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EXISTENCE OF SOLUTIONS FOR A CLASS OF ELLIPTIC
SYSTEMS IN RN INVOLVING THE p-LAPLACIAN

ALI DJELLIT & SAADIA TAS

Abstract. Using a variational approach, we study a class of nonlinear ellip-

tic systems derived from a potential and involving the p-Laplacian. Under
suitable assumptions on the nonlinearities, we show the existence of nontrivial

solutions.

1. Introduction

In this paper, we deal with the nonlinear elliptic system

−∆pu =
∂F

∂u
(x, u, v) in RN ,

−∆qv =
∂F

∂v
(x, u, v) in RN .

(1.1)

The nonlinearities on the right hand side are the gradient of a C1-functional F
and 4p is the so-called p-Laplacian operator i.e. ∆pu = div(|∇u|p−2∇u); u and
v are unknown real-valued functions defined in RN and belonging to appropriate
function spaces; 1 < p, q < N . Many authors studied the existence of solutions for
such problems (equations or systems) for which explicit solutions generally can not
be given.

We observe that there exists a vast literature on the use of the Mountain Pass
Theorem. Before stating our main theorem, we recall some work about some non-
linear problems: Rabinowitz [11] investigated a class of superlinear Schrödinger
equations of the form −∆u+ q(x)u = f(x, u) defined in RN using a variational ap-
proach based on a variant of the Mountain Pass Theorem. The nonlinear function
verifies |∂f/∂u| ≤ a|u|p−1 + b; a and b are positive constants; 1 < p < 2∗ − 1 (in
this case, the equation is said superlinear). Yu [14] obtained sufficient conditions on
the nonlinearity for the existence of positive solutions for some nonlinear equations
of the form −div(|a(x)∇u|p−2∇u) = b(x)|u|p−2u + f(x, u) defined on a smooth
exterior domains; a(x) and b(x) are smooth functions. Costa [4] studied a class of
elliptic systems −∆u + a(x)u = f(x, u, v); −∆v + b(x)v = g(x, u, v) in RN ; with
(f, g) = ∇F , the potential F is nonquadratic at infinity. The partial derivatives
satisfy the conditions |∇f(x,U)| + |∇g(x, U)| ≤ c(1 + |U |p−1); 1 < p < 2∗ − 1 if
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N ≥ 3 (or 1 ≤ p < +∞ if N = 1, 2). Do O [9] considered a non-autonomous per-
turbed eigenvalue problem involving the p-Laplacian of the form −∆pu = f(x, u)
defined in RN ; the nonlinearity f interacts with the first eigenvalue of a correspond-
ing problem, and also verifies the following estimate |f(x, u)| ≤ ϕ(x)|u|r +ψ(x)|u|s;
ϕ(x) and ψ(x) are suitable functions; 0 < r ≤ p− 1 ≤ s < p∗ − 1.

In this work, we show the existence of nontrivial solutions for System (1.1)
in homogeneous Sobolev spaces under mixed subcritical growth conditions; the
primitive F being intimately connected with the first eigenvalue of an appropriate
system. Using a weak version of the Palais-Smale condition, due to Cerami [5],
we can apply the Mountain Pass Theorem to System (1.1). Our main goal in this
article is to illustrate how the ideas introduced in [4, 9, 11] can be applied to handle
the problem of existence of nontrivial solutions for System (1.1).

This paper is organized as follows. In section 2, we present some preliminary
results and definitions; we also introduce precise assumptions under which our
problem is studied. We reserve the section 3 for the proof of the main result.

2. Notations and Hypotheses

We first recall some standard definitions and notations. Let Z be a reflexive
Banach space endowed with a norm ‖ · ‖. Let I ∈ C1(Z,R). We say that I satisfies
the Cerami condition, denoted by (C) condition, if every (wn) ∈ Z such that

|I(wn)| ≤ c and (1 + ‖wn‖)I ′(wn) → 0

contains a convergent subsequence in the norm of Z.
For 1 < m < N , let m∗ = Nm

N−m be the critical Sobolev exponent of m.
Let D1,m(RN ) be the closure of C∞0 (RN ) with respect to the norm ‖u‖1,m ≡

‖∇u‖m =
( ∫

RN |∇u|mdx
)1/m

. D1,m(RN ) is a reflexive Banach space and may

be written D1,m(RN ) = {u ∈ Lm∗
(RN ) : ∇u ∈ (Lm(RN ))N}. Moreover, Sobolev

imbedding holds; in fact there exists a positive constant c such that ‖u‖m∗ ≤
c‖u‖1,m for all u ∈ D1,m(RN ) (see [13]).

Now we denote by Z the product space D1,p(RN ) × D1,q(RN ) ; Z
∗

designates
the dual space equipped with the dual norm ‖ · ‖∗.

For (u, v) in Z, we define the functionals I, J , K by

J(u, v) =
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q,

K(u, v) =
∫

RN

F (x, u(x), v(x))dx,

I(u, v) = J(u, v)−K(u, v).

In this article we use the following hypotheses:

(H1) F ∈ C1(RN × R2,R) and F (x, 0, 0) = 0.
(H2) For all U = (u, v) ∈ R2 and for almost every x ∈ RN

|∂F
∂u

(x, U)| ≤ a1(x)|U |p1−1 + a2(x)|U |p2−1,

|∂F
∂v

(x, U)| ≤ b1(x)|U |q1−1 + b2(x)|U |q2−1.
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Here 1 < p1, q1 < min(p, q), max(p, q) < p2, q2 < min(p∗, q∗), ai ∈
Lαi(RN ) ∩ Lβi(RN ), bi ∈ Lγi(RN ) ∩ Lδi(RN ), i = 1, 2.

αi =
p∗

p∗ − pi
, γi =

q∗

q∗ − qi
,

βi =
p∗q∗

p∗q∗ − p∗(pi − 1)− q∗
, δi =

p∗q∗

p∗q∗ − q∗(qi − 1)− p∗
.

(H3) U.∇F (x,U) − F (x,U) ≤ 0, for all (x,U) ∈ RN × R2 − {(0, 0)}, where
∇F = (∂F

∂u ,
∂F
∂v ). This type of condition has been introduced by Costa [4].

(H4) At last we suppose the existence of two positive and bounded functions
a ∈ LN/p(RN ) and b ∈ LN/q(RN ) such that

lim sup
|U |→0

pq|F (x,U)|
qa(x)|u|p + pb(x)|v|q

< λ1 < lim inf
|U |→+∞

pq|F (x, U)|
qa(x)|u|p + pb(x)|v|q

.

Putting

Λ =
{

(u, v) ∈ Z :
1
p

∫
RN

a(x)|u|pdx+
1
q

∫
RN

b(x)|v|qdx = 1
}
,

λ1 = infΛ J(u, v) is the first eigenvalue of the system

−∆pu = λa(x)|u|p−2u in RN ,

−∆qv = λb(x)|v|q−2v in RN .
(2.1)

Remark The hypothesis (H4) is related with the interaction of the potential F
and λ1. Costa [4] was the first to introduce such assumption. A variant of this
condition appeared in Do O [9]. An example of such functions is

F (x, u, v) = −a(x)|u|α|v|β ; max(p, q) < α, β < min(p∗, q∗).

It is easy to prove that F satisfies (H1), (H3) and (H4). In order to obtain (H2),
we use Young’s inequality.

3. Existence of solutions

Taking into account the above hypotheses, we have some assertions.

Lemma 3.1. Under Hypotheses (H1) and (H2), the functional K is well defined
and is of class C1 on Z. Moreover, its derivative is

K ′(u, v)(w, z) =
∫

RN

(
∂F

∂u
(x, u, v)w +

∂F

∂v
(x, u, v)z)dx ∀(u, v), (w, z) ∈ Z.

Proof. K is well defined on Z. Indeed, for all (u, v) ∈ Z and by virtue of (H1) and
(H2), we have

F (x, u, v) =
∫ u

0

∂F

∂s
(x, s, v)ds+ F (x, 0, v)

=
∫ u

0

∂F

∂s
(x, s, v)ds+

∫ v

0

∂F

∂s
(x, 0, s)ds+ F (x, 0, 0)

and

F (x, u, v) ≤c1[a1(x)(|u|p1 + |v|p1−1|u|) + a2(x)(|u|p2 + |v|p2−1|u|)
+ b1(x)|v|q1 + b2(x)|v|q2 ].
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Using Hölder’s inequality and Sobolev’s imbedding and the fact that ai ∈ Lαi(RN )∩
Lβi(RN ), bi ∈ Lγi(RN ), we get∫

RN

F (x, u, v)dx

≤ c2(‖a1‖α1‖u‖
p1
1,p + ‖a1‖β1‖v‖

p1−1
1,q ‖u‖1,p + ‖a2‖α2‖u‖

p2
1,p

+ ‖a2‖β2‖v‖
p2−1
1,q ‖u‖1,p + ‖b1‖γ1‖v‖

q1
1,q + ‖b2‖γ2‖v‖

q2
1,q) < +∞.

Observe that K ′(u, v) is also well defined on Z since∫
RN

∂F

∂u
(x, u, v)wdx ≤c3

(
‖a1‖α1‖u‖

p1−1
1,p + ‖a1‖β1‖v‖

p1−1
1,q

+ ‖a2‖α2‖u‖
p2−1
1,p + ‖a2‖β2‖v‖

p2−1
1,q

)
‖w‖1,p < +∞.

and ∫
RN

∂F

∂v
(x, u, v)zdx ≤c4

(
‖b1‖δ1‖u‖

q1−1
1,p + ‖b1‖γ1‖v‖

q1−1
1,q

+ ‖b2‖δ2‖u‖
q2−1
1,p + ‖b2‖γ2‖v‖

q2−1
1,q

)
‖z‖1,q < +∞.

Now, we show that K is differentiable in sense of Fréchet at each point (u, v) of Z
i.e. ∀ε > 0, there exists δ = δ(ε, u, v) > 0 such that (‖w‖1,p + ‖z‖1,q) ≤ δ implies

|K(u+ w, v + z)−K(u, v)−K ′(u, v)(w, z)| ≤ ε(‖w‖1,p + ‖z‖1,q).

Let BR be the ball of radius R, centered at the origin of RN . We put B′
R =

RN − BR and we define a functional KR on D1,p(BR) ×D1,q(BR) by KR(u, v) =∫
BR

F (x, u(x), v(x))dx. Taking (H1) and (H2) into account, it is well-known that
KR ∈ C1(D1,p(BR) × D1,q(BR)) and for any (w, z) ∈ D1,p(BR) × D1,q(BR), we
have

K ′
R(u, v)(w, z) =

∫
BR

(
∂F

∂u
(x, u, v)w +

∂F

∂v
(x, u, v)z)dx.

Moreover, K ′
R is compact from Z to Z∗ (see [9, 10, 12]). On the other hand, for all

(u, v) , (w, z) ∈ Z, we have∣∣K(u+ w, v + z)−K(u, v)−K ′(u, v)(w, z)
∣∣

≤
∣∣KR(u+ w, v + z)−KR(u, v)−K ′

R(u, v)(w, z)
∣∣

+
∣∣ ∫

B′
R

(F (x, u+ w, v + z)− F (x, u, v)− ∂F

∂u
(x, u, v)w − ∂F

∂v
(x, u, v)z)dx

∣∣.
By the Mean-value theorem, we can write

F (x, u+ w, v + z)− F (x, u, v) =
∂F

∂u
(x, u+ θ1w, v)w +

∂F

∂v
(x, u, v + θ2z)z,

for θ1, θ2 ∈]0, 1[. By the growth condition (H2) and the fact that for i = 1, 2,

‖ai‖Lαi (B′
R) + ‖ai‖Lβi (B′

R) → 0,

‖bi‖Lγi (B′
R) + ‖bi‖Lδi (B′

R) → 0,
(3.1)
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as R→∞, we obtain for R sufficiently large that∣∣ ∫
B′

R

(F (x, u+ w, v + z)− F (x, u, v)− ∂F

∂u
(x, u, v)w − ∂F

∂v
(x, u, v)z)dx

∣∣
≤ ε

(
‖w‖1,p + ‖z‖1,q

)
.

We have only to show that K ′ is continuous on Z. Let (un, vn) → (u, v) in Z. For
(w, z) ∈ Z , we have

|K ′(un, vn)(w, z)−K ′(u, v)(w, z)|
= |K ′

R(un, vn)(w, z)−K ′
R(u, v)(w, z)|

+ |
∫

B′
R

(
∂F

∂u
(x, un, vn) +

∂F

∂u
(x, u, v))wdx|

+ |
∫

B′
R

(
∂F

∂v
(x, un, vn) +

∂F

∂v
(x, u, v))zdx|.

Then K ′
R is continuous on D1,p(BR)×D1,q(BR) (see [9, 11]). The first expression

on the right hand side of the above equation tends to 0 as n → +∞; we use (H2)
and (3.1) to prove that both the second and the third expressions tend also to 0 as
R sufficiently large. �

Remark The functional J is of class C1 on Z and its derivative is

J ′(u, v)(w, z) =
∫

RN

|∇u|p−2∇u∇wdx+
∫

RN

|∇v|q−2∇v∇zdx.

Lemma 3.2. Under assumptions (H1) and (H2), K ′ is compact from Z to Z∗.

Proof. Let (un, vn) be a bounded sequence in Z. Then there is a subsequence
denoted again (un, vn) weakly convergent to (u, v) in Z. As before, we write

|K ′(un, vn)(w, z)−K ′(u, v)(w, z)|
= |K ′

R(un, vn)(w, z)−K ′
R(u, v)(w, z)|

+ |
∫

B′
R

(
∂F

∂u
(x, un, vn)− ∂F

∂u
(x, u, v))w dx|

+ |
∫

B′
R

(
∂F

∂v
(x, un, vn)− ∂F

∂v
(x, u, v))z dx|.

Since the restriction operator is continuous, we have (un, vn) ⇀ (u, v) inD1,p(BR)×
D1,q(BR). Because of the compactness of K ′

R, the first expression on the right hand
side of the equation tends to 0 as n→ +∞; as above both the second and the third
expressions tend also to 0 as R sufficiently large. �

Lemma 3.3. If (H1), (H2), and (H3) hold then I = J −K satisfies the condition
(C).

Proof. Let (un, vn) ⊂ Z such that

(i) |I(un, vn)| ≤ c.
(ii) (1 + ‖un‖1,p + ‖vn‖1,q)I ′(un, vn) → 0 in Z

∗
, as n→ +∞.
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From (ii), we have I ′(un, vn)(w, z) ≤ εn → 0 as n → +∞, ∀ (w, z) ∈ Z. In
particular, for (w, z) = (un, vn), we get

I ′(un, vn)(un, vn)

= ‖un‖p
1,p + ‖vn‖q

1,q −
∫

RN

(
∂F

∂u
(x, un, vn)un +

∂F

∂v
(x, un, vn)vn)dx ≤ εn.

On the other hand,

I(un, vn) =
1
p
‖un‖p

1,p +
1
q
‖vn‖q

1,q −
∫

RN

F (x, un, vn)dx ≤ c.

Then, taking (H2) into account, we get

εn + c ≥ I ′(un, vn)(un, vn)− I(un, vn)

= (1− 1
p
)‖un‖p

1,p + (1− 1
q
)‖vn‖q

1,q

+
∫

RN

(F (x, un, vn)− ∂F

∂u
(x, un, vn)un −

∂F

∂v
(x, un, vn)vn)dx

≥ (1− 1
p
)‖un‖p

1,p + (1− 1
q
)‖vn‖q

1,q.

Hence, (un, vn) is bounded in Z. There is a subsequence denoted again (un, vn)
weakly convergent in Z. Since K ′ is compact, K ′(un, vn) is a Cauchy’s sequence in
Z

∗
. We have J ′(u, v) = I ′(u, v) +K ′(u, v),∀(u, v) ∈ Z and(

J ′(un, vn)− J ′(um, vm)
)
(un − um, 0)

=
∫

RN

(|∇un|p−2∇un − |∇um|p−2∇um)(∇un −∇um)dx.

Observe that for all λ, µ ∈ RN ,

|λ− µ|p ≤

{
(|λ|p−2λ− |µ|p−2µ)(λ− µ) if p ≥ 2,[
(|λ|p−2λ− |µ|p−2µ)(λ− µ)

]p/2 (|λ|+ |µ|)(2−p)p/2 if 1 < p < 2,

(see [6, 15]). Substituting λ and µ by ∇un and ∇um respectively and integrating
over RN , we obtain

‖un − um‖p
1,p ≤ (J ′(un, vn)− J ′(um, vm))(un − um, 0), if p ≥ 2.

and

‖un − um‖21,p ≤ |(J ′(un, vn)− J ′(um, vm))(un − um, 0)|(‖un‖p
1,p + ‖um‖p

1,p)
2−p
2 ,

if 1 < p < 2.
Since (un) is bounded in D1,p(RN ) and (J ′(un, vn)−J ′(um, vm))(un−um, 0) →

0 as n,m → +∞, then (un) is a Cauchy’s sequence in D1,p(RN ). Hence (un)
converges in D1,p(RN ). In the same way, we prove that (vn) converges in D1,q(RN ).

�

Moreover the functional I = J − K verifies the geometric conditions of the
Mountain Pass Theorem, summarized in the following lemma.

Lemma 3.4. Under Assumptions (H1), (H2), (H3), and (H4), the functional I
satisfies

(I1) There exist ρ, σ > 0 such that ‖u‖1,p + ‖v‖1,q = ρ implies I(u, v) ≥ σ > 0.
(I2) There exists E ∈ Z such that ‖E‖Z > ρ and I(E) ≤ 0.
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Proof. By (H4), there exists ρ > 0 such that

‖u‖1,p + ‖v‖1,q = ρ =⇒ F (x, u, v) < λ1(
1
p
a(x)|u|p +

1
q
b(x)|v|p).

The variational characterization of λ1 (see [7]) gives∫
RN

F (x, u, v)dx <
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q.

Then there exist ρ, σ > 0 such that ‖u‖1,p +‖v‖1,q = ρ implies I(u, v) ≥ σ > 0. Let
(ϕ,ψ) be an eigenfunction associated with λ1. In view of (H4), we get for ε > 0
and t sufficiently large,

F (x, t
1
pϕ, t

1
qψ) ≥ (λ1 + ε)(

t

p
a(x)|ϕ|p +

t

q
b(x)|ψ|p).

Hence

I(t
1
pϕ, t

1
qψ) =

t

p

∫
RN

|∇ϕ|pdx+
t

q

∫
RN

|∇ψ|qdx−
∫

RN

F (x, t
1
pϕ, t

1
qψ)dx

≤ t

p

∫
RN

|∇ϕ|pdx+
t

q

∫
RN

|∇ψ|qdx

− (λ1 + ε)
( t
p

∫
RN

a(x)|ϕ|pdx+
t

q

∫
RN

b(x)|ψ|pdx
)

≤ −tε(1
p

∫
RN

a(x)|ϕ|pdx+
1
q

∫
RN

b(x)|ψ|pdx).

we deduce that limt→+∞ I(t
1
pϕ, t1/qψ) = −∞. So, for t large, I(t1/pϕ, t1/qψ) ≤ 0.

Consequently, the functional I has a critical value. Note that the critical points
of I are precisely the weak solutions of System (1.1). �

Now, we can state the main theorem.

Theorem 3.5. System (1.1) has at least one nontrivial solution (u, v).

Proof. In view of Lemmas 3.3 and 3.4, we can apply the Mountain-Pass theorem
(see [8, 10, 13]) to conclude that system (1.1) has a nontrivial weak solution. �
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