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A GENERALIZATION OF SCHAUDER’S THEOREM AND ITS
APPLICATION TO CAUCHY-KOVALEVSKAYA PROBLEM

OLEG ZUBELEVICH

Abstract. We extend the classical majorant functions method to a PDE
system which right hand side is a mapping of one functional space to another.

This extension is based on some generalization of the Schauder fixed point

theorem.

1. Introduction

Kovalevskaya proved that the analytic Cauchy problem has an unique analytic
solution in 1842. She used the method of majorant functions developed by Cauchy
and Weierstrass. In this article, we consider the classical method of majorant func-
tions from an abstract viewpoint and extend this method to a PDE system which
right hand side is a mapping of one functional space to another. This mapping can
be non-analytic in the evolution variable. Then this result is used for obtaining esti-
mates for the evolution variable interval on which the solution of the problem exists
and also to obtain majorant estimates for this solution. The estimated obtained
can be used in some problems of perturbation theory [3].

Our version of the majorant functions method is based on some generalization
of Schauder’s fixed point theorem to the case of seminormed spaces. Our results
do not follow from the abstract Cauchy-Kovalevskaya theorems in [2] and [4].

Preliminaries in topology. Following [5] we introduce some definitions.
Let M be a semimetric space with a collection of semimetrics {ρω}ω∈Ω. Recall

that a function ρ : M ×M → R is referred as semimetric if it satisfies all the metric
axioms except the axiom of non-degenerateness; i. e., it is possibly that ρ(x, y) = 0
for some x, y ∈ M such that x 6= y.

We assume that for any finite set Q ⊂ Ω there exists ω ∈ Ω such that

ρq(·, ·) ≤ ρω(·, ·), q ∈ Q.

This assumption allows us to consider M as a topological space. A basis of the
topology in this space is given by the balls

Bω(r, y) = {x ∈ M : ρω(x, y) < r}.
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Definition 1.1. We say that a set U ⊂ M is bounded if for every ω ∈ Ω there
exists r and y such that U ⊆ Bω(r, y).

Definition 1.2. We say that a space M satisfies Montel’s axiom if any closed and
bounded subset of M is compact.

In this article, we assume that all spaces satisfy the first axiom of countability:
For any y ∈ M there exists a countable collection of the balls {Bτ (rτ , y)}τ∈N such
that if G is a neighborhood of y then Bτ (rτ , y) ⊆ G for some τ . This assump-
tion enables to prove topological assertions in terms of sequences instead of using
neighborhoods.

Definition 1.3. We say that a sequence {xk}k∈N converges to x as k → ∞ if for
every ε > 0 and ω ∈ Ω there exists N such that for all n > N , ρω(xn, x) < ε.

Thus a set K ⊂ M is called compact if any sequence {xk} ∈ K contains a
subsequence {x′k} such that x′k → x̂ ∈ K as k →∞.

In similar way, we introduce a seminormed linear space E with a collection of
seminorms {‖ · ‖ω}ω∈Ω. Consider the following examples:

Let {(Eω, ‖ · ‖ω)}0<ω<1 be a scale of normed spaces over the field R or C:

Eω+δ ⊆ Eω, ‖ · ‖ω ≤ ‖ · ‖ω+δ, δ > 0.

We construct a seminormed space E =
⋂

0<ω<1 Eω with the collection of norms
{‖ · ‖ω}0<ω<1. (We use the term ’seminormed space’ even if all seminorms are
norms.)

Let Un
r = {z = (z1, . . . , zn) ∈ Cn : |z| = maxk |zk| < r} be a polycircle. Consider

a space Hn of a functions f : Un
R → C that are analytic in Un

R. The space Hn is
seminormed with a collection of norms

‖f‖r = max
|z|≤r

|f(z)|, 0 < r < R.

Theorem 1.1 (Montel’s theorem [5]). The space Hn satisfies Montel’s axiom.

Consider the linear operator D : Hn → Hn defined as

Df =
∂f

∂z1
.

This operator is continuous with respect to definition 1.3. Indeed, let uk →
u, uk, u ∈ Hn as k →∞. According to the Cauchy inequality we get

‖Duk −Du‖r ≤
K

δ
‖uk − u‖r+δ → 0,

where K is a positive constant and r + δ < R. Nevertheless, it is well known that
this operator is not continuous with respect to any fixed norm ‖ · ‖r .

2. Main theorem

Let (L, {‖ · ‖ω}ω∈Ω) be a seminormed space and ω′ ∈ Ω be such that ‖ · ‖ω′ is a
norm. Then a compact set K ⊂ L is convex.

Now, we consider a continuous map f : K → K.

Theorem 2.1 (Generalized Schauder’s theorem). There exists a point x̂ ∈ K such
that f(x̂) = x̂.
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Recall the original formulation of Schauder’s theorem. Let (L, ‖ · ‖) be a Banach
space and K ⊂ L be a convex compact set. Then a continuous map f : K → K
has a fixed point x̂ ∈ K.

Note that though this formulation includes completeness of the space, actually
this condition is not necessary. The point is that the proof of this theorem (see [1])
considers the map f only on the compact K but any compact set is complete and
can be embedded to a completion of the space L.

Proof of Theorem 2.1. Let (E, {ρω}ω∈Ω) and (F, {dσ}σ∈Σ) be semimetric spaces.
and there exist ω′, σ′ such that the semimetrics ρω′ and dσ′ are metrics.

Consider a compact set (with respect to the semimetric topology) K ⊂ (E, {ρω}ω∈Ω)
and a map f : E → F .

Lemma 2.2. If the map f : E → F is continuous on K, with respect to the
semimetric topology, then it is continuous on K as a map of the metric space
(E, ρω′) to the metric space (F, dσ′).

Proof. Let {xn} ⊂ K be a sequence such that ρω′(xn, a) → 0 as n → ∞ where
a ∈ K and we put yn = f(xn). So we must prove that dσ′(yn, b) → 0 where
b = f(a).

Assume the converse. Then there exists a subsequence {y′n} ⊆ {yn} such that
dσ′(y′n, b) ≥ c > 0. A set K̂ = f(K) is compact as an image of a compact set under
a continuous map and {y′n} ⊂ K̂. Thus, there exists a subsequence {y′′n} ⊆ {y′n}
such that

dσ(y′′n, β) → 0, σ ∈ Σ, β 6= b. (2.1)

Let {x′′n} ⊆ {xn} be a sequence such that y′′n = f(x′′n). Consider a subsequence
{x′′′n } ⊆ {x′′n} that converges with respect to the semimetric topology: ρω(x′′′n , a) →
0 for all ω ∈ Ω and let y′′′n = f(x′′′n ). Note that {y′′′n } ⊆ {y′′n}.

Since f is continuous we have dσ(y′′′n , b) → 0 for all σ ∈ Σ. On other hand we
have (2.1). This contradiction proves the Lemma. �

Theorem 2.1 follows, almost directly, from original Schauder’s theorem and
Lemma 2.2. Indeed, by Lemma 2.2 the map f is continuous on K with respect
to the norm ‖ · ‖ω′ . By L denote a completion of L with respect to the same norm.

It is easy to check that the compactness of the set K with respect to the semi-
normed topology involves the compactness of K with respect to the norm ‖ · ‖ω′ .
So we obtain the continuous map f : K → K where K is a convex compact set in
the Banach space L.

By the original Schauder’s theorem we get the fixed point x̂. Then Theorem 2.1
is proved.

3. Application: majorant method for Cauchy-Kovalevskaya problem

Now we study an existence of Cauchy-Kovalevskaya problem’s solutions for a
single partial differential equation. Extension of this theory to the case of countable
PDE system contains in [6]. Consider the problem

ut = f(u), u
∣∣
t=0

= u0(z) ∈ Hn. (3.1)

By a subscript we denote a derivative. For example ut is the derivative of the
function u with respect to the variable t.
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Let IT be the interval [0, T ]. Denote by C(IT ,Hn) the seminormed space of
continues maps v : IT → Hn with a collection of seminorms:

‖v‖c
r = max

t∈IT

‖v(z, t)‖r.

We imply that the space Hn+1 consists of such a type functions: u(z, t) ∈ Hn+1.
We consider problem (3.1) in the following two setups. Complex-time setup: f

is a continues map of the set Hn+1 to itself. Real-time setup: f is a continues map
of the set C(IT ,Hn) to itself.

Note that we consider continuity of the map f with respect to the seminormed
topology of the space Hn. For example f can contain derivatives such as

∂j1+...+jn

∂z1
j1 . . . ∂zn

jn
.

Now we give the following definition. An analytic function

G(z) =
∑

k1,...kn≥0

Gk1,...kn
zk1
1 · . . . · zkn

n

is said to be a majorant function (or majorant) for another analytic function

g(z) =
∑

k1,...kn≥0

gk1,...kn
zk1
1 · . . . · zkn

n

if |gk1,...kn | ≤ Gk1,...kn for all integer k1, . . . kn ≥ 0. This condition is denoted by
g � G.

If functions g,G ∈ C(IT ,Hn), then their Taylor coefficients depend on t and the
relation g � G implies that |gk1,...kn

(t)| ≤ Gk1,...kn
(t) for all t ∈ IT .

Define a relation ’�’ for maps as follows:
Real-time setup: A map Q : C(IT ,Hn) → C(IT ,Hn) is said to be majorant for
a map q : C(IT ,Hn) → C(IT ,Hn) if for all v, V ∈ C(IT ,Hn) such that v � V we
have q(v) � Q(V ).
Complex-time setup: A map Q : Hn+1 → Hn+1 is said to be majorant for a map
q : Hn+1 → Hn+1 if for all v, V ∈ Hn+1 such that v � V we have q(v) � Q(V ).

Define the following majorant pair (U(z, t), F (U)) for problem (3.1).
Real-time setup:

U ∈ C(IT ,Hn), F : C(IT ,Hn) → C(IT ,Hn).

The function F is majorant for the function f and the following conditions hold:

U(z, 0) � u0(z),

U(z, t) � U(z, 0) +

t∫
0

F (U) ds,
(3.2)

where t ∈ IT .
Complex-time setup:

U ∈ Hn+1, F : Hn+1 → Hn+1,

the function F is majorant for the function f and conditions (3.2) hold for t ∈ Un
R.

The function F is continues on the respective sets. Particularly if the map F is
majorant for the map f and U(z, t) is a solution of the following problem:

Ut = F (U), U
∣∣
t=0

= U0(z) � u0(z)
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then the pair (U(z, t), F (U)) is majorant for problem (3.1).

Theorem 3.1. If problem (3.1) admits a majorant pair (U(z, t), F (U)) then it has
solution u(z, t) such that u ∈ Hn+1 – for the complex-time setup, u ∈ C(IT ,Hn) –
for the real-time setup and

u(z, t) � U(z, t).

The technique of majorant pairs building was developed by D. Treschev. Non-
trivial applications of this technique to perturbation theory are shown in [3].

Proof of Theorem 3.1. We will prove the theorem just in the real-time setup.
The case of the complex-time can be considered in analogous way. Consider the
following subset of C(IT ,Hn):

W = {w(z, t) : w � U,

‖w(z, t′)− w(z, t′′)‖r ≤ ‖F (U)‖c
r · |t′ − t′′|, r < R, t′, t′′ ∈ IT }.

Lemma 3.2. The set W is a convex compact.

Proof. It is easy to check that W is a convex closed set. The set W is uniformly
continues: there exist a set of constants {Mr} such that for any w ∈ W and for
any t′, t′′ ∈ IT we have

‖w(z, t′)− w(z, t′′)‖r ≤ Mr|t′ − t′′|.

Indeed, we can put Mr = ‖F (U)‖c
r.

The set W can be written as

W =
∏

t∈IT

W (t),

where W (t) = {w(z, t) ∈ W} ⊂ Hn and by
∏

we denote the cross product. The
set W (t) is bounded: if w ∈ W (t) then ‖w(z, t)‖r ≤ ‖U‖c

r. By Montel’s theorem it
follows that W (t) is compact in the space Hn.

Then the proof will be complete when we apply the following theorem.

Theorem 3.3 ([5]). If a closed set W ⊂ C(IT ,Hn) is uniformly continuous and
for any t ∈ IT the set W (t) is compact in Hn, then W is compact in C(IT ,Hn).

This complete the proof of Lemma 3.2 �

Let the map P : C(IT ,Hn) → C(IT ,Hn) be given by

P (w) = u0(z) +

t∫
0

f(w) ds.

Taking into account (3.2) one can check that P (W ) ⊆ W . Then by Theorem 2.1
and Lemma 3.2 we obtain a fixed point u(z, t) ∈ W for the map P :

P (u) = u.

This fixed point is a solution of the problem (3.1). which proves Theorem 3.1.
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[6] O. Zubelevich, On the Magorant Method for Cauchy-Kovalevskaya Problem, Mathematical
Notes, 2001, 69(3), 363-374. (in Rusian)

Department of Differential Equations, Moscow State Aviation Institute, Voloko-

lamskoe Shosse 4, 125871, Moscow, Russia
E-mail address: ozubel@yandex.ru


