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EXISTENCE OF POSITIVE SOLUTIONS FOR DIRICHLET
PROBLEMS OF SOME SINGULAR ELLIPTIC EQUATIONS

ZHIREN JIN

Abstract. When an unbounded domain is inside a slab, existence of a posi-

tive solution is proved for the Dirichlet problem of a class of semilinear elliptic

equations similar to the singular Emden-Fowler equation. The proof is based
on a super and sub-solution method. A super solution is constructed by Per-

ron’s method together with a family of auxiliary functions.

1. Introduction and Main Results

Let Ω be an unbounded domain in Rn (n ≥ 3) with C2,α (0 < α < 1) boundary.
We assume that Ω is inside a slab of width 2M :

Ω ⊂ SM = {(x, y) ∈ Rn : |y| < M}
where x = (x1, x2, . . . , xn−1) and throughout the paper, y will be identified with
xn.

We consider the existence of positive solutions for the Dirichlet problem

−
n∑

i,j=1

aij(x, y)Diju = p(x, y)u−γ on Ω; u = 0 on ∂Ω; (1.1)

where (aij) is a positive definite matrix in which each entry is a local Hölder con-
tinuous function on Ω, p(x, y) is a also local Hölder continuous on Ω, γ > 0 is a
constant.

The main result of the paper is as follows.

Theorem 1.1. Assume
(1) p(x0, y0) > 0 for some (x0, y0) ∈ Ω;
(2) there is a positive constant C such that

0 ≤ p(x, y) ≤ C(|x|+ 1)γ for (x, y) ∈ Ω; (1.2)

(3) Trace(aij) = 1 and there is a constant c1 > 0, such that

ann(x, y) ≥ c1 on Ω. (1.3)

Then (1.1) has a positive solution u ∈ C2(Ω) ∩ C0(Ω).
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When the principal part in (1.1) is the Laplace operator, (1.1) becomes a bound-
ary value problem for the singular Emden-Fowler equation

−∆u = p(x, y)u−γ on Ω; u = 0 on ∂Ω. (1.4)

The singular Emden-Fowler is related to the theory of heat conduction in electrical
conduction materials and in the studies of boundary layer phenomena for viscous
fluids [2, 16]. The existence of positive solutions of the equation on exterior domains
(including Rn) has been considered by quite a number of authors (for example, see
[4, 5, 8, 11, 12, 15], and references therein). The main approach used to prove ex-
istence is to construct super and sub- solutions. To construct super solutions, one
needs to assume that p(x, y) decays near infinity in an appropriate rate. A super
solution is usually found in the class of radial symmetric functions. If Ω is an exte-
rior domain (not inside a slab), γ > 0 and there is C such that p(x, y) ≥ C

(1+|x|2+y2)

for |x|2 + y2 large, then (1.4) has no positive solutions ([11]). On the other hand, if
there are constants σ > 1 and C, such that 0 ≤ p(x, y) ≤ C

(1+|x|2+y2)σ for |x|2 + y2

large, (1.4) has a positive solution ([8]). When Ω is an unbounded domain inside
a slab, the situation is quite different. The traditional way to construct a super
solution by finding an appropriate radial symmetric function is no longer valid since
the domain now is inside a slab (the generality of the coefficient matrix (aij) also
makes finding a radial symmetric super solution impossible). In this paper, we
combine an idea from [13] and a family of auxiliary functions constructed in [10] to
construct a super solution which is then used to prove the existence of a positive
solution of (1.1).

Actually the procedure in the paper can be applied to prove the existence of a
positive solution for the Dirichlet problem of more general elliptic equations. A
statement for the general case will be given in the last section of the paper. Here
we just state a special case of the general result.

Theorem 1.2. Assume
(1) p(x0, y0) > 0 for some (x0, y0) ∈ Ω;
(2) there is a positive constant C such that

0 ≤ p(x, y) ≤ Ce|x| for (x, y) ∈ Ω, (1.5)

(3) Trace(aij) = 1, and there is a constant c1 > 0, such that

ann(x, y) ≥ c1 on Ω. (1.6)

Then the problem

−
n∑

i,j=1

aij(x, y)Diju = p(x, y)e−u on Ω; u = 0 on ∂Ω (1.7)

has a positive solution u ∈ C2(Ω) ∩ C0(Ω).

This paper is organized as follows. In Section 2, we construct a family of auxiliary
functions that are defined on a family of subdomains of Ω. In Section 3, we combine
the family of auxiliary functions constructed in Section 2 and an idea from [13] to
prove that (1.1) has a positive supper solution. In Section 4, we prove that (1.1)
has a positive solution by the procedure used in [8]. In Section 5, we discuss the
general case.
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2. A Family of Auxiliary Functions

In this section, we will construct families of sub-domains Ωx0 of Ω and functions
Tx0 + z (see definitions below) so that

−
n∑

i,j=1

aij(x, y)Dij(Tx0 + z) ≥ p(x, y)(Tx0 + z)−γ on Ωx0 (2.1)

and the graphs of the functions Tx0 + z have special relative positions (see below).
Our construction is based on the construction of a family of auxiliary functions

used in [10] (the construction in [10] was adapted from [9] which in turn was inspired
from [6] and [14]). We consider the operator

Qu =
n∑

i,j=1

aij(x, y)Diju.

We first extend aij (1 ≤ i, j ≤ n) to be continuous functions on SM in such a way
that we still have Trace(aij) = 1 and

ann(x, y) ≥ c1 on SM . (2.2)

In the rest of the paper, we will use cm (for some integer m ≥ 2) to denote a
constant depending only on c1 and M . Once a constant cm is used in a formula, it
will represent the same constant if the same notation appears again in the paper.

It was proved in [10] (also see Appendix I) that there are positive decreasing
functions χ(t), ha(t) and a positive increasing function A(t) (χ(t) depending on c1

only, ha(t) and A(t) depending on c1 and M only), such that for any number K,
there is a number H0, depending only on K, M and c1, such that for H ≥ H0, we
have (for 0 < t < 2M)

A(H) ≤ h−1
a (t) ≤ A(H)eχ(H), 22MH ≤ c1A(H)eχ(H) ≤ 66MH, (2.3)

8K ≤ A(H)eχ(H), 0 < χ(H) < 1, (2.4)

and the non-negative function

z = zx0 = A(H)eχ(H) − {(h−1
a (y + M))2 − |x− x0|2}1/2 (2.5)

satisfies

Qz ≤ −3c1

22eMH
in Ωx0,H,K , (2.6)

z ≥ K on ∂Ωx0,H,K ∩ {|y| < M}, z(x0, y) ≤ 2M

H
for |y| ≤ M, (2.7)

where

Ωx0,H,K = {(x, y) : |y| < M, |x− x0| <

√
2K

A(H)eχ(H)
h−1

a (y + M)}. (2.8)

(For verifications of (2.3)-(2.4) and (2.6)-(2.7), see Appendix I.)
Now we set

K = 100, H = H0 + 4M, Ωx0 = Ωx0,H,K . (2.9)

Then (2.6)-(2.7) becomes

Qz ≤ −c2 in Ωx0 , (2.10)

z ≥ 100 on ∂Ωx0 ∩ {|y| < M}, z(x0, y) ≤ 1 for |y| ≤ M. (2.11)
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Now we construct a family of auxiliary functions as follows.
If (x, y) ∈ Ωx0 , from (2.3) and (2.8), we have

|x− x0| <
√

200A(H)eχ(H) ≤
√

13200MH/c1 = c4.

For C defined in (1.2), we set

Tx0 = (
C

c2
)1/γ(|x0|+ c4 + 1). (2.12)

Then we have that on Ωx0 ,

p(x, y)(Tx0 + z)−γ ≤ C(|x|+ 1)γT−γ
x0

≤ C(|x0|+ c4 + 1)γ

T γ
x0

= c2.

Thus
−Q(Tx0 + z) ≥ c2 ≥ p(x, y)(Tx0 + z)−γ on Ωx0 . (2.13)

When x0 changes, we obtain families of auxiliary functions Tx0 + z and domains
Ωx0 satisfying (2.1).

To be able to use the family of auxiliary functions, we need to investigate relative
positions of the graphs of these auxiliary functions.

For two points x0 and x1 in Rn−1, when Ωx1 either covers the whole segment of
the set {(x0, y)||y| ≤ M} or does not intersect with the set, from (2.3) and (2.8),
we have either

|x1 − x0| ≤
√

200A(H)e−χ(H) or |x1 − x0| ≥
√

200A(H)eχ(H). (2.14)

Then when Ωx1 covers part of some neighborhood of {(x0, y) : |y| ≤ M}, we have√
195A(H)e−χ(H) ≤ |x1 − x0| ≤

√
205A(H)eχ(H). (2.15)

Let x1 and x0 satisfy (2.15) and δ0 be a small positive number such that 2δ0 <√
195A(H)e−χ(H). If (x, y) ∈ Ωx1 for some y and |x−x0| ≤ δ0, by (2.3), (2.5) and

(2.15), we have

Tx1 + zx1(x, y)

≥ Tx1 + A(H)eχ(H) − {A(H)2e2χ(H) − |x− x1|}1/2

≥ Tx1 + A(H)eχ(H) −
{
A(H)2e2χ(H) − (

√
195A(H)e−χ(H) − δ0)2

}1/2

≥ Tx1 + A(H)eχ(H)

−
{
A(H)2e2χ(H) − 195A(H)e−χ(H) + 2δ0

√
195A(H)e−χ(H)

}1/2

≥ Tx1 + A(H)eχ(H)
(
1−

(
1− 195

A(H)e3χ(H)
+

2δ0

√
195A(H)e−χ(H)

A(H)2e2χ(H)

)1/2)
(by the inequality

√
1− t ≤ 1− 1

2 t for 0 < t < 1 and (2.4))

≥ Tx1 + A(H)eχ(H)(
195

2A(H)e3χ(H)
− 2δ0

√
195A(H)e−χ(H)

2A(H)2e2χ(H)
)

= Tx1 +
195

2e2χ(H)
− δ0

√
195A(H)e−χ(H)

A(H)eχ(H)
> Tx1 + 10− δ0

√
195A(H)e−χ(H)

A(H)eχ(H)
.
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Thus there is a δ0 small such that for all |x− x0| ≤ δ0 with (x, y) ∈ Ωx1 , if x1 and
x0 satisfy (2.15), we have

Tx1 + zx1(x, y) ≥ Tx1 + 8. (2.16)

Further for all x0 and x1 satisfying (2.15),

Tx0 + 2 ≤ Tx1 + Tx0 − Tx1 + 2

≤ Tx1 + (
C

c2
)

1
γ (|x0| − |x1|) + 2

≤ Tx1 + (
C

c2
)

1
γ |x1 − x0|+ 2

≤ Tx1 + (
C

c2
)

1
γ

√
205A(H)eχ(H) + 2

≤ Tx1 + (
C

c2
)

1
γ c5 + 2

where c5 =
√

205A(H)eχ(H). Thus if we assume that C in (1.2) satisfies

C ≤ 6γc−γ
5 c2, (2.17)

we have that for all x0 and x1 satisfying (2.15),

Tx0 + 2 ≤ Tx1 + 8 . (2.18)

From (2.8) and (2.11), we can choose a number δ2(x0) > 0 such that for all x ∈ Rn−1

with |x0 − x| ≤ δ2(x0), we have (x, y) ∈ Ωx0 for all |y| < M , and

Tx0 + zx0(x, y) ≤ Tx0 + 2 . (2.19)

Now if we set δx0 = min{δ0, δ2(x0)}, from (2.16), (2.18) and (2.19), we have

Tx0 + zx0(x, y) ≤ Tx1 + zx1(x, y) (2.20)

for all x0 and x1 satisfying (2.15), |x0 − x| ≤ δx0 and (x, y) ∈ Ωx1 .
Finally we define a family of open subsets of Ω that will be needed in next

section.
For each point (x0, y0) ∈ Ω, we define an open set O(x0, y0) as follows:

(1) If (x0, y0) ∈ Ω, we choose a ball B with center (x0, y0) and a radius less
than δx0 so that B ⊂ Ω. We then set O(x0, y0) = B;

(2) If (x0, y0) ∈ ∂Ω, since Ω has C2,α boundary, there is a ball B with center
(x0, y0) and a radius less than δx0 , such that there is a C2,α diffeomorphism
Φ satisfying

Φ(B ∩ Ω) ⊂ Rn
+, Φ(B ∩ ∂Ω) ⊂ ∂Rn

+; Φ(x0, y0) = 0.

Now we choose a domain J with C3 boundary with following properties: (a) J ⊂
Φ(B ∩Ω); (b) ∂J ∩ ∂Rn

+ is a neighborhood of 0 in ∂Rn
+. Certainly there are many

different J ’s having those properties. One example is given in the Appendix II at
the end of paper to illustrate how to construct such a domain J .

Now we set O(x0, y0) = Φ−1(J). It is easy to see that O(x0, y0) ⊂ B ∩ Ω,
O(x0, y0) has a C2,α boundary and ∂O(x0, y0)∩∂Ω is a neighborhood of (x0, y0) in
∂Ω. Let Π be the collection of all such open sets O(x0, y0) defined in (1) and (2).
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3. A Super Solution of (1.1)

In this section, using the family of auxiliary functions Tx0 + z constructed in
Section 2 and an idea from [13] (that basically says that the Perron’s method still
works if we can find a family of appropriate auxiliary functions that works like a
super solution), we will show that there is a positive function u ∈ C2(Ω) ∩ C0(Ω),
satisfies

−
n∑

i,j=1

aij(x, y)Diju = p(x, y)u−γ on Ω, u = τ on ∂Ω.

for some constant τ > 0. Then u will be a super solution of (1.1).
If u = c0v for some constant c0, v will satisfy

−
n∑

i,j=1

aij(x, y)Dijv = c−γ−1
0 p(x, y)v−γ on Ω, v = τ/c0 on ∂Ω .

Thus without loss of generality, we may assume C in (1.2) satisfying (2.17). Then
all constructions in Section 2 are valid.

Let v > 0 be a function on Ω, for a point (x0, y0) ∈ Ω, we define a new function
M(x0,y0)(v), called the lift of v over O(x0, y0) as follows:

M(x0,y0)(v)(x, y) = v(x, y) if (x, y) ∈ Ω \O(x0, y0)

M(x0,y0)(v)(x, y) = w(x, y) if (x, y) ∈ O(x0, y0)

where w(x, y) is the positive solution of the boundary-value problem

−
n∑

i,j=1

aij(x, y)Dijw = p(x, y)w−γ in O(x0, y0), w = v on ∂O(x0, y0) . (3.1)

It is easy to see (3.1) has a unique positive solution in C2(O(x0, y0))∩C0(O(x0, y0)).
Indeed m1 = min{v(x, y) : (x, y) ∈ ∂O(x0, y0)} is a sub-solution since p(x, y) is
non-negative, m2 +Tx0 +zx0 is a super solution by (2.1), where m2 = max{v(x, y) :
(x, y) ∈ ∂O(x0, y0)}. Then we can conclude the existence of a desired solution (for
example, see [1] or [3]). Uniqueness of positive solutions of (3.1) follows from a
standard argument.

Set τ = (C/c2)1/γc4 (see (2.12) for the source of the constants).
We define a class Ξ of functions as follows: a function v is in Ξ if
(1) v ∈ C0(Ω), v > 0 on Ω and v ≤ τ on ∂Ω;
(2) For any (x0, y0) ∈ Ω, v ≤ M(x0,y0)(v);
(3) v ≤ Tx0 + zx0 on Ωx0 ∩ Ω for any (x0, y0) ∈ Ω.

By the following well-known lemma, it is easy to check the function v = τ is in Ξ.
Thus Ξ is not empty.

Lemma 3.1. Let D be a bounded domain, f(x, y, t) be a C1 function that is de-
creasing in t. If w1, w2 are in C2(D) ∩ C0(D), w1 ≤ w2 on ∂D, and

−
n∑

i,j=1

aij(x, y)Dijw1 ≤ f(x, y, w1) in D,

−
n∑

i,j=1

aij(x, y)Dijw2 ≥ f(x, y, w2) in D
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then w1 ≤ w2 on D.

Now we set
u(x, y) = sup

v∈Ξ
v(x, y), (x, y) ∈ Ω .

We will show that u is in C2(Ω) ∩ C0(Ω) and satisfies

−
n∑

i,j=1

aij(x, y)Diju = p(x, y)u−γ on Ω; u = τ on ∂Ω.

First we need some lemmas.

Lemma 3.2. If 0 < v1 ≤ v2, then M(x0,y0)(v1) ≤ M(x0,y0)(v2) for any (x0, y0) ∈ Ω.

Proof. Let w1, w2 be the positive solutions for the following problems

−
n∑

i,j=1

aij(x, y)Dijwk = p(x, y)w−γ
k in O(x0, y0),

wk = vk on ∂O(x0, y0), k = 1, 2.

Since w1 = v1 ≤ v2 = w2 on ∂O(x0, y0), p(x, y)t−γ is decreasing on t, from lemma 1,
we see w1 ≤ w2 on O(x0, y0). On Ω\O(x0, y0), M(x0,y0)(v1) = v1, M(x0,y0)(v2) = v2.
Thus M(x0,y0)(v1) ≤ M(x0,y0)(v2). �

Lemma 3.3. If v1 ∈ Ξ, v2 ∈ Ξ, then max{v1, v2} ∈ Ξ.

Proof. If v1 ∈ Ξ, v2 ∈ Ξ, it is clear that max{v1, v2} ∈ C0(Ω), max{v1, v2} > 0 on
Ω and max{v1, v2} ≤ τ on ∂Ω. It is also clear that max{v1, v2} ≤ Tx0 + zx0 on
Ωx0 ∩ Ω for any (x0, y0) ∈ Ω. Since

v1 ≤ max{v1, v2}, v2 ≤ max{v1, v2}

we have (by lemma 2) that for any (x0, y0) ∈ Ω,

M(x0,y0)(v1) ≤ M(x0,y0)(max{v1, v2}), M(x0,y0)(v2) ≤ M(x0,y0)(max{v1, v2}).
Since v1 ∈ Ξ and v2 ∈ Ξ imply

v1 ≤ M(x0,y0)(v1), v2 ≤ M(x0,y0)(v2),

we have
max{v1, v2} ≤ M(x0,y0)(max{v1, v2}).

Thus max{v1, v2} ∈ Ξ. �

Lemma 3.4. If v ∈ Ξ, then M(x0,y0)(v) ∈ Ξ for any (x0, y0) ∈ Ω.

Proof. By the definition of M(x0,y0)(v), it is clear that M(x0,y0)(v) > 0 on Ω,
M(x0,y0)(v) ∈ C0(Ω) and M(x0,y0)(v) ≤ τ on ∂Ω.

For any (x∗, y∗) ∈ Ω, we first show that

M(x0,y0)(v)(x, y) ≤ M(x∗,y∗)(M(x0,y0)(v))(x, y). (3.2)

We only need to prove that (3.2) is true for (x, y) ∈ O(x∗, y∗). Since

v ≤ M(x0,y0)(v),

we have (by lemma 2)

M(x∗,y∗)(v) ≤ M(x∗,y∗)(M(x0,y0)(v)).
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Then from v ≤ M(x∗,y∗)(v) (by lemma 2 again), we have

v ≤ M(x∗,y∗)(M(x0,y0)(v)).

Thus for (x, y) ∈ O(x∗, y∗) \O(x0, y0),

M(x0,y0)(v)(x, y) = v(x, y) ≤ M(x∗,y∗)(M(x0,y0)(v))(x, y). (3.3)

That is, (3.2) is true on O(x∗, y∗) \O(x0, y0), Now for Ω1 = O(x∗, y∗) ∩O(x0, y0),
if we set

M(x0,y0)(v) = w1, M(x∗,y∗)(M(x0,y0)(v)) = w2

we have

−
n∑

i,j=1

aij(x, y)Dijw1 = p(x, y)w−γ
1 on Ω1,

−
n∑

i,j=1

aij(x, y)Dijw2 = p(x, y)w−γ
2 on Ω1.

On ∂Ω1, w1 ≤ w2 on O(x∗, y∗) ∩ ∂O(x0, y0) by (3.3) and w1 ≤ w2 on ∂O(x∗, y∗) ∩
O(x0, y0) since (3.2) is true on Ω \ O(x∗, y∗). Then lemma 1 implies w1 ≤ w2 on
Ω1. Thus (3.2) is true on O(x∗, y∗) ∩O(x0, y0) and on O(x∗, y∗). �

Now we prove that M(x0,y0)(v) ≤ Tx1 + zx1 on Ωx1 ∩ Ω for all (x1, y1) ∈ Ω.
By the definition of M(x0,y0)(v), we only need to consider the graph of the func-

tion M(x0,y0)(v) over O(x0, y0). If O(x0, y0) is covered completely by Ωx1 , since
v ≤ Tx1 + zx1 and Tx1 + zx1 satisfies (2.1), Tx1 + zx1 is a super solution of (3.1)
on O(x0, y0). Then Lemma 3.1 implies M(x0,y0)(v) ≤ Tx1 + zx1 on O(x0, y0). In
the case that O(x0, y0) does not intersect with Ωx1 , the conclusion is trivial. Now
we consider the case that O(x0, y0) is partially covered by Ωx1 . Since O(x0, y0) is
covered by Ωx0 , we always have

M(x0,y0)(v) ≤ Tx0 + zx0 on O(x0, y0). (3.4)

Then by the choice of δx0 , O(x0, y0), and the fact that O(x0, y0) ∩ Tx1 is not
empty, we have that x0 and x1 satisfy (2.15), and for all (x, y) ∈ O(x0, y0) ∩ Ωx1 ,
|x0−x| ≤ δx0 . Then by (2.20), the graph of Tx0 + zx0 over O(x0, y0)∩Ωx1 is under
the graph of Tx1 + zx1 . Thus the conclusion follows from (3.4).

Now we are ready to prove that u has the desired properties.
Let (x0, y0) ∈ Ω. By the definition of u(x0, y0), there is a sequence of functions

vk in Ξ such that
u(x0, y0) = lim

k→∞
vk(x0, y0).

By lemma 3 and the fact that v = τ is in Ξ, replacing vk by max{vk, τ} if it is
necessary, we may assume that vk ≥ τ on Ω. We replace vk by M(x0,y0)(vk). Then
we have a sequence of functions wk satisfying

u(x0, y0) = lim
k→∞

wk(x0, y0),

−
n∑

i,j=1

aij(x, y)Dijwk = p(x, y)w−γ
k on O(x0, y0),

wk = vk on ∂O(x0, y0).

Since for all k,
τ ≤ vk ≤ wk ≤ Tx0 + zx0 on O(x0, y0).
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By [7, Theorem 9.11] and an approximation of the boundary value by smooth
functions, we see that there is a subsequence of wk, for convenience still denoted by
wk, converges to a C2(O(x0, y0))∩C0(O(x0, y0)) function w(x) in C2(O(x0, y0))∩
C0(O(x0, y0)). Thus w(x) satisfies

−
n∑

i,j=1

aij(x, y)Dijw = p(x, y)w−γ on O(x0, y0)

and u(x0, y0) = w(x0, y0). We claim that u = w on O(x0, y0). Indeed, if there
is another point (x2, y2) ∈ O(x0, y0) such that u(x2, y2) is not equal to w(x2, y2),
then u(x2, y2) > w(x2, y2). Then there is a function u0 ∈ Ξ, such that

w(x2, y2) < u0(x2, y2) ≤ u(x2, y2).

Now the sequence max{u0,M(x0,y0)(vk)} satisfying

vk ≤ max{u0,M(x0,y0)(vk)} ≤ u.

Then similar to the way we obtain w, M(x0,y0)(max{u0,M(x0,y0)(vk)}) will produce
a function w1 satisfying

−
n∑

i,j=1

aij(x, y)Dijw1 = p(x, y)w−γ
1 on O(x0, y0),

w ≤ w1 on O(x0, y0), w(x2, y2) < u0(x2, y2) ≤ w1(x2, y2),

w(x0, y0) = w1(x0, y0) = u(x0, y0).

That is, w1(x, y) − w(x, y) is non-negative, not identically zero on O(x0, y0) and
achieves its minimum value zero inside O(x0, y0). However, from the equations
satisfied by w and w1, we have that on O(x0, y0),

−
n∑

i,j=1

ai,j(x, y)Dij(w1 − w) + γp(x, y)(w + θ(w1 − w))−γ−1(w1 − w) = 0

for some continuous function θ. Then by the standard maximum principle (for
example, see [7, Theorem 3.5]), we get a contradiction. Thus u = w on O(x0, y0).
Therefore u ∈ C2(Ω) and

−
n∑

i,j=1

ai,j(x, y)Diju = p(x, y)u−γ on Ω.

When (x0, y0) ∈ ∂Ω, ∂O(x0, y0) ∩ ∂Ω is a neighborhood of (x0, y0) in ∂Ω. Since
max{τ, vk} = τ on ∂Ω, u = τ on ∂Ω and w = τ on ∂O(x0, y0) ∩ ∂Ω. Since w is
continuous up to the boundary of O(x0, y0), u is continuous on ∂O(x0, y0) ∩ ∂Ω
from inside O(x0, y0). Thus u ∈ C0(Ω) and u = τ on ∂Ω.

4. Proof of Existence

Using the super solution u constructed in Section 3, we can prove the existence
of a positive solution of (1.1) exactly in the same way as that in [8] (the generality
of the principal term of the elliptic operator will not cause any extra difficulty). We
just sketch the proof here.

Since Ω is an unbounded domain with C2,α boundary, we can choose a sequence
of subdomains of Ω, denoted by Ωm, m = 1, 2, 3, . . . , such that

(1) Ωm ⊂ Ωm+1 ⊂ Ω for all m;
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(2) ∪Ωm = Ω;
(3) each Ωm is a bounded domain with C2,α boundary;
(4) dist(0, ∂Ω \ ∂Ωm) →∞ as m →∞.

We can find a number µ, such that for each large m, the eigenvalue problem

−
n∑

i,j=1

aij(x, y)Dijw = λ(µp(x, y))w on Ωm, w = 0 on ∂Ωm

has a first eigenvalue λ1 < 1 with its first eigenfunction φm. We can assume
max φm = 1. Choose δm such that δm ≤ 1

2τ and

µp(x, y)t ≤ p(x, y)t−γ for (x, y) ∈ Ωm, 0 < t < δm.

Then

−
n∑

i,j=1

aij(x, y)Dijw = p(x, y)w−γ on Ωm, w = 0 on ∂Ωm (4.1)

has a pair of super and sub solutions u(x, y), δmφm. Thus (4.1) has a solution wm

that can be proved to satisfy

0 < wm < u on Ωm,

1
2
δsφs ≤ wm on Ωm

for all m > s. Finally we take limit of wm to get a desired solution.

5. The General Case

Now we consider the boundary-value problem

−
n∑

i,j=1

aij(x, y)Diju = g(x, y, u) on Ω, u = 0 on ∂Ω. (5.1)

In addition to the assumptions on (aij) and Ω given at the beginning of the paper,
we assume the following conditions.

(1) Trace aij) = 1;
(2) There is a constant c1 > 0 such that ann ≥ c1 on Ω;
(3) There is a family of increasing positive functions T = T (t) satisfying (with

Tx = T (|x|))
(a) |Tx0 − Tx| ≤ |x0 − x|/c5;
(b) g(x, y, Tx0 + zx0) ≤ c2 on Ωx0 (Ωx0 , zx0 and c2 are defined in Section

2);
(4) g(x, y, t) is non-negative, in C1(Ω× Rn

+) and decreasing on t.
(5) limt−→0+

g(x,y,t)
t ≥ v0(x, y) uniformly for (x, y) in any bounded subset on

Ω, where v0(x, y) is a non-negative function satisfying that when m is large,
the eigenvalue problem

−
n∑

i,j=1

aij(x, y)Dijw = λv0(x, y)w on Ωm, u = 0 on ∂Ωm.

has a first eigenvalue λ1 < 1.
Then we have the following conclusion.

Theorem 5.1. Under the assumptions (1)-(5), (5.1) has a positive solution.
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Proof. We just sketch the proof here. Assumptions (1)–(3) assure that Tx0 + zx0

is a family of auxiliary functions satisfying (2.1) on Ωx0 and the graphs of these
function have the desired relative positions as discussed in Section 2.

Assumption (4) assures that lemma 1 can be applied and the boundary value
problem

−
n∑

i,j=1

aij(x, y)Dijw = g(x, y, w) in O(x0, y0), w = von ∂O(x0, y0) (5.2)

has a unique positive solution for each positive function v on Ω. Thus the lift
M(x0,y0) and the class Ξ of functions are well defined. The proofs of lemmas 2-4
and the existence of the super solution u are the same.

Finally the assumption (5) assures that the proof in Section 4 still works out like
that in [8]. �

Now we apply theorem 3 to the case that g(x, y, u) = p(x, y)e−u. We consider a
modified problem:

−
n∑

i,j=1

aij(x, y)Diju =
p(x, y)e−c5u

c5
on Ω, u = 0 on ∂Ω. (5.3)

If we can find a positive solution u of (5.3), then c5u is a positive solution of (1.7).
For (5.3), we set

T (t) =
1
c5

(t + c4) +
1
c5

ln
C

c2c5
+ A

where A is a positive constant such that 1
c5

ln C
c5

+ A > 1, C is defined in (1.5)
and c2, c4, c5 are defined in Section 2. Then T (t) is increasing and the assumption
(3)(a) is obviously satisfied for Tx = T (|x|). For (3)(b), on Ωx0 ,

1
c5

p(x, y)e−c5(Tx0+zx0 ) ≤ C

c5
e|x|e−c5Tx0

≤ C

c5
e|x0|+c4e−c5Tx0

=
C

c5
e|x0|+c4e−|x0|−c4−ln C

c2c5
−c5A

= c2e
−c5A < c2 .

Assumption (4) is obvious. For assumption (5), let λ1 be the first eigenvalue of
the eigenvalue problem (Ω1 is defined in Section 4)

−
n∑

i,j=1

aij(x, y)Dijw = λp(x, y)w on Ω1, w = 0 on ∂Ω1.

Set v0 = 2λ1p(x, y), then it is easy to see that

lim
t→0+

p(x, y)e−t

t
≥ v0(x, y) uniformly on Ω.

It is also easy to see that v0 has the desired property. Thus assumption (5) is
satisfied. Therefore we can conclude that Theorem 1.22 is true.
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6. Appendix I: Verifications of (2.3), (2.4), (2.6),(2.7)

In this appendix, we verify (2.3)-(2.4) and (2.6)-(2.7) used in Section 2. All the
computations here are copied from [10].

Set Φ1(ρ) = ρ−2 if 0 < ρ < 1 and Φ1(ρ) = 11
c1

if ρ ≥ 1, and define a function χ
by

χ(α) =
∫ ∞

α

dρ

ρ3Φ1(ρ)
for α > 0.

It is clear that χ(α) is a decreasing function with range (0,∞). Let η be the inverse
of χ. Then η is a positive, decreasing function with range (0,∞). Let c∗ = 11/c1.
For α > 1, we have

χ(α) =
∫ ∞

α

dρ

ρ3Φ1(ρ)
=

∫ ∞

α

dρ

c∗ρ3
=

1
2c∗

α−2. (6.1)

Thus

η(β) = (2c∗β)−
1
2 for 0 < β < (2c∗)−1. (6.2)

Let H ≥ 2. Since η(χ(H)) = H and η is decreasing, we have η(β) > H for
0 < β < χ(H). We define a function A(H) by

A(H) = 2M(
∫ eχ(H)

1

η(ln t)dt)−1. (6.3)

For the rest of this article, we set a = A(H) and define

ha(r) =
∫ aeχ(H)

r

η(ln
t

a
) dt for a ≤ r ≤ aeχ(H). (6.4)

Then

ha(aeχ(H)) = 0, ha(a) = hA(H)(A(H)) = 2M. (6.5)

For a < r ≤ aeχ(H),

h′a(r) = −η(ln
r

a
) < 0, |h′a(r)| > H, h′′a(r) =

1
r
(η(ln

r

a
))3Φ1(η(ln

r

a
)). (6.6)

Thus for a < r ≤ aeχ(H),

h′′a(r)
(h′a(r))2

= −h′a(r)
r

Φ1(−h′a(r)). (6.7)

Let h−1
a be the inverse of ha. Then h−1

a is decreasing and

h−1
a (0) = A(H)eχ(H), h−1

a (2M) = A(H). (6.8)

Thus we have the first half of (2.3). Further for −M ≤ y ≤ M ,

(h−1
a )′(y + M) =

1
h′a(h−1

a (y + M))
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(h−1
a )′′(y + M) = (

1
h′a(h−1

a (y + M))
)′

= −h′′a(h−1
a (y + M))(h−1

a )′(y + M)
(h′a(h−1

a (y + M)))2

= − h′′a(h−1
a (y + M))

(h′a(h−1
a (y + M)))3

=
1

h−1
a (y + M)

Φ1(−h′a(h−1
a (y + M))).

Thus

(h−1
a )′′(y + M)h−1

a (y + M) = Φ1(−h′a(h−1
a (y + M))). (6.9)

Now we choose an H0 > 2 such that for H ≥ H0,

H0 >
1√
2c∗

+ 3M + 4 +
24nc1K

M
,

√
4K

A(H)eχ(H)
≤ 1√

2
. (6.10)

Then we have (2.4). For H > H0, by (6.1), (6.2), we have

A(H)−1 = (2M)−1

∫ eχ(H)

1

η(ln t)dt

= (2M)−1

∫ χ(H)

0

η(m)emdm

= (2M)−1

∫ χ(H)

0

em

√
2c∗m

dm .

From

1√
2c∗

∫ χ(H)

0

1√
m

dm ≤
∫ χ(H)

0

em

√
2c∗m

dm ≤ eχ(H)

√
2c∗

∫ χ(H)

0

1√
m

dm ,

we have

1
c∗H

=
2
√

χ(H)√
2c∗

≤
∫ χ(H)

0

em

√
2c∗m

dm ≤
2eχ(H)

√
χ(H)√

2c∗
=

e
1

2c∗H2

c∗H
.

Thus

2Mc∗H ≥ A(H) ≥ 2Mc∗He−χ(H) = 2Mc∗He−
1

2c∗H2 . (6.11)

Thus we have the second half of (2.3) since c∗ = 11/c1.
For x0 ∈ Rn−1, and a fixed constant K, we define a domain Ωx0,H,K in (x, y)

space by (2.8) and define a function z = z(x, y) by (2.5). Since h−1
a (y + M) ≥ 0

for |y| ≤ M , (x0, y) ∈ Ωx0,H,K for |y| < M . Further it is clear that the function
z = z(x, y) is well defined on Ωx0,H,K .

Now we verify the first half of (2.7), on ∂Ωx0,H,K ∩ {(x, y) : |y| < M},

|x− x0| =

√
2K

A(H)eχ(H)
h−1(y + M);
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then from (6.8), we have

z = A(H)eχ(H) − {(h−1
a (y + M))2 − |x− x0|2}1/2

= A(H)eχ(H) − h−1
a (y + M)(1− 2K

A(H)eχ(H)
)1/2

≥ A(H)eχ(H) −A(H)eχ(H)(1− 2K

A(H)eχ(H)
)1/2

≥ A(H)eχ(H)(1− (1− 2K

2A(H)eχ(H)
)) = K.

Here we have used (6.10) and the fact that
√

1− t ≤ 1− 1
2 t for 0 < t < 1. For the

second half of (2.7), since h−1
a (r) and η are decreasing functions, we have

−1
h′a(h−1

a (y + M))
=

1
η(ln( 1

ah−1
a (y + M)))

≤ 1
η(ln eχ(H))

=
1

η(χ(H))
=

1
H

, for |y| ≤ −M.

(6.12)

Then by (2.5), we have

∂z

∂y
(x0, y) =

−1
h′a(h−1

a (y + M))
≤ 1

H
, for |y| ≤ −M.

Now the second half of (2.7) follows from this and

z(x0,−M) = A(H)eχ(H) − h−1
a (0) = A(H)eχ(H) −A(H)eχ(H) = 0.

For (2.6), we set S = {(h−1
a (y + M))2 − |x − x0|2}1/2. Then we have that for

1 ≤ i ≤ n− 1,
∂z

∂xi
=

1
S

(xi − x0i),
∂z

∂y
= − 1

S
h−1

a (h−1
a )′.

By (6.10) and (6.11), on Ωx0,H,K , we have

1
2
h−1

a (y + M) ≤ S ≤ h−1
a (y + M),

and
|x− x0|

S
≤ 2(

2K

A(H)eχ(H)
)1/2 ≤ 2(

2K

2Mc∗H
)1/2.

Thus, by (6.12), we have

| ∂z

∂xi
| ≤ 2(

c1K

MH
)1/2, |∂z

∂y
| ≤ h−1

a (y + M)
S|h′a(h−1

a (y + M)|
≤ 2

H
. (6.13)

Hence from (6.10), and the assumption that Trace aij) = 1 (hence all eigenvalues
of (aij) are less than or equal to 1), we have

|
n∑

i,j=1

aij
∂z

∂xi

∂z

∂xj
| ≤ |Dz|2 ≤ 1. (6.14)
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Now we have

Qz =
n∑

i,j=1

aij(x, y)Dijz

=
1
S

n−1∑
i=1

aii +
1
S3

n−1∑
i,j=1

aij(xi − x0
i )(xj − x0

j )−
1
S3

n−1∑
i=1

ain(xi − x0
i )h

−1
a (h−1

a )′

− 1
S

ann((h−1
a )2 + h−1

a (h−1
a )′′) +

1
S3

ann(h−1
a )2((h−1

a )′)2

=
1
S

{
1− ann +

n∑
i,j=1

aij
∂z

∂xi

∂z

∂xj
− ann((h−1

a )2 + h−1
a (h−1

a )′′)
}

(since ann > 0)

≤ 1
S

{
1 +

n∑
i,j=1

aij
∂z

∂xi

∂z

∂xj
− annh−1

a (h−1
a )′′

}
.

By (2.2), (6.9)), (6.11) and (6.14)) the above expression is bounded by
−9
S

≤ −9
h−1

a (y + M)
≤ −9

A(H)eχ(H)
≤ −9

2Mc∗He
1

2c∗H2
≤ −3c1

22eMH
.

This shows (2.6).

7. Appendix II: A Construction of the Domain J

In this part, we give a construction of the domain J used at the end of Section
2 in the definition of Π. Let

Rn
+ = {(y1, y2, . . . , yn)|yn > 0} ,

J1 =
{
(y1, yn) : y1 = ±1, |yn| ≤ 1 or yn = ±1, |y1| ≤ 1

}
That is, J1 is a square with side length 2 and center (0, 0) in (y1, yn) plane. In
polar coordinate we can write ∂J1 as

(y1, yn) = (k(θ) cos θ, k(θ) sin θ), 0 ≤ θ ≤ 2π,

where k(θ) is a positive, continuous, periodic function of period 2π, k(θ) is C∞

except at θ = ±π
4 , ± 3π

4 . Then we can smooth out k(θ) near those points to get
a function k1(θ) such that k1(θ) is a positive, C∞, periodic function of period 2π,
k1(θ) = k(θ) except in some small neighborhoods of θ = ±π

4 , ± 3π
4 , and k1(θ) ≤ k(θ)

for all θ. Indeed we can modify k(θ) as follows:
Let s(t) be a C∞ function satisfying
(1) s(t) = 0 if t ≤ 1;
(2) 0 < s(t) ≤ 1

8 if 1 < t ≤ 2;
(3) s(t) ≥ 0 for all t;
(4) s(t) = 1 if t ≥ 4.

Fixed a positive constant ε < π
100 . Near θ = π

4 , we define

k1(θ) = k(θ)s
(1
ε
|θ − π

4
|
)

+
1
8
(
1− s(

2
ε
|θ − π

4
|)

)
.

Then using the fact that max k(θ) =
√

2, min k(θ) = 1, we can verify that k1(θ) is
positive, smooth and

k1(θ) = k(θ) if |θ − π

4
| ≥ 4ε; 0 < k1(θ) ≤ k(θ).
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In a similar way, we can modify k(θ) near other points −π/4 and ±3π/4. Now let
J2 be the domain in (y1, yn) plane bounded by the curve

(y1, yn) = (k1(θ) cos θ, k1(θ) sin θ), 0 ≤ θ ≤ 2π.

We then rotate the set {
(y1, 0, ·, ·, ·, 0, yn) : (y1, yn) ∈ J2

}
with respect to yn axis to get a domain J3. Finally, J is obtained from J3 by
appropriate translation and scaling.
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