)− hk(t)] < 1.

(add2) h(t) ≤ g(t), R(t, s) > T (t, s), R(t, s)− T (t, s− h(t) + g(t)) is nondecreasing
in s for any t and

lim sup
t→∞

[
T (t, t+)[g(t)− h(t)] +

n∑
k=1

Rk(t, t+)
(
h(t)− hk(t)

)
+

m∑
l=1

Tl(t, t+)
(
gl(t)− g(t)

)]
< 1.

(2.12)

Consider together with (2.9) the delay differential inequality

ẏ(t) +
n∑

k=1

∫ t

hk(t)

y(s) dsRk(t, s)−
m∑

l=1

∫ t

gl(t)

y(s) dsTl(t, s) ≤ 0, t ≥ 0. (2.13)

The next lemma establishes non-oscillation criteria for (2.9).

Lemma 2.3. [3] Suppose Rk, Tl, hk, gk satisfy (a1?)-(a3?) and at least one of con-
ditions (add1), (add2) hold. Then the following hypotheses are equivalent:
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(1) There exists t1 ≥ 0 such that the inequality

u(t) ≥
n∑

k=1

∫ t

hk(t)

exp
{ ∫ t

s

u(τ)dτ
}

dsRk(t, s)

−
m∑

l=1

∫ t

gl(t)

exp
{ ∫ t

s

u(τ)dτ
}

dsTl(t, s), t ≥ t1,

(2.14)

has a nonnegative locally integrable solution (we assume u(t) = 0 for t <
t1);

(2) There exists t2 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t2;
(3) Equation (2.9) has a nonoscillatory solution;
(4) Inequality (2.13) has an eventually positive solution.

Lemmas 2.1–2.3 yield the following comparison result. Let us compare the os-
cillation properties of the equation

ẋ(t) +
n∑

k=1

∫ t

h̃k(t)

x(s) dsLk(t, s)−
m∑

l=1

∫ t

g̃l(t)

x(s) dsDl(t, s) = 0, (2.15)

to the oscillation properties of (2.9).

Lemma 2.4 ([3]). (1) If (a1?) − (a3?) and anyone of the conditions (add1),
(add2) hold for (2.15) (where Rk, Tl are changed by Lk, Dl), Lk(t, s) ≥
Rk(t, s), Dl(t, s) ≤ Tl(t, s) and (2.15) has a nonoscillatory solution, then
(2.9) has a nonoscillatory solution.

(2) If (a1?)− (a3?) and any one of the conditions (add1),(add2) hold for (2.9),
Lk(t, s) ≤ Rk(t, s), Dl(t, s) ≥ Tl(t, s) and all solutions of (2.15) are oscil-
latory, then all solutions of (2.9) are oscillatory.

Lemma 2.5 describes the asymptotic behavior of nonoscillatory solutions of (2.9).

Lemma 2.5 ([3]). Suppose (a1?)-(a3?) and anyone of the following conditions
holds:

(1) (add1) is satisfied and for some k∫ ∞

0

[
Rk(t, t+)− Tk(t, t+)

]
dt = ∞; (2.16)

(2) (add2) is satisfied and∫ ∞

0

[
R(t, t+)− T (t, t+)

]
dt = ∞. (2.17)

Then any nonoscillatory solution x of (2.9) satisfies limt→∞ x(t) = 0.

Consider the following two equations

ẋ(t) +
∫ t

h(t)

x(s) ds

[
R(t, s)− T (t, s− h(t) + g(t))

]
+

∫ t

g(t)

x(s)
(
exp

{ ∫ s

s+h(t)−g(t)

[R(τ, τ+)− T (τ, τ+)]dτ
}
− 1

)
dsT (t, s) = 0

(2.18)
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and

ẋ(t) +
∫ t

g(t)

x(s)
(

exp
{ ∫ s

s−g(t)+h(t)

[R(τ, τ+)− T (τ, τ+)]dτ
}
− 1

)
×dsR(t, s− g(t) + h(t)) +

∫ t

g(t)

x(s) ds

[
R(t, s− g(t) + h(t))− T (t, s)

]
= 0.

(2.19)

If (a1)-(a4) hold, then equations (2.18),(2.19) contains terms with positive coeffi-
cients only. The oscillation properties of these equations will be compared to the
properties of (2.3).

Lemma 2.6 ([3]). Suppose (a1)-(a4) hold for (2.3). If all solutions of either (2.18)
or (2.19) are oscillatory, then all solutions of (2.3) are also oscillatory.

Corollary 2.7. Suppose (a1)-(a4) hold for (2.3) and at least one of the following
four inequalities is satisfied:

(1) lim inf
t→∞

{∫ t

h(t)

[
R(t, τ)− T (t, τ − h(t) + g(t))

]
dτ

+
∫ t

g(t)

dτ

∫ τ

h(τ)

(
exp

{ ∫ s

s+h(t)−g(t)

[R(u, u+)− T (u, u+)]du
}
− 1

)
dsT (t, s)

}
>

1
e

(2) lim inf
t→∞

{∫ t

h(t)

[
R(t, τ+)− T (t, τ − h(t) + g(t))

]
dτ

+
∫ t

g(t)

dτ

∫ τ

h(τ)

( ∫ s

s+h(t)−g(t)

[R(u, u+)− T (u, u+)]du
)

dsT (t, s)
}

>
1
e

(3) lim inf
t→∞

{∫ t

g(t)

dτ

∫ τ

g(τ)

(
exp

{ ∫ s

s−g(t)+h(t)

[R(u, u+)− T (u, u+)]du
}
− 1

)
× dsR(t, s− g(t) + h(t)) +

∫ t

g(t)

[
R(t, τ − g(t) + h(t))− T (t, τ)

]
dτ

}
>

1
e

(4) lim inf
t→∞

{∫ t

g(t)

dτ

∫ τ

g(τ)

( ∫ s

s−g(t)+h(t)

[R(u, u+)− T (u, u+)]du
)

× dsR(t, s− g(t) + h(t)) +
∫ t

g(t)

[
R(t, τ − g(t) + h(t))− T (t, τ)

]}
>

1
e

Then all solutions of (2.3) are oscillatory.

Similar results can be obtained for (2.9).

Lemma 2.8 ([3]). Suppose Rk, Tl, hk, gl satisfy (a1?)-(a3?) and (add1) holds. If
all solutions of either

ẋ(t) +
n∑

k=1

∫ t

hk(t)

x(s) ds

[
Rk(t, s)− Tk(t, s− hk(t) + gk(t))

]
+

n∑
k=1

∫ t

gk(t)

x(s)
(

exp
{ ∫ s

s+hk(t)−gk(t)

[Rk(τ, τ+)− Tk(τ, τ+)]dτ
}
− 1

)
× dsTk(t, s) = 0

(2.20)
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or

ẋ(t) +
n∑

k=1

∫ t

gk(t)

x(s)
(

exp
{ ∫ s

s−gk(t)+hk(t)

[Rk(τ, τ+)− Tk(τ, τ+)]× dτ
}
− 1

)
× dsRk(t, s− gk(t) + hk(t))

+
n∑

k=1

∫ t

gk(t)

x(s) ds

[
Rk(t, s− gk(t) + hk(t))− Tk(t, s)

]
= 0

(2.21)

are oscillatory, then all solutions of (2.9) are also oscillatory.

Corollary 2.9. Suppose (a1?)-(a3?) and (add1) hold for (2.9) and at least one of
the following inequalities is satisfied:

(1) lim inf
t→∞

n∑
k=1

{ ∫ t

hk(t)

[
Rk(t, τ)− T (t, τ − hk(t) + gk(t))

]
dτ +

∫ t

gk(t)

dτ

×
∫ τ

hk(τ)

(
exp

{ ∫ s

s+hk(t)−gk(t)

[Rk(u, u+)− Tk(u, u+)]du
}
− 1

)
dsTk(t, s)

}
>

1
e

(2) lim inf
t→∞

n∑
k=1

{ ∫ t

hk(t)

[
Rk(t, τ+)− Tk(t, τ − hk(t) + gk(t))

]
dτ

+
∫ t

gk(t)

dτ

∫ τ

hk(τ)

( ∫ s

s+hk(t)−gk(t)

[Rk(u, u+)− Tk(u, u+)]du
)
dsTk(t, s)

}
>

1
e

(3) lim inf
t→∞

n∑
k=1

{ ∫ t

gk(t)

dτ

∫ τ

gk(τ)

(
exp

{ ∫ s

s−gk(t)+hk(t)

[Rk(u, u+)− Tk(u, u+)]

× du
}
− 1

)
dsRk(t, s− gk(t) + hk(t))

+
∫ t

gk(t)

[
Rk(t, τ − gk(t) + hk(t))− Tk(t, τ)

]
dτ

}
>

1
e

(4) lim inf
t→∞

n∑
k=1

{ ∫ t

gk(t)

dτ

∫ τ

gk(τ)

( ∫ s

s−gk(t)+hk(t)

[Rk(u, u+)− Tk(u, u+)]du
)

× dsRk(t, s− gk(t) + hk(t)) +
∫ t

gk(t)

[
Rk(t, τ − gk(t) + hk(t))− Tk(t, τ)

]}
>

1
e

Then all solutions of (2.3) are oscillatory.

Let us proceed with nonoscillation conditions.

Lemma 2.10 ([3]). Suppose (a1)-(a4) hold for (2.3) and there exists λ, 0 < λ < 1,
such that

lim sup
t→∞

∫ g(t)

h(t)

[R(s, s+)− λT (s, s+)] ds <
1
e

ln
1
λ

, (2.22)

lim sup
t→∞

∫ t

h(t)

[R(s, s+)− λT (s, s+)]ds <
1
e
. (2.23)
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Then (2.3) has a nonoscillatory solution.

Lemma 2.11 ([3]). Suppose n = m, conditions (a1?)-(a3?), (add1) and the fol-
lowing inequality

lim sup
t→∞

n∑
k=1

∫ t

hk(t)

[
Rk(s, s+)− 1

e
Tk(s, s+)

]
ds <

1
e

(2.24)

hold. Then (2.9) has a nonoscillatory solution.

3. Equations with Concentrated Delays

Let us study oscillation properties of a delay differential equation with several
variable concentrated delays

ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
m∑

l=1

bl(t)x(gl(t)) = 0, t ≥ 0. (3.1)

This equation is a special case of (1.5) when we assume

R(t, s) =
n∑

k=1

ak(t)χ[hk(t),∞)(s), T (t, s) =
m∑

l=1

bl(t)χ[gl(t),∞)(s), (3.2)

where χ[c,d] is a characteristic function of segment [c, d].
An initial value problem, definitions of a solution, the fundamental solution,

oscillatory and nonoscillatory solutions for equation (3.1) are the same as for (2.9).
The hypotheses of Lemma 2.1 are satisfied for the delay equation (3.1) if the

following conditions hold:
(C1) ak(t) ≥ 0, bl(t) ≥ 0 are Lebesgue measurable essentially locally bounded

functions;
(C2) For any t ≥ s ≥ 0

n∑
k=1

ak(t)χ[hk(t),∞)(s) ≥
m∑

l=1

bl(t)χ[gl(t),∞)(s).

(C3) hk(t), gl(t) : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤
t, gl(t) ≤ t, limt→∞ hk(t) = ∞, limt→∞ gl(t) = ∞.

Consider the inequality

ẏ(t) +
n∑

k=1

ak(t)y(hk(t))−
m∑

l=1

bl(t)y(gl(t)) ≤ 0, t ≥ 0. (3.3)

The following proposition is an immediate consequence of Lemma 2.1.

Proposition 3.1. Suppose (C1)–(C3) hold. Consider the following hypotheses:
(1) There exists t1 ≥ 0 such that the inequality

u(t) ≥
n∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s)ds
}
−

m∑
l=1

bl(t) exp
{ ∫ t

gl(t)

u(s)ds
}
, t ≥ t1 (3.4)

has a nonnegative locally integrable solution (we assume u(t) = 0 for t <
t1);

(2) There exists t2 ≥ 0 such that the fundamental function X(t, s) > 0, t ≥ s ≥
t2;

(3) Equation (3.1) has a nonoscillatory solution;
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(4) Inequality (3.3) has an eventually positive solution.
Then the implications 1) ⇒ 2) ⇒ 3) ⇒ 4) are valid.

Oscillation criteria for equations with several concentrated delays can be ob-
tained as corollaries of Lemma 2.3. To this end denote

h(t) = max
k

hk(t), g(t) = min
l

gl(t), a(t) =
n∑

k=1

ak(t), b(t)) =
m∑

l=1

bl(t).

Proposition 3.2 provides oscillation criteria.

Proposition 3.2. Suppose (C1), (C3) and anyone of the following conditions
(C4) m = n, ak ≥ bk, hk(t) ≤ gk(t) for k = 1, . . . , n, t ≥ 0,

lim sup
t→∞

{ n∑
k=1

bk(t)[gk(t)− hk(t)]
}

< 1

(C5) h(t) ≤ g(t), a(t) ≥ b(t),

lim sup
t→∞

{
b(t)[g(t)− h(t)] +

n∑
k=1

ak(t)[h(t)− hk(t)] +
m∑

l=1

bl(t)[gl(t)− g(t)]
}

< 1

hold. Then all four hypotheses of Proposition 3.1 are equivalent.

Remark. It is to be noted that (C5) is a special case of (C4), if we rewrite the left
hand side of (3.1) as a sum of (n + m + 1) positive and (n + m + 1) negative terms:

ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
m∑

l=1

bl(t)x(gl(t))

= ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
n∑

k=1

ak(t)x(h(t)) +
n∑

k=1

ak(t)x(h(t))

−
m∑

l=1

bl(t)x(g(t)) +
m∑

l=1

bl(t)x(g(t))−
m∑

l=1

bl(t)x(gl(t))

= ẋ(t) + a(t)x(h(t))− b(t)x(g(t)) +
n∑

k=1

ak(t)
[
x(hk(t))− x(h(t))

]
+

m∑
l=1

bl(t)
[
x(g(t))− x(gl(t))

]
We proceed with comparison results which are deduced from Lemma 2.4. To

this end consider the equation

ẋ(t) +
n∑

k=1

ãk(t)x(h̃k(t))−
m∑

l=1

b̃l(t)x(g̃l(t)) = 0, t ≥ 0. (3.5)

Proposition 3.3. (1) Suppose (C1), (C3) and either (C4) or (C5) hold for
(3.5), where ak, bl, hk, gl are changed by ãk, b̃l, h̃k, g̃l, respectively. If ãk(t) ≥
ak(t), b̃l(t) ≤ bl(t), h̃k(t) ≤ hk(t), g̃l(t) ≥ gl(t) and (3.5) has a nonoscilla-
tory solution, then (3.1) also has a nonoscillatory solution.

(2) Suppose (C1), (C3) and either (C4) or (C5) hold. If ãk(t) ≤ ak(t), b̃l(t) ≥
bl(t), h̃k(t) ≥ hk(t), g̃l(t) ≤ gl(t) and all solutions of (3.5) are oscillatory,
then all solutions of (3.1) are also oscillatory.



10 LEONID BEREZANSKY & ELENA BRAVERMAN EJDE–2003/47

To apply Proposition 3.3 consider the autonomous delay equation

ẏ +
n∑

i=1

ciy(t− δi)−
m∑

l=1

dly(t− σl) = 0, t ≥ 0, (3.6)

where the following conditions hold:
(A1) ci ≥ 0, dl ≥ 0, δi ≥ 0, σl ≥ 0

and one of the two following conditions satisfied:
(A2) n = m, ci ≥ di, δi ≥ σi,

∑n
i=1 di(δi − σi) < 1;

(A3) c =
∑n

i=1 ci ≥ d =
∑m

l=1 dl, δ = min δi ≥ σ = maxσl,

d(δ − σ) +
n∑

i=1

ci(δi − δ) +
m∑

l=1

dl(σ − σl) < 1;

Corollary 3.1. (1) Suppose (C1)-(C3), (A1) and at least one of (A2), (A3)
hold. If ak(t) ≤ ck, hk(t) ≥ t− δk, bl(t) ≥ dl, gl(t) ≤ t− σl and (3.6) has a
nonoscillatory solution, then (3.1) also has a nonoscillatory solution.

(2) Suppose (C1), (C3), (A1) and at least one of (C4), (C5) hold. If ak(t) ≥
ck, hk(t) ≤ t − δk, bl(t) ≤ dl, gl(t) ≥ t − σl and all solutions of (3.6) are
oscillatory, then all solutions of (3.1) are also oscillatory.

Lemma 2.5 immediately implies the following result on the asymptotic behaviour
of solutions.

Proposition 3.4. Suppose(C1),(C3) and one of the following two conditions is
satisfied

(1) (C4) holds and there exists such k that
∫∞
0

[ak(t)− bk(t)]dt = ∞.
(2) (C5) holds and

∫∞
0

[a(t)− b(t)]dt =
∫∞
0

[∑n
k=1 ak(t)−

∑m
l=1 bl(t)

]
dt = ∞.

Then any nonoscillatory solution of (3.1) satisfies limt→∞ y(t) = 0.

Proposition 3.5. Suppose the hypotheses (C1), (C3), (C4) hold. If all solutions
of anyone of the following equations are oscillatory

ẋ(t) +
n∑

k=1

[ak(t)− bk(t)]x(hk(t))

+
n∑

k=1

bk(t)
(

exp
{ ∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds
}
− 1

)
x(gk(t)) = 0,

(3.7)

ẋ(t) +
n∑

k=1

[
ak(t)− bk(t) + ak(t)

(
exp

{ ∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds
}
− 1

)]
x(gk(t)) = 0,

(3.8)

ẋ(t) +
n∑

k=1

[ak(t)− bk(t)]x(hk(t)) +
n∑

k=1

bk(t)x(gk(t))
∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds = 0,

(3.9)

ẋ(t) +
n∑

k=1

(
ak(t)− bk(t) + ak(t)

∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds
)
x(gk(t)) = 0, (3.10)

then all solutions of (3.1) are also oscillatory.
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Remark. Since (C5) is a special case of (C4), similar equations can be presented
if (C1),(C3),(C5) are satisfied.

Corollary 3.2. Suppose (C1), (C3), (C4) are satisfied and at least one of the
following conditions holds:

(1) lim inf
t→∞

{ n∑
k=1

[ak(t)− bk(t)](t− hk(t))

+
n∑

k=1

bk(t)
(

exp
{ ∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds
}
− 1

)
(t− gk(t))

}
>

1
e

(2) lim inf
t→∞

{ n∑
k=1

[ak(t)− bk(t)](t− hk(t))

+
n∑

k=1

bk(t)(t− hk(t))
∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds
}

>
1
e

(3) lim inf
t→∞

{ n∑
k=1

∫ t

gk(t)

[
ak(s)− bk(s)

+ ak(s)
(
exp

{ ∫ gk(s)

hk(s)

[ak(τ)− bk(τ)]dτ
}
− 1

)]
ds

}
>

1
e

(4) lim inf
t→∞

{ n∑
k=1

∫ t

gk(t)

[
ak(s)− bk(s) + ak(s)

∫ gk(s)

hk(s)

[ak(τ)− bk(τ)]dτ
]
ds

}
>

1
e
,

then all solutions of (3.1) are oscillatory.

Corollary 3.3. Suppose (A1), (A2) and at least one of the following conditions
hold:

(1)
∑n

k=1

[
(ak − bk)δk + bk

(
e(ak−bk)(δk−σk) − 1

)
σk

]
> 1/e;

(2)
∑n

k=1(ak − bk)
[
δk + bkσk(δk − σk)

]
> 1/e;

(3)
∑n

k=1

[
ak − bk + ak

(
e(ak−bk)(δk−σk) − 1

)]
σk > 1/e;

(4)
∑n

k=1(ak − bk)
[
1 + ak(δk − σk)

]
σk > 1/e.

Then all solutions of (3.6) are oscillatory.

Now we proceed with explicit nonoscillation conditions.

Proposition 3.6. Suppose either (C1), (C3), (C4) hold and the following inequal-
ity is satisfied

lim sup
t→∞

n∑
k=1

∫ t

hk(t)

[
ak(s)− 1

e
bk(s)

]
ds <

1
e
.

or (C1), (C3), (C5) hold and

lim sup
t→∞

{(
1− 1

e

) n∑
k=1

∫ t

hk(t)

ak(s) ds

+
∫ t

h(t)

[ n∑
k=1

ak(s)− 1
e

m∑
l=1

bk(s)
]
ds +

(
1− 1

e

) m∑
l=1

∫ t

g(t)

bl(s) ds
}

<
1
e
.

Then (3.1) has a nonoscillatory solution.
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Denote
H(t) = min

k
hk(t), G(t) = max

l
gl(t).

Proposition 3.7. Suppose there exist ã(t), b̃(t), such that

b̃(t) ≤ b(t) ≤ a(t) ≤ ã(t), where a(t) =
n∑

k=1

ak(t), b(t) =
m∑

l=1

bl(t),

there exist finite limits

B11 = lim
t→∞

∫ t

H(t)

ã(s) ds, B12 = lim
t→∞

∫ t

H(t)

b̃(s) ds, (3.11)

B21 = lim
t→∞

∫ t

G(t)

ã(s) ds, B22 = lim
t→∞

∫ t

G(t)

b̃(s) ds, (3.12)

and (C1)–(C3) hold. Suppose, in addition, that the system

lnx1 > x1B11 − x2B12 (3.13)

lnx2 < x1B21 − x2B22 (3.14)

has a positive solution (x1, x2) such that eventually x1ã(t) ≥ x2b̃(t). Then (3.1)
has a nonoscillatory solution.

Proof. Consider the function u(t) = x1ã(t)− x2b̃(t). Then u(t) is nonnegative and
the system (3.13)-(3.14) yields

x1 > exp{x1B11 − x2B12}, x2 < exp{x1B21 − x2B22}.

Thus by definitions (3.11)-(3.12) there exists t1 > 0, such that for t ≥ t1

x1 ≥ exp
{
x1

∫ t

H(t)

ã(s) ds− x2

∫ t

H(t)

b̃(s) ds
}

= exp
{ ∫ t

H(t)

u(s) ds
}

−x2 ≥ − exp
{
x1

∫ t

G(t)

ã(s) ds− x2

∫ t

G(t)

b̃(s) ds
}

= − exp
{ ∫ t

G(t)

u(s) ds
}

After multiplying the first inequality by ã(t), the second one by b̃(t) and summation
we have

u(t) = x1ã(t)− x2b̃(t)

≥ ã(t) exp
{ ∫ t

H(t)

u(s) ds
}
− b̃(t) exp

{ ∫ t

G(t)

u(s) ds
}

≥ a(t) exp
{ ∫ t

H(t)

u(s) ds
}
− b(t) exp

{ ∫ t

G(t)

u(s) ds
}

=
n∑

k=1

ak(t) exp
{ ∫ t

H(t)

u(s) ds
}
−

m∑
l=1

bl(t) exp
{ ∫ t

G(t)

u(s) ds
}

≥
n∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s) ds
}
−

m∑
l=1

bl(t) exp
{ ∫ t

gl(t)

u(s) ds
}
.

By Proposition 3.1, (3.1) has a nonoscillatory solution. �



EJDE–2003/47 OSCILLATION FOR EQUATIONS WITH . . . 13

Example 1. Consider the equation

ẋ(t) +
n∑

k=1

ak

t
x
( t

µk

)
−

n∑
k=1

bk

t
x
( t

νk

)
= 0, t ≥ t0 > 0, (3.15)

where ak ≥ bk ≥ 0, µk ≥ νk > 1. We apply Corollary 3.2 (Ineq. 4):

lim inf
t→∞

{ n∑
k=1

∫ t

t/νk

(ak − bk

s
+

ak

s

∫ s/νk

s/µk

ak − bk

τ
dτ

)
ds

}
= lim inf

t→∞

{ n∑
k=1

∫ t

t/νk

(ak − bk

s
+

ak

s

[
ln

s

νk
− s

µk

]
(ak − bk)

)
ds

}
= lim inf

t→∞

{ n∑
k=1

(ak − bk)
∫ t

t/νk

(1
s

+
ak

s
ln

µk

νk

)
ds

}
= lim inf

t→∞

{ n∑
k=1

(ak − bk)
(
1 + ak ln

µk

νk

)[
ln t− ln

t

νk

]}
=

n∑
k=1

(ak − bk)
(
1 + ak ln

µk

νk

)
ln νk

Thus if
n∑

k=1

(ak − bk)
(
1 + ak ln

µk

νk

)
ln νk >

1
e
,

then all solutions of (3.15) are oscillatory. For nonoscillation results, we apply
Proposition 3.6.

lim sup
t→∞

{ n∑
k=1

∫ t

t/µk

[ak

s
− 1

e

bk

s

]
ds

}
= lim sup

t→∞

{ n∑
k=1

(
ak −

1
e
bk

)(
ln t− ln

t

µk

)}
=

n∑
k=1

(
ak −

1
e
bk

)
lnµk

Thus if
∑n

k=1

(
ak − 1

e bk

)
lnµk < 1/e, then (3.15) has a nonoscillatory solution.

Example 2. Consider the equation

ẋ(t) +
n∑

k=1

ak

t
x
( t

µk

)
− b

t
x
( t

ν

)
= 0, t ≥ t0 > 0, (3.16)

where
∑n

k=1 ak ≥ b ≥ 0, µk ≥ ν > 1. Unlike in Example 1, here the number of
positive terms is not equal to the number of negative terms. This equation can be
rewritten in one of the following forms:

(1) ẋ(t) +
∑n

k=1
ak

t x
(

t
µk

)
−

∑n
k=1

ak

t x
(

t
ν

)
+

( ∑n
k=1

ak

t

)
x
(

t
ν

)
− b

t x
(

t
ν

)
= 0

(2) ẋ(t) +
∑n

k=1
ak

t x
(

t
µk

)
−

∑n
k=1

bk

t x
(

t
ν

)
= 0, where b1 = b, bk = 0, k > 1

and a1 ≥ b.
(3) ẋ(t) +

∑n
k=1

ak

t x
(

t
µk

)
−

∑n
k=1

λkb
t x

(
t
ν

)
= 0, where λk > 0,

∑n
k=1 λk = 1

and ak ≥ λkb.
A computation similar to Example 1 yields that if anyone of the following three
conditions holds

(1)
( ∑n

k=1 ak − b
)
ln ν > 1

e



14 LEONID BEREZANSKY & ELENA BRAVERMAN EJDE–2003/47

(2) a1 ≥ b and (a1 − b)
(
1 + a1 ln µ1

ν

)
ln ν +

( ∑n
k=2 ak

)(
1 + ak ln µk

ν

)
ln ν > 1/e

(3) For each k ak ≥ λkb and
∑n

k=1

(
ak − λkb

)(
1 + ak ln µk

ν

)
ln ν > 1/e.

then all solutions of (3.16) are oscillatory.
If anyone of the following three conditions holds
(1)

∑n
k=1 ak

(
1− 1

e

)
lnµk +

( ∑n
k=1 ak − b

)
ln ν < 1/e,

(2) a1 ≥ b and
(
a1 − 1

e b
)
lnµ1 +

∑n
k=2 ak lnµk < 1

e ,
(3) For each k ak ≥ λkb and

∑n
k=1

(
ak − 1

eλkb
)
lnµk < 1/e,

then (3.16) has a nonoscillatory solution.

4. Integrodifferential Equations

In this section we will study the following integrodifferential equation

ẋ(t) +
∫ t

0

K(t, s)x(s) ds−
∫ t

0

M(t, s)x(s) ds = 0, (4.1)

(4.1) is a special case of (1.5) if we assume

R(t, s) =
∫ s

0

K(t, ζ) dζ, T (t, s) =
∫ s

0

M(t, ζ) dζ. (4.2)

The hypotheses of Lemma 2.1 are satisfied for the delay equation (4.1) if the fol-
lowing conditions hold:

(I1) K(t, s), M(t, s) are Lebesgue integrable over each finite square [0, b]× [0, b]
functions;

(I2) There exist finite functions h(t), g(t) such that h(t) = inf{s|K(t, s) ≥ 0},
g(t) = inf{s|M(t, s) ≥ 0} and limt→∞ h(t) = ∞, limt→∞ g(t) = ∞;

(I3) For each t, s K(t, s) ≥ 0, M(t, s) ≥ 0 and∫ s

h(s)

K(t, τ) dτ ≥
∫ s

g(s)

M(t, τ) dτ.

For t0 ≥ 0 consider an initial-value problem

ẋ(t) +
∫ t

h(t)

K(t, s)x(s) ds−
∫ t

g(t)

M(t, s)x(s) ds = 0, t > t0. (4.3)

x(t) = ϕ(t), t < t0, x(t0) = x0. (4.4)

As in the general case we will say that (4.1) has a nonoscillatory solution if for some
t0 ≥ 0, ϕ(t) and x0 the solution of (4.3)-(4.4) is eventually positive or eventually
negative. Otherwise all solutions of (4.1) are oscillatory.

Consider in addition the inequality

u(t) ≥
∫ t

h(t)

K(t, s) exp
{ ∫ t

s

u(τ)dτ
}

ds−
∫ t

g(t)

M(t, s) exp
{ ∫ t

s

u(τ)dτ
}

ds. (4.5)

Lemma 2.1 immediately implies the following proposition.

Proposition 4.1. Suppose (I1)-(I3) hold. Consider the following hypotheses
(1) There exists t1 ≥ 0 such that inequality (4.5) has a nonnegative locally

integrable solution;
(2) There exists t2 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t2, where X(t, s) is a

fundamental function of (4.1);
(3) (4.1) has a nonoscillatory solution;
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(4) Inequality

ẏ(t) +
∫ t

t0

K(t, s)y(s) ds−
∫ t

t0

M(t, s)y(s) ds ≤ 0 (4.6)

has an eventually positive solution.
Then the implications 1) ⇒ 2) ⇒ 3) ⇒ 4) are valid.

Now let us apply Lemma 2.2 to (4.1). Let us introduce the following additional
assumption

(I4) K(t, s) ≥ M(t, s− h(t) + g(t)) for each t, s and

lim sup
t→∞

[g(t)− h(t)]
∫ t

g(t)

M(t, s) ds < 1.

Proposition 4.2. Suppose (I1)–(I4) hold. Then all four hypotheses of Proposition
4.1 are equivalent.

In addition to (4.1) consider the integrodifferential equation

ẋ(t) +
n∑

i=1

∫ t

hi(t)

Ki(t, s)x(s) ds−
m∑

l=1

∫ t

gl(t)

Ml(t, s)x(s) ds = 0, (4.7)

where the following conditions hold:
(I1?) Ki(t, s), Ml(t, s) are Lebesgue integrable over each finite square [0, b]× [0, b]

functions;
(I2?) There exist finite functions hi(t) = inf{s|Ki(t, s) ≥ 0},

gl(t) = inf{s|Ml(t, s) ≥ 0} and limt→∞ hi(t) = ∞, limt→∞ gl(t) = ∞;
(I3?) For each t, s, i, l Ki(t, s) ≥ 0, Ml(t, s) ≥ 0,

n∑
i=1

∫ t

hi(t)

Ki(t, τ) dτ ≥
m∑

l=1

∫ t

gl(t)

Ml(t, τ) dτ

and one of two following conditions is satisfied:
(I4?) m = n, Ki(t, s) ≥ Mi(t, s) for each t, s, i = 1, . . . , n, for any t, i Ki(t, s) ≥

Mi(t, s− hi(t) + gi(t)) and

lim sup
t→∞

n∑
i=1

[gi(t)− hi(t)]
∫ t

gi(t)

Mi(t, s) ds < 1.

(I5?) For each i, l, t, s h(t) ≤ g(t), where h, g are defined in (2.11) and

K(t, s) =
m∑

i=1

Ki(t, s) ≥
l∑

l=1

Ml(t, s) = M(t, s),

we have K(t, s) ≥ M(t, s− h(t) + g(t)) and

lim sup
t→∞

[
(g(t)− h(t))

∫ t

g(t)

M(t, s) ds +
n∑

i=1

(h(t)− hi(t))
∫ t

hi(t)

Ki(t, s) ds

+
m∑

l=1

(gl(t)− g(t))
∫ t

gl(t)

Ml(t, s) ds
]

< 1.

(4.8)

Proposition 4.3. Suppose (I1?)–(I3?) and one of (I4?),(I5?) hold. Then the fol-
lowing hypotheses are equivalent:
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(1) Inequality

ẏ +
n∑

i=1

∫ t

hi(t)

Ki(t, s)y(s) ds−
m∑

l=1

∫ t

gl(t)

Ml(t, s)y(s) ds ≤ 0, t ≥ 0, (4.9)

has an eventually positive solution;
(2) There exists t2 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t2, where X(t, s) is a

fundamental function of (4.7);
(3) (4.7) has a nonoscillatory solution.
(4) There exists t3 ≥ 0 such that for t ≥ t3 the inequality

u(t) ≥
n∑

i=1

∫ t

hi(t)

Ki(t, s) exp
{ ∫ t

s

u(τ)dτ
}

ds

−
m∑

l=1

∫ t

gl(t)

Ml(t, s) exp
{ ∫ t

s

u(τ)dτ
}

ds

(4.10)

has a nonnegative locally integrable solution.

We proceed with comparison results which are deduced from Lemma 2.4. To
this end consider the equation

ẋ(t) +
n∑

i=1

∫ t

h̃k(t)

K̃i(t, s)x(s) ds−
m∑

l=1

∫ t

g̃l(t)

M̃l(t, s)x(s) ds = 0. (4.11)

For (4.11) hi,gl are changed by h̃i, g̃l, respectively.

Proposition 4.4. (1) Suppose (I1?)–(I3?) and at least one of (I4?),(I5?) hold,
where Ki,Ml,h,g are changed by K̃i, M̃l, h̃, g̃, respectively. If K̃i(t, s) ≥
Ki(t, s), M̃l(t, s) ≤ Ml(t, s) and (4.11) has a nonoscillatory solution, then
(4.7) also has a nonoscillatory solution.

(2) Suppose (I1?)-(I3?) and at least one of (I4?),(I5?) hold. If K̃i(t, s) ≤
Ki(t, s), M̃l(t, s) ≥ Ml(t, s) and all solutions of (4.11) are oscillatory, then
all solutions of (4.7) are also oscillatory.

Corollary 4.1. (1) Suppose (I1?)–(I3?), (A1) and at least one of (A2), (A3)
hold. If for each t, i, l∫ t

hi(t)

Ki(t, s) ds ≤ ci,

∫ t

gl(t)

Ml(t, s) ds ≥ dl

and (3.6) has a nonoscillatory solution, then (4.7) also has a nonoscillatory
solution.

(2) Suppose (I1?), (I3?), (A1) and at least on of (I4?), (I5?) hold. If for each
t, i, l ∫ t

hi(t)

Ki(t, s) ds ≥ ci,

∫ t

gl(t)

Ml(t, s) ds ≤ dl

and all solutions of (3.6) are oscillatory, then all solutions of (4.7) are also
oscillatory.

Lemma 2.5 immediately implies the following result on the asymptotic behaviour
of solutions.

Proposition 4.5. Suppose (I1?)–(I3?) is satisfied and anyone of the following
conditions holds:
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(1) (I4?) is satisfied and for some l,
∫∞
0

[ ∫ t

t0
(Kl(t, s)−Ml(t, s)) ds

]
dt = ∞

(2) (I5?) is satisfied and
∫∞
0

[ ∫ t

t0
(K(t, s)−M(t, s)) ds

]
dt = ∞.

Then any nonoscillatory solution y of (4.7) satisfies limt→∞ y(t) = 0.

Lemma 2.8 yields oscillation conditions for (4.7).

Proposition 4.6. Suppose hypotheses (I1?)–(I4?) hold. If all solutions of anyone
of the following two equations are oscillatory

ẋ(t) +
n∑

l=1

∫ t

hl(t)

[
Kl(t, s)−Ml(t, s− hl(t) + gl(t))

]
x(s) ds +

n∑
l=1

∫ t

gl(t)

Ml(t, s)x(s)

×
(

exp
{ ∫ s

s+hl(t)−gl(t)

dτ

∫ τ

hl(τ)

[
Kl(τ, ζ)−Ml(τ, ζ)

]
dζ

}
− 1

)
ds = 0 ,

(4.12)

ẋ(t) +
n∑

l=1

∫ t

gl(t)

Kl(t, s + hl(t)− gl(t))x(s)

×
(

exp
{ ∫ s

s+hl(t)−gl(t)

dτ

∫ τ

hl(τ)

[
Kl(τ, ζ)−Ml(τ, ζ)

]
dζ

}
− 1

)
+

n∑
l=1

∫ t

gl(t)

[
Kl(t, s + hl(t)− gl(t))−Ml(t, s)

]
x(s) ds = 0 ,

(4.13)

then all solutions of (4.7) are also oscillatory.

Remark. Since (I5?) is a special case of (I4?), similar equations can be presented
if (I1?)-(I3?),(I5?) are satisfied.

The oscillation conditions for integrodifferential equations with nonnegative ker-
nels [2] lead to the following result.

Corollary 4.2. Suppose the hypotheses (I1)-(I4) hold for (4.1) and at least one of
the following inequalities is valid:

1) lim inf
t→∞

{∫ t

h(t)

[ ∫ s

h(s)

K(t, τ) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ
]
ds

+
∫ t

g(t)

dτ

∫ τ

h(τ)

(
exp

{ ∫ s

s+h(t)−g(t)

[ ∫ u

h(u)

K(u, τ)dτ

−
∫ u

g(u)

M(u, τ)dτ
]
du

}
− 1

)
M(t, s)ds

}
>

1
e

2) lim inf
t→∞

{∫ t

h(t)

[ ∫ s

h(s)

K(t, τ) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ
]
ds

+
∫ t

g(t)

dτ

∫ τ

h(τ)

( ∫ s

s+h(t)−g(t)

[ ∫ u

h(u)

K(u, τ) dτ

−
∫ u

g(u)

M(u, τ) dτ
]
du

)
M(t, s) ds

}
>

1
e

3) lim inf
t→∞

{∫ t

g(t)

dτ

∫ τ

g(τ)

(
exp

{ ∫ s

s−g(t)+h(t)

[ ∫ u

h(u)

K(u, τ)dτ
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−
∫ u

g(u)

M(u, τ)dτ
]
du

}
− 1

)
K(t, s− g(t) + h(t))ds

+
∫ t

g(t)

[ ∫ s

h(s)

K(t, τ − g(t) + h(t)) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ
]
ds

}
>

1
e

4) lim inf
t→∞

{∫ t

g(t)

dτ

∫ τ

g(τ)

( ∫ s

s−g(t)+h(t)

[ ∫ u

h(u)

K(u, τ)dτ

−
∫ u

g(u)

M(u, τ)dτ
]
du

)
K(t, s− g(t) + h(t))ds

+
∫ t

g(t)

[ ∫ s

h(s)

K(t, τ − g(t) + h(t)) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ
]
ds

}
>

1
e

Then all solutions of (4.1) are oscillatory.

Lemma 2.11 implies the following nonoscillation results for (4.7).

Proposition 4.7. Suppose (I1?)–(I4?) and the following inequality

lim sup
t→∞

n∑
l=1

∫ t

hl(t)

[ ∫ s

hl(s)

Kl(s, τ) dτ − 1
e

∫ s

gl(s)

Ml(s, τ) dτ
]
ds <

1
e

(4.14)

hold. Then (4.7) has a nonoscillatory solution.

Proposition 4.8. Suppose (I1?)–(I3?),(I5?) and the following inequality

lim sup
t→∞

{ n∑
l=1

(
1− 1

e

) ∫ t

hl(t)

ds

∫ s

hl(s)

Kl(s, τ) dτ

∫ t

0

ds
[ ∫ s

0

K(s, τ) dτ

− 1
e

∫ s

0

M(s, τ) dτ
]
+

(
1− 1

e

) ∫ t

gl(t)

ds

∫ s

gl(s)

Ml(s, τ) dτ
}

<
1
e

hold. Then (4.7) has a nonoscillatory solution.

Similar to Proposition 3.7 the following result can be obtained. Let H(t) =
mini hi(t), G(t) = maxl gl(t).

Proposition 4.9. Suppose there exist K̃(t, s), M̃(t, s), such that

M̃(t, s) ≤ M(t, s) ≤ K(t, s) ≤ K̃(t, s),

where K(t, s) =
∑n

i=1 Ki(t, s), M(t, s) =
∑m

l=1 Ml(t, s), the following limits exist
and are finite:

B11 = lim
t→∞

∫ t

H(t)

ds

∫ s

H(s)

K̃(s, τ) dτ, B12 = lim
t→∞

∫ t

H(t)

ds

∫ s

H(s)

M̃(s, τ) dτ, (4.15)

B21 = lim
t→∞

∫ t

G(t)

ds

∫ s

G(s)

K̃(s, τ) dτ, B22 = lim
t→∞

∫ t

G(t)

ds

∫ s

G(s)

M̃(s, τ) dτ, (4.16)

and (I1)–(I4) hold for K̃(t, s), M̃(t, s). Suppose, in addition, that the system

lnx1 > x1B11 − x2B12 (4.17)

lnx2 < x1B21 − x2B22 (4.18)
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has a positive solution (x1, x2) such that eventually

x1

∫ t

h(t)

K̃(t, s) ds ≥ x2

∫ t

g(t)

M̃(t, s) ds.

Then (4.7) has a nonoscillatory solution.

Example 3. Consider the integrodifferential equation

ẋ(t) +
∫ t

0

L(t, s)x(s) ds = 0. (4.19)

Let α > 0,

L(t, s) =

{
α sin(s− t), 0 ≤ t− s ≤ 2π,

0, otherwise,

K(t, s) = L+(t, s) =
1
2
(|L(t, s)|+ L(t, s)) = α sin(s− t)χ[t−2π,t−π](s),

M(t, s) = L−(t, s) =
1
2
(|L(t, s)| − L(t, s)) = −α sin(s− t)χ[t−π,t](s).

Then h(t) = t− 2π, g(t) = t− π,M(t, s + π) = K(t, s) and

lim sup
t→∞

{
[g(t)− h(t)]

∫ t

g(t)

M(t, s) ds
}

= lim sup
t→∞

{
[g(t)− h(t)]

∫ t

t−π

α(− sin(s− t)) ds
}

= lim sup
t→∞

{
πα

(
cos 0− cos(−π)

)}
= 2πα.

Thus the hypothesis (I4) holds for (4.19) if α < 1/(2π). Let us proceed to nonoscil-
lation conditions for this equation. To this end we will apply Proposition 4.7. We
have ∫ t

h(t)

K(t, s) ds =
∫ t−π

t−2π

α sin(s− t) ds = 2α,∫ t

g(t)

M(t, s) ds = −
∫ t

t−π

α sin(s− t) ds = 2α,

which after the substitution in (4.14) yields

lim sup
t→∞

∫ t

h(t)

[ ∫ s

h(s)

K(s, τ) dτ − 1
e

∫ s

g(s)

M(s, τ) dτ
]
ds = [t− h(t)]2α

(
1− 1

e

)
= 2π2α

e− 1
e

<
1
e
,

which is satisfied when 4πα(e − 1) < 1. Consequently, if α < 1
4π(e−1) , then (4.19)

has a nonoscillatory solution.
Example 4. Let 0 < α < β. Consider equation (4.19) with

L(t, s) =


α sin(s− t), 0 ≤ t− s ≤ π,

β sin(s− t), π ≤ t− s ≤ 2π,

0, otherwise,
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Then K(t, s) = β sin(s− t)χ[t−2π,t−π](s), M(t, s) = α sin(s− t)χ[t−π,t](s) and

lim sup
t→∞

{
[g(t)− h(t)]

∫ t

g(t)

M(t, s) ds
}

= 2πα.

The hypothesis (I4) holds for (4.19) if in addition α < 1
2π . Similarly to Example 1,

if 4π(βe− α) < 1, we have∫ t

h(t)

[ ∫ s

h(s)

K(s, τ) dτ − 1
e

∫ s

g(s)

M(s, τ) dτ
]
ds = 2π2

(
β − α

e

)
=

4π

e
(βe− α) <

1
e

.

Consequently, if βe− α < 1
4π , then (4.19) has a nonoscillatory solution.

For this kernel we can also obtain oscillation conditions. Since∫ s

h(s)

K(t, τ) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ = 2(β − α)

for t− π ≤ τ ≤ t, we have∫ u

h(u)

K(u, τ) dτ −
∫ u

g(u)

M(u, τ) dτ = 2(β − α).

Then after substituting these results into the first formula in Corollary 4.2 we have

lim inf
t→∞

{∫ t

h(t)

[ ∫ s

h(s)

K(t, τ) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ
]
ds

+
∫ t

g(t)

dτ

∫ τ

h(τ)

(
exp

{∫ s

s+h(t)−g(t)

[ ∫ u

h(u)

K(u, τ) dτ

−
∫ u

g(u)

M(u, τ) dτ
]
du

}
− 1

)
M(t, s) ds

}
≥

∫ t

t−π

[ ∫ s

h(s)

K(t, τ) dτ −
∫ s

g(s)

M(t, τ − h(t) + g(t)) dτ
]
ds

+ 2(β − α)
∫ t

g(t)

dτ

∫ τ

h(τ)

(
e2π(β−α) − 1

)
dsT (t, s)

= 2π(β − α) +
(
e2π(β−α) − 1

)
2π.

Thus if 2π(β − α + exp{2π(β − α)} − 1) > 1/e, then all solutions of (4.19) are
oscillatory.

5. Mixed Equations

In this section we will consider mixed equations

ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
m∑

l=1

bl(t)x(gl(t)) +
r∑

i=1

∫ t

0

Ki(t, s)x(s)ds

−
p∑

j=1

∫ t

0

Mj(t, s)x(s)ds = 0, t ≥ t0 ≥ 0,

(5.1)

with the initial conditions

x(t) = ϕ(t), t < t0, x(t0) = x0. (5.2)
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We assume that (C1)–(C3) and (I1?)–(I3?) hold. To avoid confusion, in (I2?)
instead of hk, gl the following functions are introduced:

h̃i = inf{s|Ki(t, s) ≥ 0}, g̃j = inf{s|Mj(t, s) ≥ 0}.

Consider in addition the following hypotheses:

(M1) m = n, ak ≥ bk, hk(t) ≤ gk(t) for k, t, t ≥ 0, r=p, Ki(t, s) ≥ Mi(t, s −
h̃i(t) + g̃i(t)) and

lim sup
t→∞

{ n∑
k=1

bk(t)[gk(t)− hk(t)] +
r∑

i=1

[g̃i(t)− h̃i(t)]
∫ t

g̃i(t)

Mi(t, s)ds
}

< 1.

(M2) h(t) ≤ g(t), a(t) =
∑n

k=1 ak(t) ≥ b(t) =
∑m

l=1 bl(t), h̃i(t) ≤ h̃(t) ≤ g̃(t) ≤
g̃j(t), for each i, j, t, K(t, s) =

∑r
i=1 Ki(t, s) ≥ M(t, s) =

∑p
j=1 Mj(t, s) for

each t, s and

lim sup
t→∞

{
b(t)[g(t)− h(t)] +

n∑
k=1

ak(t)[h(t)− hk(t)] +
m∑

l=1

bl(t)[gl(t)− g(t)]

+ (g̃(t)− h̃(t))
∫ t

g̃(t)

M(t, s) ds +
n∑

i=1

(h̃(t)− h̃i(t))
∫ t

h̃i(t)

Ki(t, s) ds

+
m∑

l=1

(g̃l(t)− g̃(t))
∫ t

g̃l(t)

Ml(t, s) ds
}

< 1.

Obviously two other combinations of (C4), (C5) with (I4?), (I5?) can be considered.

Proposition 5.1. Suppose (C1)–(C3), (I1?)–(I3?) and at least one of hypotheses
(M1), (M2) hold. Then the following hypotheses are equivalent.

(1) There exists t1 ≥ 0 such that for t ≥ t1 the inequality

u(t) ≥
n∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s)ds
}
−

m∑
l=1

bl(t) exp
{ ∫ t

gk(t)

u(s)ds
}

+
r∑

i=1

∫ t

h̃i(t)

Ki(t, s) exp
{ ∫ t

s

u(τ)dτ
}

ds−
p∑

j=1

∫ t

g̃l(t)

Mj(t, s) exp
{ ∫ t

s

u(τ)dτ
}

ds

has a nonnegative locally integrable solution (we assume u(t) = 0 for t <
t1);

(2) There exists t2 ≥ 0 such that the fundamental function of (5.1) X(t, s) > 0,
t ≥ s ≥ t2;

(3) Equation (5.1) has a nonoscillatory solution;
(4) The inequality

ẏ(t) +
n∑

k=1

ak(t)y(hk(t))−
m∑

l=1

bl(t)y(gl(t))

+
r∑

i=1

∫ t

0

Ki(t, s)y(s) ds−
p∑

j=1

∫ t

0

Mj(t, s)x(s) ds ≤ 0

(5.3)

has an eventually positive solution.
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The comparison result for equation (5.1) combines Propositions 3.3 and 4.4.
Consider the comparison equation

ẋ(t) +
n∑

k=1

ãk(t)x(h̄k(t))−
m∑

l=1

b̃l(t)x(ḡl(t))

+
r∑

i=1

∫ t

0

K̃i(t, s)x(s) ds−
p∑

j=1

∫ t

0

M̃j(t, s)x(s) ds = 0.

(5.4)

Proposition 5.2. 1) Suppose (C1)-(C3),(I1?)-(I3?) and either (M1) or (M2) hold
for (5.4), where ak, bl, hk, gl,Ki,Ml are changed by ãk, b̃l, h̄k, ḡl, K̃i, M̃l, respectively.
If ãk(t) ≥ ak(t), b̃l(t) ≤ bl(t), h̄k(t) ≤ hk(t), ḡl(t) ≥ gl(t), K̃i(t, s) ≥ Ki(t, s),
M̃l(t, s) ≤ Ml(t, s) and (5.4) has a nonoscillatory solution, then (5.1) also has a
nonoscillatory solution.
2) Suppose (C1)-(C3),I1?)-(I3?) and either (M1) or (M2) hold for (5.1). If ãk(t) ≤
ak(t), b̃l(t) ≥ bl(t), h̄k(t) ≥ hk(t), ḡl(t) ≤ gl(t), K̃i(t, s) ≤ Ki(t, s), M̃l(t, s) ≥
Ml(t, s) and all solutions of (5.4) are oscillatory, then all solutions of (5.1) are
also oscillatory.

Proposition 5.3. Suppose (C1)–(C3), (I1?)–(I3?), (M1) hold and either there
exists such k that

∫∞
0

[
ak(t)− bk(t)

]
dt = ∞ or there exists such i that∫ ∞

0

[ ∫ t

h̃i(t)

Ki(t, s) ds−
∫ t

g̃i(t)

Mi(t, s) ds
]
dt = ∞.

Then any nonoscillatory solution of (5.1) tends to zero at infinity.

Remark. Similar result can be obtained if (C1)–(C3), I1?)–(I3?), (M2) are satis-
fied.

Proposition 5.4 presents oscillation conditions for (5.1).

Proposition 5.4. Suppose (C1)–(C3), (I1?)–(I3?), (M1) and the following in-
equality hold

lim inf
t→∞

{ n∑
k=1

[ak(t)− bk(t)](t− hk(t))

+
n∑

k=1

bk(t)
(

exp
{ ∫ gk(t)

hk(t)

[ak(s)− bk(s)]ds
}
− 1

)
(t− gk(t))

+
r∑

i=1

∫ t

h̃i(t)

[ ∫ s

h̃i(s)

Ki(t, τ) dτ −
∫ s

g̃i(s)

Mi(t, τ − h̃i(t) + g̃i(t)) dτ
]
ds

+
r∑

i=1

∫ t

g̃i(t)

dτ

∫ τ

h̃i(τ)

(
exp

{∫ s

s+h̃i(t)−g̃i(t)

[ ∫ u

h̃i(u)

Ki(u, τ)dτ

−
∫ u

g̃i(u)

Mi(u, τ)dτ
]
du

}
− 1

)
Mi(t, s)ds

}
>

1
e

Then all solutions of (5.1) are oscillatory.

Remark. Similarly to inequality 1) in Corollary 2.9 other oscillation conditions
for (5.1) can be deduced using inequalities 2)-4) of this corollary.

Proposition 5.5 present nonoscillation conditions.
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Proposition 5.5. Suppose (C1)–(C3), (I1?)–(I3?), (M1) and the following in-
equality holds

lim sup
t→∞

{ n∑
k=1

∫ t

hk(t)

[
ak(s)− 1

e
bk(s)

]
ds

+
r∑

i=1

∫ t

h̃i(t)

ds
[ ∫ s

h̃i(s)

Ki(s, τ) dτ − 1
e

∫ s

g̃i(s)

Mi(s, τ) dτ
]}

<
1
e
.

Then (5.1) has a nonoscillatory solution.

Remark. Similar results are obtained (see Propositions 3.6, 4.7 and 4.8) if (M2)
is satisfied instead of (M1).

As a final example, consider the following equation of the mixed type

ẋ(t) +
n∑

k=1

ak(t)x(hk(t))−
∫ t

0

K(t, s)x(s) ds = 0, (5.5)

under the following conditions:
(m1) ak ≥ 0 are Lebesgue measurable bounded functions, K is Lebesgue inte-

grable over each finite square [0, b]× [0, b];
(m2) There exists finite function g(t) = inf{s|K(t, s) > 0} and limt→∞ g(t) = ∞;

limt→∞ hk(t) = ∞ for each k;
(m3) For any t ≥ s ≥ 0,

∑n
k=1 ak(t)χ[hk(t),∞)(s)≥

∫ s
g(s) K(t,τ) dτ .

Consider also the following hypothesis
(m4) There exist constants c1, . . . , cn,

∑n
k=1 ck = 1 such that

ak(t)χ[hk(t),∞)(s) ≥ ck

∫ s−hk(t)+g(t)

s−hk(t)

K(t, τ) dτ

and

lim sup
t→∞

{[ n∑
k=1

ck(g(t)− hk(t))
] ∫ t

g(t)

K(t, s) ds
}

< 1.

Proposition 5.6. Suppose (m1)–(m3) hold. Consider the following hypotheses
(1) There exists t1 ≥ 0 such that the inequality

u(t) ≥
n∑

k=1

ak(t) exp
{ ∫ t

hk(t)

u(s)ds
}
−

∫ t

g(t)

K(t, s) exp
{ ∫ t

s

u(τ)dτ
}
, t ≥ t1

has a nonnegative locally integrable solution (we assume u(t) = 0 for t <
t1);

(2) There exists t2 ≥ 0 such that the fundamental function of (5.5) X(t, s) > 0,
t ≥ s ≥ t2;

(3) Equation (5.5) has a nonoscillatory solution;
(4) The inequality

ẏ(t) +
n∑

k=1

ak(t)y(hk(t))−
∫ t

0

K(t, s)y(s) ds ≤ 0 (5.6)

has an eventually positive solution.
Then the implications 1) ⇒ 2) ⇒ 3) ⇒ 4) are valid. If in addition (m4) holds then
hypotheses 1)–4) are equivalent.
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To deduce a comparison result we introduce the equation

ẋ(t) +
n∑

k=1

bk(t)x(h̃k(t))−
∫ t

0

M(t, s)x(s) ds = 0. (5.7)

Proposition 5.7. 1) Suppose (m1)-(m4) hold, where ak, hk,K are changed by
bk, h̃k,M , respectively. If bk(t) ≥ ak(t), h̃k(t) ≤ hk(t),M(t, s) ≥ K(t, s) for each
t, s, k and (5.7) has a nonoscillatory solution, then (5.5) also has a nonoscillatory
solution.
2) Suppose (m1)-(m4) hold. If bk(t) ≤ ak(t), h̃k(t) ≥ hk(t),M(t, s) ≤ K(t, s) for
each t, s, k and all solutions of (5.7) are oscillatory, then all solutions of (5.5) are
also oscillatory.

Proposition 5.8. Suppose (m1)–(m4) hold and∫ ∞

0

[ n∑
k=1

ak(t)−
∫ t

g(t)

K(t, s) ds
]
dt = ∞.

Then any nonoscillatory solution x of (5.5) satisfies limt→∞ x(t) = 0.

Note that Corollary 2.9, 1) implies the following result.

Proposition 5.9. Suppose (m1)–(m4) and the following inequality hold

lim inf
t→∞

{ n∑
k=1

∫ t

hk(t)

[
ak(s)− ck

∫ s−hk(t)+g(t)

s−hk(t)

K(t, τ) dτ
]
ds +

n∑
k=1

ck

∫ t

g(t)

dτ

×
∫ τ

hk(τ)

(
exp

{ ∫ s

s+hk(t)−g(t)

[
ak(u)−

∫ u

g(u)

K(u, ζ) dζ
]
du

}
− 1

)
K(t, s)ds

}
>

1
e
.

Then all solutions of (5.5) are oscillatory.

Remark. Similarly inequalities 2)-4) in Corollary 2.9 can be rewritten for (5.5).

Proposition 5.10. Suppose (m1)–(m4) and the inequality

lim sup
t→∞

{ n∑
k=1

∫ t

hk(t)

[
ak(s)− ck

e

∫ s

g(s)

K(s, τ) dτ
]
ds

}
<

1
e

holds. Then (5.5) has a nonoscillatory solution.
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