EXISTENCE OF POSITIVE SOLUTIONS FOR SOME POLYHARMONIC NONLINEAR BOUNDARY-VALUE PROBLEMS

HABIB MÂAGLI, FATEN TOUMI, \& MALEK ZRIBI

Abstract

We present existence results for the polyharmonic nonlinear elliptic boundary-value problem $$
\begin{gathered} (-\Delta)^{m} u=f(\cdot, u) \quad \text { in } B \\ \left(\frac{\partial}{\partial \nu}\right)^{j} u=0 \quad \text { on } \partial B, \quad 0 \leq j \leq m-1 \end{gathered}
$$ (in the sense of distributions), where B is the unit ball in \mathbb{R}^{n} and $n \geq 2$. The nonlinearity $f(x, t)$ satisfies appropriate conditions related to a Kato class of functions $K_{m, n}$. Our approach is based on estimates for the polyharmonic Green function with zero Dirichlet boundary conditions and on the Schauder fixed point theorem.

1. Introduction

Boggio [3] gave an explicit expression for the Green function $G_{m, n}$ of $(-\Delta)^{m}$ on the unit ball B of $\mathbb{R}^{n}(n \geq 2)$, with Dirichlet boundary conditions $\left(\frac{\partial}{\partial \nu}\right)^{j} u=0$, $0 \leq j \leq m-1$. In fact, he proved that for each x, y in B,

$$
\begin{equation*}
G_{m, n}(x, y)=k_{m, n}|x-y|^{2 m-n} \int_{1}^{\left.\frac{[x, y]}{x-y} \right\rvert\,} \frac{\left(v^{2}-1\right)^{m-1}}{v^{n-1}} d v \tag{1.1}
\end{equation*}
$$

where $\frac{\partial}{\partial \nu}$ is the outward normal derivative, m is a positive integer, $k_{m, n}$ is a positive constant and $[x, y]^{2}=|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)$, for x, y in B.

Hence, from its expression, it is clear that $G_{m, n}$ is positive in B^{2}, which does not hold for the Green function of the biharmonic or m-polyharmonic operator in an arbitrary bounded domain (see for example [7]). Only for the case $m=1$, we have not this restriction.

Grunau and Sweers [8] derived from Boggio's formula some interesting estimates on the Green function $G_{m, n}$ in B, including a 3G-Theorem, which holds in the case $m=1$ for the Green function G_{Ω} of an arbitrary bounded $C^{1,1}$-domain Ω (see [5] and [21]).

[^0]When $m=1$, the 3G-Theorem has been exploited to introduce the classical Kato class of functions $K_{n}(\Omega)$, which was used in the study of some nonlinear differential equations (see $[15,20]$). Definition and properties of the class $K_{n}(\Omega)$ can be found in $[1,5]$.

Recently, Bachar et al [2] improved the inequalities of Grunau and Sweers [8] satisfied by $G_{m, n}$ in B. For instance, they gave a new form of the 3G-Theorem (see inequality (1.2) below and its proof in the Appendix).

Theorem 1.1 (3G-theorem). There exists $C_{m, n}>0$ such that for each $x, y, z \in B$, we have

$$
\begin{equation*}
\frac{G_{m, n}(x, z) G_{m, n}(z, y)}{G_{m, n}(x, y)} \leq C_{m, n}\left[\left(\frac{\delta(z)}{\delta(x)}\right)^{m} G_{m, n}(x, z)+\left(\frac{\delta(z)}{\delta(y)}\right)^{m} G_{m, n}(y, z)\right] \tag{1.2}
\end{equation*}
$$

where $\delta(x)=1-|x|$.
When $m=1$, this new form of the 3G-Theorem has been proved for the Green function G_{Ω} in an arbitrary bounded $C^{1,1}$-domain Ω, by Kalton and Verbritsky [11] for $n \geq 3$ and by Selmi [18] for $n=2$.

In [2], the authors used this 3G-Theorem to define and study a new Kato class of functions on B denoted by $K_{m, n}:=K_{m, n}(B)$ (see Definition 1.2 below). In the case $m=1$, this class was introduced for a bounded $C^{1,1}$-domain Ω in \mathbb{R}^{n}, in [16] for $n \geq 3$ and in [13] and [19] for $n=2$. Moreover, it has been shown that $K_{1, n}(\Omega)$ contains properly the classical Kato class $K_{n}(\Omega)$.

Definition 1.2. A Borel measurable function φ defined on B belongs to the class $K_{m, n}$ if φ satisfies the condition

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in B} \int_{B \cap B(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y\right)=0 \tag{1.3}
\end{equation*}
$$

The properties of the class $K_{m, n}$ were used in [2], to study a singular nonlinear differential polyharmonic equation

$$
(-\Delta)^{m} u+\varphi(., u)=0, \quad \text { in } B \backslash\{0\},
$$

with boundary conditions $\left(\frac{\partial}{\partial \nu}\right)^{j} u=0$ on $\partial B, 0 \leq j \leq m-1$. The function φ satisfies $|\varphi(x, t)| \leq t q(x, t)$, where q is a nonnegative Borel measurable function in $B \times(0, \infty)$ which is required to satisfy some other hypotheses related to the class $K_{m, n}$.

The plan for this paper is as follows: In Section 2, we recall some estimates on the Green function $G_{m, n}$ and some properties of functions belonging to the Kato class $K_{m, n}(B)$. In section 3, we study the polyharmonic boundary-value problem

$$
\begin{gather*}
(-\Delta)^{m} u=f(\cdot, u) \quad \text { in } B \text { (in the sense of distributions) } \\
\left(\frac{\partial}{\partial \nu}\right)^{j} u=0 \quad \text { on } \partial B \quad 0 \leq j \leq m-1 . \tag{1.4}
\end{gather*}
$$

The function f satisfies the following hypotheses:
(H1) The function f is a nonnegative Borel measurable function on $B \times(0, \infty)$, which is continuous and non-increasing with respect to the second variable.
(H2) For each $c>0$, the function $x \rightarrow \frac{f\left(x, c(\delta(x))^{m}\right)}{(\delta(x))^{m-1}}$ is in $K_{m, n}$.
(H3) For each $c>0, f(., c)$ is positive on a set of positive measure.

To study problem (P), we assume $m \geq n \geq 2$. So we show that for $G_{m, n}$ there exists $C>0$ such that for each $x, y \in B$,

$$
\frac{1}{C}(\delta(x))^{m} G_{m, n}(0, y) \leq G_{m, n}(x, y) \leq C G_{m, n}(0, y)
$$

which is a fundamental inequality. Then by similar techniques to those used by Masmoudi and Zribi [17], we prove that (1.4) has a positive continuous solution u satisfying $a(\delta(x))^{m} \leq u(x) \leq b(\delta(x))^{m-1}$, where a, b are positive constants.

Note that for $m=1$, using the complete maximum principle argument, which does not hold for $m \geq 2$, Mâagli and Zribi [15] established an existence and an uniqueness result for the problem (1.4) in a bounded $C^{1,1}$ domain Ω of $\mathbb{R}^{n}(n \geq 3)$, where the function f is required to satisfy the hypotheses (H1), (H3), and
(H0) For each $c>0, f(., c)$ is in $K_{n}(\Omega)$.
In section 4 , we shall study the following nonlinear polyharmonic problem in B, where $m \geq 1, n \geq 2$,

$$
\begin{gather*}
(-\Delta)^{m} u=g(., u) \quad \text { in } B \text { (in the sense of distributions) } \\
\left(\frac{\partial}{\partial \nu}\right)^{j} u=0, \quad \text { on } \partial B, \quad 0 \leq j \leq m-1 . \tag{1.5}
\end{gather*}
$$

We Assume that g verifies the following hypotheses:
(H4) The function g is nonnegative Borel measurable function on $B \times(0, \infty)$, and is continuous with respect to the second variable.
(H5) There exist $p, q: B \rightarrow(0, \infty)$ nontrivial Borel measurable functions and $h, k:(0, \infty) \rightarrow[0, \infty)$ nontrivial and nondecreasing Borel measurable functions satisfying

$$
p(x) h(t) \leq g(x, t) \leq q(x) k(t)
$$

for $(x, t) \in B \times(0, \infty)$, such that
(A1) $p \in L_{\mathrm{loc}}^{1}(B)$.
(A2) The function $\theta(x):=q(x) /(\delta(x))^{m-1}$ is in $K_{m, n}$.
(A3) $\lim _{t \rightarrow 0^{+}} h(t) / t=+\infty$.
(A4) $\lim _{t \rightarrow+\infty} k(t) / t=0$.
Under these hypotheses, we will prove that (1.5) has a positive continuous solution u satisfying $a(\delta(x))^{m} \leq u(x) \leq b(\delta(x))^{m-1}$, where a, b are positive constants.

This result is a follow up to the one of Dalmasso [6], who studied the problem (1.5) with more restrictive conditions on the function g. Indeed, he assumed that g is nondecreasing with respect to the second variable and satisfies

$$
\lim _{t \rightarrow 0^{+}} \min _{x \in \bar{B}} \frac{g(x, t)}{t}=+\infty \quad \text { and } \quad \lim _{t \rightarrow+\infty} \max _{x \in \bar{B}} \frac{g(x, t)}{t}=0
$$

He proved the existence of positive solution and he gave also an uniqueness result for positive radial solution when $g(x, t)=g(|x|, t)$.

On the other hand, we note that when $m=1$, Brezis and Kamin [4] proved the existence and the uniqueness of a positive solution for the problem

$$
\begin{gathered}
-\Delta u=\rho(x) u^{\alpha} \quad \text { in } \mathbb{R}^{n} \\
\liminf _{|x| \rightarrow \infty} u(x)=0,
\end{gathered}
$$

with $0<\alpha<1$ and ρ is a nonnegative measurable function satisfying some appropriate conditions.

To simplify our statements, we define the following convenient notations:

- $B=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ with $n \geq 2$.
- $s \wedge t=\min (s, t)$ and $s \vee t=\max (s, t)$, for $s, t \in \mathbb{R}$.
- $C_{0}(B)=\left\{w \in C(B): \lim _{|x| \rightarrow 1} w(x)=0\right\}$
- For $x, y \in B$, we define: $[x, y]^{2}=|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right), \delta(x)=1-|x|$, and $\theta(x, y)=[x, y]^{2}-|x-y|^{2}=\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)$.
Note that $[x, y]^{2} \geq 1+|x|^{2}|y|^{2}-2|x||y|=(1-|x||y|)^{2}$. So that

$$
\begin{equation*}
\delta(x) \vee \delta(y) \leq[x, y] \tag{1.6}
\end{equation*}
$$

- Let f and g be two positive functions on a set S. We call $f \sim g$, if there is $c>0$ such that

$$
\frac{1}{c} g(x) \leq f(x) \leq c g(x), \quad \text { for all } x \in S
$$

We call $f \preceq g$, if there is $c>0$ such that

$$
f(x) \leq c g(x), \quad \text { for all } x \in S
$$

The following properties will be used several times.
For $s, t \geq 0$, we have

$$
\begin{gather*}
s \wedge t \sim \frac{s t}{s+t}, \tag{1.7}\\
(s+t)^{p} \sim s^{p}+t^{p}, \quad p \in \mathbb{R}^{+} . \tag{1.8}
\end{gather*}
$$

Let $\lambda, \mu>0$ and $0<\gamma \leq 1$, then we have,

$$
\begin{gather*}
1-t^{\lambda} \sim 1-t^{\mu}, \quad \text { for } t \in[0,1] \tag{1.9}\\
\log (1+t) \preceq t^{\gamma}, \quad \text { for } t \geq 0 \tag{1.10}\\
\log (1+\lambda t) \sim \log (1+\mu t), \quad \text { for } t \geq 0 \tag{1.11}\\
\log \left(1+t^{\lambda}\right) \sim t^{\lambda} \log (2+t), \quad \text { for } t \in[0,1] . \tag{1.12}
\end{gather*}
$$

On B^{2} (that is $(x, y) \in B^{2}$), we have

$$
\begin{gather*}
\theta(x, y) \sim \delta(x) \delta(y) \tag{1.13}\\
{[x, y]^{2} \sim|x-y|^{2}+\delta(x) \delta(y) .} \tag{1.14}
\end{gather*}
$$

2. Properties of the Green function and Kato class

For this paper to be self contained, we shall recall some results concerning the Green function $G_{m, n}(x, y)$ and the class $K_{m, n}$. The next result is due to Grunau and Sweers in [8].

Proposition 2.1. On B^{2}, we have the following statements:
(1) For $2 m<n$,

$$
G_{m, n}(x, y) \sim|x-y|^{2 m-n}\left(1 \wedge \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right)
$$

(2) For $2 m=n$,

$$
G_{m, n}(x, y) \sim \log \left(1+\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right)
$$

(3) For $2 m>n$,

$$
G_{m, n}(x, y) \sim(\delta(x) \delta(y))^{m-\frac{n}{2}}\left(1 \wedge \frac{(\delta(x) \delta(y))^{n / 2}}{|x-y|^{n}}\right)
$$

Corollary 2.2. On B^{2}, we have
(1) If $2 m<n$,

$$
G_{m, n}(x, y) \sim \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{n-2 m}\left(|x-y|^{2}+\delta(x) \delta(y)\right)^{m}} \sim \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{n-2 m}[x, y]^{2 m}}
$$

(2) If $2 m=n$,

$$
G_{m, n}(x, y) \sim\left(1 \wedge \frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right) \log \left(2+\frac{\delta(x) \delta(y)}{|x-y|^{2}}\right) \sim \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{2 m}} \log \left(1+\frac{[x, y]^{2}}{|x-y|^{2}}\right)
$$

(3) If $2 m>n$,

$$
G_{m, n}(x, y) \sim \frac{(\delta(x) \delta(y))^{m}}{\left(|x-y|^{2}+(\delta(x) \delta(y))\right)^{n / 2}} \sim \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{n}}
$$

The proof of this corollary follows immediately from Proposition 2.1 and the statements (1.7)-(1.9) and (1.11)-(1.14).

Corollary 2.3. For each $x, y \in B$ such that $|x-y| \geq r$, we have

$$
\begin{equation*}
G_{m, n}(x, y) \preceq \frac{(\delta(x) \delta(y))^{m}}{r^{n}} \tag{2.1}
\end{equation*}
$$

Moreover, on B^{2} we have

$$
\begin{gather*}
(\delta(x) \delta(y))^{m} \preceq G_{m, n}(x, y) \tag{2.2}\\
(\delta(x))^{m} \wedge(\delta(y))^{m}, \text { if } m \geq n \tag{2.3}
\end{gather*}
$$

The assertions of this corollary are obviously obtained by using the estimates in Corollary 2.2 and the inequalities (1.6) and $|x-y| \leq[x, y] \preceq 1$.

Now we recall some properties of functions belonging to the class $K_{m, n}$.
Lemma 2.4. Let φ be a function in $K_{m, n}$. Then the function $x \rightarrow(\delta(x))^{2 m} \varphi(x)$ is in $L^{1}(B)$.

Proof. Let $\varphi \in K_{m, n}$, then by (1.3) there exists $\alpha>0$ such that for each $x \in B$,

$$
\int_{B(x, \alpha) \cap B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \leq 1 .
$$

Let x_{1}, \ldots, x_{p} in B such that $B \subset \cup_{1 \leq i \leq p} B\left(x_{i}, \alpha\right)$. Then by (2.2), there exists $C>0$ such that for all $i \in\{1, \ldots p\}$ and $y \in B\left(x_{i}, \alpha\right) \cap B$, we have

$$
(\delta(y))^{2 m} \leq C\left(\frac{\delta(y)}{\delta\left(x_{i}\right)}\right)^{m} G_{m, n}\left(x_{i}, y\right)
$$

Hence, we have

$$
\begin{aligned}
\int_{B}(\delta(y))^{2 m}|\varphi(y)| d y & \leq C \sum_{1 \leq i \leq p} \int_{B\left(x_{i}, \alpha\right) \cap B}\left(\frac{\delta(y)}{\delta\left(x_{i}\right)}\right)^{m} G_{m, n}\left(x_{i}, y\right)|\varphi(y)| d y \\
& \leq C p<\infty .
\end{aligned}
$$

This completes the proof.

Throughout the paper, we will use the notation

$$
\|\varphi\|_{B}:=\sup _{x \in B} \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y
$$

for a measurable function φ on B.
Proposition 2.5. Let φ be a function in $K_{m, n}$, then $\|\varphi\|_{B}<\infty$.
Proof. Let $\varphi \in K_{m, n}$ and $\alpha>0$. Then we have

$$
\begin{aligned}
\int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \leq & \int_{B \cap B(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
& +\int_{B \cap B^{c}(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y
\end{aligned}
$$

Now, by (2.1), we have

$$
\int_{B \cap B^{c}(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \preceq \frac{1}{\alpha^{n}} \int_{B}(\delta(y))^{2 m}|\varphi(y)| d y
$$

then the result follows from (1.3) and Lemma 2.4.
The next result is due to Bachar et al [2]. Since reference [2] is not available, we have chosen to reproduce it here.

Proposition 2.6. There exists a constant $C>0$ such that for all $\varphi \in K_{m, n}$ and h a nonnegative harmonic function in B, we have

$$
\begin{equation*}
\int_{B} G_{m, n}(x, y)(\delta(y))^{m-1} h(y)|\varphi(y)| d y \leq C\|\varphi\|_{B}(\delta(x))^{m-1} h(x), \tag{2.4}
\end{equation*}
$$

for all x in B.
Proof. Let h be a nonnegative harmonic function in B. So by Herglotz representation theorem [10, p, 29], there exists a nonnegative measure μ on ∂B such that

$$
h(y)=\int_{\partial B} P(y, \xi) \mu(d \xi),
$$

where $P(y, \xi)=\frac{1-|y|^{2}}{|y-\xi|^{n}}$, for $y \in B$ and $\xi \in \partial B$. So we need only to verify (2.4) for $h(y)=P(y, \xi)$ uniformly in $\xi \in \partial B$. From expression (1.1) of $G_{m, n}$, it is clear that for each $x, y \in B$, we have

$$
G_{m, n}(x, y) \sim \frac{(\theta(x, y))^{m}}{[x, y]^{n}}\left(1+o\left(1-|y|^{2}\right)\right)
$$

Hence for x, y, z in B,

$$
\frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}=\frac{\left(1-|y|^{2}\right)^{m}[x, z]^{n}}{\left(1-|x|^{2}\right)^{m}[y, z]^{n}}\left(1+o\left(1-|z|^{2}\right)\right)
$$

which implies

$$
\begin{equation*}
\lim _{z \rightarrow \xi} \frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}=\frac{\left(1-|y|^{2}\right)^{m}}{\left(1-|x|^{2}\right)^{m}} \frac{|x-\xi|^{n}}{|y-\xi|^{n}} \sim\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} \frac{P(y, \xi)}{P(x, \xi)} \tag{2.5}
\end{equation*}
$$

Thus by Fatou's lemma and (1.2), we deduce that

$$
\begin{aligned}
& \int_{B} G_{m, n}(x, y)\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} \frac{P(y, \xi)}{P(x, \xi)}|\varphi(y)| d y \\
& \preceq \liminf _{z \rightarrow \xi} \int_{B} G_{m, n}(x, y) \frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}|\varphi(y)| d y \\
& \preceq \sup _{x \in B} \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y=\|\varphi\|_{B} .
\end{aligned}
$$

Which completes the proof.
For a nonnegative measurable function φ on B and $x \in B$, we define

$$
V \varphi(x)=\int_{B}(\delta(y))^{m-1} G_{m, n}(x, y) \varphi(y) d y
$$

Corollary 2.7. Let $\varphi \in K_{m, n}$. Then we have

$$
\begin{equation*}
\|V \varphi\|_{\infty}<\infty \tag{2.6}
\end{equation*}
$$

Moreover, the function $x \mapsto(\delta(x))^{2 m-1} \varphi(x)$ is in $L^{1}(B)$.
Proof. Put $h \equiv 1$ in (2.4) and using Proposition 2.5, we get (2.6). On the other hand, by (2.2), it follows that

$$
\int_{B}(\delta(y))^{2 m-1}|\varphi(y)| d y \preceq \int_{B} G_{m, n}(0, y)(\delta(y))^{m-1}|\varphi(y)| d y
$$

Hence the result follows from (2.6).
Example 2.8. If $n \geq 2 m$, for $p>\frac{n}{2 m}$ we have $L^{p}(B) \subset K_{m, n}$. Furthermore, if $n<2 m$ then for $p>1$ we have

$$
\frac{1}{(\delta(.))^{2 m-n}} L^{p}(B) \subset K_{m, n}
$$

Indeed, these inclusions are obtained by using the estimates on Corollary 2.2, (1.6) and the Hölder inequality.

Example 2.9. Let ρ be the function defined in B by $\rho(x)=\frac{1}{\delta(x)^{\lambda}}$. Then shown in [2], $\rho \in K_{m, n}$ if and only if $\lambda<2 m$ and we have the following estimates for $V \rho$ in B,
(1) $\delta(x)^{m} \preceq V \rho(x) \preceq \delta(x)^{3 m-\lambda-1}$, if $2 m-1<\lambda<2 m$.
(2) $\delta(x)^{m} \preceq V \rho(x) \preceq \delta(x)^{m} \log \left(\frac{2}{\delta(x)}\right)$, if $\lambda=2 m-1$.
(3) $V \rho(x) \sim \delta(x)^{m}$, if $\lambda<2 m-1$.

The properties in Propositions 2.11 and 2.12 below are useful for our existence results. However, to establish them we need the next key Lemma.
Lemma 2.10. Let $x_{0} \in \bar{B}$, then for each $\varphi \in K_{m, n}$,

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in B} \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y\right)=0 \tag{2.7}
\end{equation*}
$$

Also for a positive harmonic function h in B, we have

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in B} \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} \frac{h(y)}{h(x)} G_{m, n}(x, y)|\varphi(y)| d y\right)=0 . \tag{2.8}
\end{equation*}
$$

Proof. Let $\varepsilon>0$, then by (1.3), there exists $r>0$ such that

$$
\sup _{z \in B} \int_{B \cap B(z, r)}\left(\frac{\delta(y)}{\delta(z)}\right)^{m} G_{m, n}(z, y)|\varphi(y)| d y \leq \varepsilon
$$

Let $x_{0} \in \bar{B}$ and $\alpha>0$. Then by (2.1) we have for each $x \in B$,

$$
\begin{aligned}
& \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
& \leq \int_{B \cap B(x, r)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
&+\int_{B \cap B\left(x_{0}, \alpha\right) \cap B^{c}(x, r)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y \\
& \preceq \varepsilon+\int_{B \cap B\left(x_{0}, \alpha\right)}(\delta(y))^{2 m}|\varphi(y)| d y .
\end{aligned}
$$

Hence, using Lemma 2.4 and letting $\alpha \rightarrow 0$, claim (2.7) follows.
Now to prove (2.8), using again Herglotz representation theorem, we need only to verify the assertion for $h(y)=P(y, \xi)$ uniformly in $\xi \in \partial B$, where $P(y, \xi)=\frac{1-|y|^{2}}{|y-\xi|^{n}}$, for $y \in B$ and $\xi \in \partial B$.

Let $x \in B$, then by Fatou's Lemma and (2.5), we deduce that

$$
\begin{aligned}
& \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} \frac{P(y, \xi)}{P(x, \xi)} G_{m, n}(x, y)|\varphi(y)| d y \\
& \preceq \liminf _{z \rightarrow \xi} \int_{B \cap B\left(x_{0}, \alpha\right)} G_{m, n}(x, y) \frac{G_{m, n}(y, z)}{G_{m, n}(x, z)}|\varphi(y)| d y \\
& \preceq \sup _{x \in B} \int_{B \cap B\left(x_{0}, \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} G_{m, n}(x, y)|\varphi(y)| d y,
\end{aligned}
$$

Then by (2.7), we get (2.8) when $\alpha \rightarrow 0$.
Proposition 2.11. Let $\varphi \in K_{m, n}$. Then the following function is in $C_{0}(B)$,

$$
v(x):=\frac{1}{(\delta(x))^{m-1}} V \varphi(x)
$$

Proof. Let $x_{0} \in B$ and $\alpha>0$. Let $x, z \in B \cap B\left(x_{0}, \alpha\right)$, then

$$
\begin{aligned}
|v(x)-v(z)| \leq & \int_{B}\left|\frac{G_{m, n}(x, y)}{(\delta(x))^{m-1}}-\frac{G_{m, n}(z, y)}{(\delta(z))^{m-1}}\right|(\delta(y))^{m-1}|\varphi(y)| d y \\
\leq & 2 \sup _{\xi \in B} \int_{B \cap B\left(x_{0}, 2 \alpha\right)}\left(\frac{\delta(y)}{\delta(\xi)}\right)^{m-1} G_{m, n}(\xi, y)|\varphi(y)| d y \\
& +\int_{B \cap B^{c}\left(x_{0}, 2 \alpha\right)}\left|\frac{G_{m, n}(x, y)}{(\delta(x))^{m-1}}-\frac{G_{m, n}(z, y)}{(\delta(z))^{m-1}}\right|(\delta(y))^{m-1}|\varphi(y)| d y
\end{aligned}
$$

If $\left|x_{0}-y\right| \geq 2 \alpha$ then $|x-y| \geq \alpha$ and $|z-y| \geq \alpha$. Moreover, by (2.1) for all $x \in B \cap B\left(x_{0}, \alpha\right)$ and $y \in \Omega:=B \cap B^{c}\left(x_{0}, 2 \alpha\right)$, we have

$$
\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} G_{m, n}(x, y) \preceq(\delta(y))^{2 m-1}
$$

Since when $y \in \Omega$, the function $x \rightarrow \frac{G_{m, n}(x, y)}{(\delta(x))^{m-1}}$ is continuous in $B \cap B\left(x_{0}, \alpha\right)$, then by (2.8), Corollary 2.7 and the dominated convergence theorem, we obtain that

$$
\int_{B}\left|\frac{G_{m, n}(x, y)}{(\delta(x))^{m-1}}-\frac{G_{m, n}(z, y)}{(\delta(z))^{m-1}}\right|(\delta(y))^{m-1}|\varphi(y)| d y \rightarrow 0
$$

as $|x-z| \rightarrow 0$. Hence, we deduce that v is continuous in B. Next, we show that $v(x) \rightarrow 0$ as $\delta(x) \rightarrow 0$. Let $x_{0} \in \partial B, \alpha>0$ and $x \in B\left(x_{0}, \alpha\right)$, then

$$
\begin{aligned}
|v(x)| \leq & \int_{B \cap B\left(x_{0}, 2 \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} G_{m, n}(x, y)|\varphi(y)| d y \\
& +\int_{B \cap B^{c}\left(x_{0}, 2 \alpha\right)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} G_{m, n}(x, y)|\varphi(y)| d y
\end{aligned}
$$

Since $\lim _{\delta(x) \rightarrow 0} \frac{G_{m, n}(x, y)}{(\delta(x))^{m-1}}=0$, as in the above argument, we get $\lim _{x \rightarrow x_{0}} v(x)=0$. Hence $v \in C_{0}(B)$.

For a nonnegative function ρ in $K_{m, n}$, we define

$$
M_{\rho}:=\left\{\varphi \in K_{m, n}:|\varphi| \preceq \rho\right\} .
$$

By similar arguments as in the proof of the above Proposition, we can prove the following statement.

Proposition 2.12. For any nonnegative function $\rho \in K_{m, n}$, the family of functions $\left\{V \varphi: \varphi \in M_{\rho}\right\}$ is relatively compact in $C_{0}(B)$.

3. First existence result

In this section, we consider the case $m \geq n \geq 2$ to study problem (1.4). The main result that we shall prove is the following.

Theorem 3.1. Assume (H1)-(H3). Then the problem (1.4) has a positive continuous solution u. Moreover, there exist two positive constants a and b such that for each $x \in B$,

$$
a(\delta(x))^{m} \leq u(x) \leq b(\delta(x))^{m-1} .
$$

To prove this theorem, we state an existence result for the following boundaryvalue problem (in the sense of distributions)

$$
\begin{gather*}
(-\Delta)^{m} u=f(., u) \quad \text { in } B \\
u=\lambda \quad \text { on } \partial B \tag{3.1}\\
\left(\frac{\partial}{\partial \nu}\right)^{j} u=0, \quad \text { on } \partial B, \quad 1 \leq j \leq m-1
\end{gather*}
$$

where $\lambda>0$. For the next theorem we need the hypothesis
(H2') For each $c>0$, the function $x \rightarrow \frac{f(x, c)}{(\delta(x))^{m-1}}$ is in $K_{m, n}$.
Note that hypothesis (H2) implies (H2').
Proposition 3.2. Suppose that f satisfies (H1), (H3), and (H2'). Then for each $\lambda>0$, problem (3.1) has a positive solution $u_{\lambda} \in C(\bar{B})$, such that for each $x \in B$,

$$
u_{\lambda}(x)=\lambda+\int_{B} G_{m, n}(x, y) f\left(y, u_{\lambda}(y)\right) d y
$$

Proof. Let $\lambda>0$. Then by (H2'), the function $\rho(y):=\frac{f(y, \lambda)}{(\delta(y))^{m-1}} \in K_{m, n}$ and so by Corollary 2.7, we have $\beta:=\lambda+\|V \rho\|_{\infty}<\infty$. Let Y be the convex set given by

$$
Y=\{u \in C(\bar{B}): \lambda \leq u \leq \beta\}
$$

We consider the integral operator T on Y, defined by

$$
T u(x)=\lambda+\int_{B} G_{m, n}(x, y) f(y, u(y)) d y
$$

We shall prove that T has a fixed point in Y. Since for $u \in Y$ and $y \in B$, by (H1) we have

$$
\frac{f(y, u(y))}{(\delta(y))^{m-1}} \leq \frac{f(y, \lambda)}{(\delta(y))^{m-1}}=\rho(y)
$$

then using (H2'), we deduce that the function $y \rightarrow \frac{f(y, u(y))}{(\delta(y))^{m-1}}$ is in M_{ρ}. So from Proposition 2.12, we deduce that $T Y$ is relatively compact in $C(\bar{B})$. In particular, for all $u \in Y, T u \in C(\bar{B})$ and so it is clear that $T Y \subset Y$.

Now, we aim to prove the continuity of T in Y. Let $\left(u_{k}\right)_{k}$ be a sequence in Y which converges uniformly to $u \in Y$. Then since f is continuous with respect to the second variable, we deduce by the dominated convergence theorem that

$$
\forall x \in B, T u_{k}(x) \rightarrow T u(x) \quad \text { as } k \rightarrow \infty
$$

As $T Y$ is relatively compact in $C(\bar{B})$, then

$$
\left\|T u_{k}-T u\right\|_{\infty} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Thus we have proved that T is a compact mapping from Y to itself. Hence, by Schauder fixed point theorem, there exists a function $u_{\lambda} \in Y$ such that

$$
u_{\lambda}(x)=\lambda+\int_{B} G_{m, n}(x, y) f\left(y, u_{\lambda}(y)\right) d y
$$

Finally, we need to verify that u_{λ} is a solution for problem (3.1). Since by (H1) we have for each $y \in B, f\left(y, u_{\lambda}(y)\right) \leq f(y, \lambda)=(\delta(y))^{m-1} \rho(y)$, then we deduce from Corollary 2.7 that the function $y \rightarrow f\left(y, u_{\lambda}(y)\right)$ is in $L_{\mathrm{loc}}^{1}(B)$. So it is clear that u_{λ} satisfies (in the sense of distributions) the elliptic differential equation

$$
(-\Delta)^{m} u_{\lambda}=f\left(., u_{\lambda}\right) \quad \text { in } B
$$

Furthermore, by (H2'), we have

$$
0 \leq \frac{u_{\lambda}(x)-\lambda}{(\delta(x))^{m-1}} \leq \frac{1}{(\delta(x))^{m-1}} V \rho(x)
$$

This implies from Proposition 2.11 that $\lim _{\delta(x) \rightarrow 0} \frac{u_{\lambda}(x)-\lambda}{(\delta(x))^{m-1}}=0$. Namely, u_{λ} satisfies the boundary conditions $u_{\lambda}=\lambda$ and $\left(\frac{\partial}{\partial \nu}\right)^{j} u_{\lambda}=0$, on ∂B for $1 \leq j \leq m-1$. This ends the proof.

In the sequel, we consider a sequence $\left(\lambda_{k}\right)_{k}$ of positive real numbers, decreasing to zero. We denote by u_{k} the solution of the problem $\left(P_{\lambda_{k}}\right)$ given by Proposition 3.2 and satisfying for each $x \in B$,

$$
\begin{equation*}
u_{k}(x)=\lambda_{k}+\int_{B} G_{m, n}(x, y) f\left(y, u_{k}(y)\right) d y \tag{3.2}
\end{equation*}
$$

Lemma 3.3. There exists a positive constant a such that for all $k \in \mathbb{N}$, and $x \in B$, $u_{k}(x) \geq a(\delta(x))^{m}$.

Proof. By (2.2) and (2.3), we remark that on B,

$$
G_{m, n}(0, y) \sim(\delta(y))^{m}
$$

Then by (2.2) and (2.3) again, we deduce that there exists a constant $c>1$ such that we have for each $x, y \in B$

$$
\frac{1}{c}(\delta(x))^{m} G_{m, n}(0, y) \leq G_{m, n}(x, y) \leq c G_{m, n}(0, y)
$$

This implies by (3.1) that

$$
\begin{equation*}
u_{k}(x) \leq c\left(\lambda_{k}+\int_{B} G_{m, n}(0, y) f\left(y, u_{k}(y)\right) d y\right)=c u_{k}(0) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{aligned}
u_{k}(x) & \geq \frac{1}{c}(\delta(x))^{m}\left(\lambda_{k}+\int_{B} G_{m, n}(0, y) f\left(y, u_{k}(y)\right) d y\right) \\
& \geq \frac{1}{c}(\delta(x))^{m}\left(\inf _{k \in \mathbb{N}} u_{k}(0)\right)
\end{aligned}
$$

We claim that $a=\frac{1}{c}\left(\inf _{k \in \mathbb{N}} u_{k}(0)\right)>0$. Assume on the contrary that there exists a subsequence $\left(u_{k_{p}}(0)\right)_{p}$ which converges to zero. In particular, for p large enough, we have $u_{k_{p}}(0) \leq 1$, which implies with (3.3) and (H1) that

$$
u_{k_{p}}(0)=\lambda_{k_{p}}+\int_{B} G_{m, n}(0, y) f\left(y, u_{k_{p}}(y)\right) d y \geq \lambda_{k_{p}}+\int_{B} G_{m, n}(0, y) f(y, c) d y
$$

Thus, by letting p to ∞, we reach a contradiction from hypothesis (H3). This completes the proof.

Proof of Theorem 3.1. Let a be the constant given in Lemma 3.3, then by hypothesis (H2), we deduce that the function

$$
\rho(y):=\frac{f\left(y, a(\delta(y))^{m}\right)}{(\delta(y))^{m-1}} \in K_{m, n}
$$

Since for each $k \in \mathbb{N}$ and $y \in B$, by (H1) we have

$$
\frac{f\left(y, u_{k}(y)\right)}{(\delta(y))^{m-1}} \leq \frac{f\left(y, a(\delta(y))^{m}\right)}{(\delta(y))^{m-1}}=\rho(y)
$$

Then the function $y \rightarrow \frac{f\left(y, u_{k}(y)\right)}{(\delta(y))^{m-1}}$ is in M_{ρ}. So using Proposition 2.12, we deduce from (3.2) that the family $\left(u_{k}\right)_{k}$ is relatively compact in $C(\bar{B})$. Then it follows that there exists a subsequence $\left(u_{k_{p}}\right)_{p}$ which converges uniformly to a function $u \in C(\bar{B})$. Moreover, by Lemma 3.3, we have $u(x) \geq a(\delta(x))^{m}$, for each $x \in B$. Hence, using the continuity of f with respect to the second variable, we apply the dominated convergence theorem in (3.2) to obtain that

$$
u(x)=\int_{B} G_{m, n}(x, y) f(y, u(y)) d y
$$

Finally, by Lemma 3.3 and hypothesis (H1), for each $y \in B$, we have

$$
f(y, u(y)) \leq f\left(y, a(\delta(y))^{m}\right)=(\delta(y))^{m-1} \rho(y)
$$

Then we deduce from Corollary 2.7 that the function $y \rightarrow f(y, u(y))$ is in $L_{\mathrm{loc}}^{1}(B)$. So u satisfies (in the sense of distributions) the elliptic differential equation

$$
(-\Delta)^{m} u=f(., u) \quad \text { in } B
$$

Furthermore, we have for $x \in B$,

$$
a \delta(x) \leq \frac{u(x)}{(\delta(x))^{m-1}} \leq \frac{1}{(\delta(x))^{m-1}} V \rho(x)
$$

which together with Proposition 2.11 imply that u satisfies the boundary conditions $\left(\frac{\partial}{\partial \nu}\right)^{j} u=0$, on ∂B, for $0 \leq j \leq m-1$ and that there exists a positive constant b such that

$$
a(\delta(x))^{m} \leq u(x) \leq b(\delta(x))^{m-1}
$$

This completes the proof.
Corollary 3.4. Let $\varphi \in C(\partial B)$ and $\psi \in C^{1}(\partial B)$ be nonnegative functions on ∂B and f satisfies (H1)-(H3), then the polyharmonic boundary-value problem

$$
(-\Delta)^{m} u=f(., u) \quad \text { in } B \text { (in the sense of distributions), }
$$

$\left(-\frac{\partial}{\partial \nu}\right)^{m-1} u=\psi, \quad\left(-\frac{\partial}{\partial \nu}\right)^{m-2} u=\varphi, \quad\left(\frac{\partial}{\partial \nu}\right)^{j} u=0 \quad$ on $\partial B \quad$ for $0 \leq j \leq m-3$,
has a positive continuous solution u. Moreover there exists a positive constant a such that

$$
u(x) \geq a(\delta(x))^{m}
$$

Proof. Let h be the solution of the Dirichlet problem

$$
(-\Delta)^{m} h=0 \quad \text { in } B
$$

$\left(-\frac{\partial}{\partial \nu}\right)^{m-1} h=\psi, \quad\left(-\frac{\partial}{\partial \nu}\right)^{m-2} h=\varphi, \quad\left(\frac{\partial}{\partial \nu}\right)^{j} h=0, \quad$ on $\partial B, \quad$ for $0 \leq j \leq m-3$.
Then as in [9], for $x \in B$ we have

$$
h(x)=\int_{\partial B} K_{m, n}(x, y) \varphi(y) d \omega(y)+\int_{\partial B} L_{m, n}(x, y) \psi(y) d \omega(y)
$$

where

$$
\begin{gathered}
L_{m, n}(x, y)=\frac{1}{2^{m}(m-2)!\omega_{n}} \frac{\left(1-|x|^{2}\right)^{m}}{|x-y|^{n+2}}\left[n\left(1-|x|^{2}\right)+(m+2-n)|x-y|^{2}\right], \\
K_{m, n}(x, y)=\frac{1}{2^{m-1}(m-1)!\omega_{n}} \frac{\left(1-|x|^{2}\right)^{m}}{|x-y|^{n}}
\end{gathered}
$$

for $x, y \in B$, and ω_{n} denotes the $(n-1)$ dimensional surface area of the unit ball.
For $m \geq n \geq 2$, we have evidently $L_{m, n}>0$ and so h is nonnegative on B. Using this fact, we can easily see that the function f_{0} defined on $B \times(0, \infty)$ by

$$
f_{0}(x, t)=f(x, t+h(x))
$$

satisfies (H1)-(H3). Hence by Theorem 3.1, the problem

$$
\begin{gathered}
(-\Delta)^{m} v=f_{0}(., v) \quad \text { in } B \text { (in the sense of distributions) } \\
\left(\frac{\partial}{\partial \nu}\right)^{j} v=0, \quad \text { on } \partial B, \quad \text { for } 0 \leq j \leq m-1 .
\end{gathered}
$$

has a positive solution $v \in C_{0}(B)$ satisfying $v(x) \geq a(\delta(x))^{m}$, where a is a positive constant. Let $u=v+h$. Then u is the desired solution for the problem (3.4). This completes the proof.

Remark 3.5. Let f satisfy (H1), (H3), and
(H2") For each $c>0$, the function $x \rightarrow \frac{f\left(x, c(\delta(x))^{m}\right)}{(\delta(x))^{m+n-1}}$ is in $K_{m, n}$.

Then problem (1.4) has a positive solution u satisfying $u(x) \sim(\delta(x))^{m}$. Indeed, we note that (H2") implies (H2), so by Theorem 3.1, problem (1.4) has a positive solution satisfying that for each $x \in B$

$$
u(x)=\int_{B} G_{m, n}(x, y) f(y, u(y)) d y
$$

and $u(x) \geq a(\delta(x))^{m}$. Now, if $m \geq n$, we have by Corollary 2.2 that $G_{m, n}(x, y) \sim$ $\frac{(\delta(x) \delta(y))^{m}}{[x, y]^{n}}$, which by (1.6) implies that

$$
G_{m, n}(x, y) \preceq(\delta(x))^{m}(\delta(y))^{m-n} .
$$

Hence for each $x \in B$, we have

$$
\begin{equation*}
a(\delta(x))^{m} \leq u(x) \preceq(\delta(x))^{m} \int_{B}(\delta(y))^{m-n} f\left(y, a(\delta(y))^{m}\right) d y \tag{3.5}
\end{equation*}
$$

Since f satisfies (H2"), we deduce by Corollary 2.7, that $u(x) \sim(\delta(x))^{m}$.
Remark 3.6. Let $\psi(r,)=.\max _{|x|=r} f(x,$.$) , for r \in[0,1]$ and suppose that for all $c>0$,

$$
\begin{equation*}
\int_{0}^{1} r^{n-1}(1-r)^{m-1} \psi\left(r, c(1-r)^{m}\right) d r<\infty . \tag{3.6}
\end{equation*}
$$

Then the solution u of (1.4) satisfies $u(x) \sim(\delta(x))^{m}$. Indeed, by Theorem 3.1 and (H1), we have

$$
\begin{equation*}
a(\delta(x))^{m} \leq u(x) \leq \int_{B} G_{m, n}(x, y) f\left(y, a(\delta(y))^{m}\right) d y \tag{3.7}
\end{equation*}
$$

On the other hand using (1.1), we have

$$
G_{m, n}(x, y) \preceq|x-y|^{2 m-n}\left(\frac{[x, y]^{2}}{|x-y|^{2}}-1\right)^{m-1} \int_{1}^{\frac{[x, y \mid}{|x-y|}} \frac{d v}{v^{n-1}}
$$

Now since $\frac{\left[x,\left.y\right|^{2}\right.}{|x-y|^{2}}-1 \sim \frac{\delta(x) \delta(y)}{|x-y|^{2}}$, we deduce that

$$
G_{m, n}(x, y) \preceq(\delta(x) \delta(y))^{m-1} G_{1, n}(x, y) .
$$

Hence it follows from (3.6) that

$$
u(x) \preceq(\delta(x))^{m-1} \int_{B}(\delta(y))^{m-1} G_{1, n}(x, y) \psi\left(|y|, a(\delta(y))^{m}\right) d y
$$

By similar calculus as in [15, p.538], we have by (3.6) that for $x \in B$,

$$
\int_{B}(\delta(y))^{m-1} G_{1, n}(x, y) \psi\left(|y|, a(\delta(y))^{m}\right) d y \preceq \delta(x)
$$

This implies that $u(x) \sim(\delta(x))^{m}$.
Example 3.7. Let $\alpha>0$ and $\lambda<m+1$. Let ρ be a nontrivial measurable function in B such that for each $x \in B$

$$
0 \leq \rho(x) \leq \frac{1}{(\delta(x))^{\lambda-m \alpha}}
$$

Then the problem

$$
\begin{gathered}
(-\Delta)^{m} u=\rho(x) u^{-\alpha} \quad \text { in } B \text { (in the sense of distributions) } \\
\left(\frac{\partial}{\partial \nu}\right)^{j} u=0 \quad \text { on } \partial B, \quad \text { for } 0 \leq j \leq m-1
\end{gathered}
$$

has a positive solution $u \in C_{0}(B)$ such that for all $x \in B$,
(1) $\delta(x)^{m} \preceq u(x) \preceq \delta(x)^{2 m-\lambda}$, if $m<\lambda<m+1$
(2) $\delta(x)^{m} \preceq u(x) \preceq \delta(x)^{m} \log \left(\frac{2}{\delta(x)}\right)$, if $\lambda=m$
(3) $u(x) \sim \delta(x)^{m}$, if $\lambda<m$.

4. Second existence result

In this section, we prove the following result about problem (1.5).
Theorem 4.1. Assume (H4) and (H5). Then problem (1.5) has a positive continuous solution u. Moreover there exist positive constants a and b, such that

$$
a(\delta(x))^{m} \leq u(x) \leq b(\delta(x))^{m-1}
$$

Proof. By (A2), the function $\theta(x)=q(x) /(\delta(x))^{m-1}$ is in $K_{m, n}$. Then using Proposition 2.11, we have

$$
M:=\sup _{x \in B}\left(\frac{1}{(\delta(x))^{m-1}} V \theta(x)\right)<\infty
$$

By (A4) we have $\lim _{t \rightarrow \infty} \frac{k(t)}{t}=0$, then there exists $b>0$ such that $M k(b) \leq b$.
On the other hand, by (A1) the function p is a nontrivial nonnegative function in $L_{\text {loc }}^{1}(B)$, then there exists $r \in(0,1)$ such that

$$
0<\int_{B(0, r)} p(y) d y<\infty
$$

Furthermore, from (2.2) there exists $c>0$ such that for each $x, y \in B$

$$
G_{m, n}(x, y) \geq c(\delta(x))^{m}(\delta(y))^{m}
$$

Hence, since by (A3) we have $\lim _{t \rightarrow 0} \frac{h(t)}{t}=+\infty$, then there exists $a>0$ such that

$$
c(1-r)^{m} h\left(a(1-r)^{m}\right) \int_{B(0, r)} p(y) d y \geq a
$$

Let Λ be the convex set

$$
\Lambda=\left\{u \in C_{0}(B): a(\delta(x))^{m} \leq u(x) \leq b(\delta(x))^{m-1}\right\}
$$

and T be the operator defined on Λ by

$$
T u(x)=\int_{B} G_{m, n}(x, y) g(y, u(y)) d y
$$

We shall prove that T has a fixed point. We first note that for $u \in \Lambda$ and $y \in B$, we have by (H5)

$$
\frac{g(y, u(y))}{(\delta(y))^{m-1}} \leq \frac{q(y) k(u(y))}{(\delta(y))^{m-1}} \leq k(b) \frac{q(y)}{(\delta(y))^{m-1}}:=k(b) \theta(y) .
$$

Then we deduce that the function $y \rightarrow \frac{g(y, u(y))}{(\delta(y))^{m-1}} \in M_{\theta}$. Thus by Proposition 2.12, we obtain that the family $T \Lambda$ is relatively compact in $C_{0}(B)$

We need now to verify that for $u \in \Lambda$, we have

$$
a(\delta(x))^{m} \leq T u(x) \leq b(\delta(x))^{m-1}
$$

Let $u \in \Lambda$ and $x \in B$, then by (H5), we have

$$
\begin{aligned}
T u(x) & \leq \int_{B} G_{m, n}(x, y) q(y) k(u(y)) \\
& \leq(\delta(x))^{m-1}\left[k(b) \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m-1} G_{m, n}(x, y) \theta(y) d y\right] \\
& \leq M k(b)(\delta(x))^{m-1} \\
& \leq b(\delta(x))^{m-1}
\end{aligned}
$$

On the other hand from (H5) and (2.2), we have

$$
\begin{aligned}
T u(x) & \geq c(\delta(x))^{m} \int_{B}(\delta(y))^{m} p(y) h(u(y)) d y \\
& \geq(\delta(x))^{m}\left[c(1-r)^{m} h\left(a(1-r)^{m}\right) \int_{B(0, r)} p(y) d y\right] \\
& \geq a(\delta(x))^{m}
\end{aligned}
$$

Thus we have proved that $T \Lambda \subset \Lambda$.
Now we aim to prove the continuity of T in Λ. We consider a sequence $\left(u_{k}\right)_{k}$ in Λ which converges uniformly to u in Λ. Then since g is continuous with respect to the second variable, we deduce by the dominated convergence theorem that for all $x \in B$,

$$
T u_{k}(x) \rightarrow T u(x) \quad \text { as } k \rightarrow \infty
$$

Since $T \Lambda$ is relatively compact in $C_{0}(B)$, we have the uniform convergence. Hence T is a compact mapping from Λ to itself. Then by the Schauder fixed point theorem, we deduce that there exists a function $u \in \Lambda$ such that

$$
u(x)=\int_{B} G_{m, n}(x, y) g(y, u(y)) d y
$$

So u satisfies (in the sense of distributions) the elliptic differential equation

$$
(-\Delta)^{m} u=g(., u) \text { in } B
$$

Moreover, since u satisfies

$$
a(\delta(x)) \leq \frac{u(x)}{(\delta(x))^{m-1}} \preceq \frac{1}{(\delta(x))^{m-1}} V \theta(x)
$$

we deduce by Proposition 2.11 that $\lim _{\delta(x) \rightarrow 0} \frac{u(x)}{(\delta(x))^{m-1}}=0$ and so u satisfies the boundary conditions $\left(\frac{\partial}{\partial \nu}\right)^{j} u=0$, on ∂B for $0 \leq j \leq m-1$. This completes the proof.

Example 4.2. Let $\lambda<m+1$ and $f:(0, \infty) \rightarrow[0, \infty)$ be a nontrivial continuous and nondecreasing function satisfying

$$
\lim _{t \rightarrow 0} \frac{f(t)}{t}=\infty \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{f(t)}{t}=0
$$

Then the problem

$$
\begin{gathered}
(-\Delta)^{m} u=(\delta(x))^{-\lambda} f(u) \quad \text { in } B \\
\left(\frac{\partial}{\partial \nu}\right)^{j} u=0, \quad \text { on } \partial B \quad \text { for } 0 \leq j \leq m-1
\end{gathered}
$$

has a positive solution $u \in C_{0}(B)$ such that for all $x \in B$,
(1) $(\delta(x))^{m} \preceq u(x) \preceq(\delta(x))^{2 m-\lambda}$, if $m<\lambda<m+1$
(2) $(\delta(x))^{m} \preceq u(x) \preceq(\delta(x))^{m} \log \left(\frac{2}{\delta(x)}\right)$, if $\lambda=m$
(3) $u(x) \sim(\delta(x))^{m}$, if $\lambda<m$.

5. Appendix

In this section we prove the 3G-theorem. The following Lemma will help us doing so.

Lemma $5.1([12,14])$. For $x, y \in B$, we have the following properties:
(1) If $\delta(x) \delta(y) \leq|x-y|^{2}$ then $(\delta(x) \vee \delta(y)) \leq \frac{(\sqrt{5}+1)}{2}|x-y|$
(2) If $|x-y|^{2} \leq \delta(x) \delta(y)$ then $\frac{(3-\sqrt{5})}{2} \delta(x) \leq \delta(y) \leq \frac{(3+\sqrt{5})}{2} \delta(x)$

Proof. 1) We may assume that $(\delta(x) \vee \delta(y))=\delta(y)$. Then the inequalities $\delta(y) \leq$ $\delta(x)+|x-y|$ and $\delta(x) \delta(y) \leq|x-y|^{2}$ imply that

$$
(\delta(y))^{2}-\delta(y)|x-y|-|x-y|^{2} \leq 0
$$

i.e.

$$
\left(\delta(y)+\frac{(\sqrt{5}-1)}{2}|x-y|\right)\left(\delta(y)-\frac{(\sqrt{5}+1)}{2}|x-y|\right) \leq 0
$$

It follows that

$$
(\delta(x) \vee \delta(y)) \leq \frac{(\sqrt{5}+1)}{2}|x-y|
$$

2) For each $z \in \partial B$, we have $|y-z| \leq|x-y|+|x-z|$ and since $|x-y|^{2} \leq \delta(x) \delta(y)$, we obtain

$$
|y-z| \leq \sqrt{\delta(x) \delta(y)}+|x-z| \leq \sqrt{|x-z||y-z|}+|x-z|
$$

i.e.

$$
\left(\sqrt{|y-z|}+\frac{(\sqrt{5}-1)}{2} \sqrt{|x-z|}\right)\left(\sqrt{|y-z|}-\frac{(\sqrt{5}+1)}{2} \sqrt{|x-z|}\right) \leq 0
$$

It follows that

$$
|y-z| \leq \frac{(3+\sqrt{5})}{2}|x-z|
$$

Thus, interchanging the role of x and y, we have

$$
\left(\frac{3-\sqrt{5}}{2}\right)|x-z| \leq|y-z| \leq\left(\frac{3+\sqrt{5}}{2}\right)|x-z|
$$

Which implies

$$
\left(\frac{3-\sqrt{5}}{2}\right) \delta(x) \leq \delta(y) \leq\left(\frac{3+\sqrt{5}}{2}\right) \delta(x) .
$$

Proof of the 3G-Theorem, [2]. To prove inequality (1.2), we let

$$
A(x, y):=\frac{(\delta(x) \delta(y))^{m}}{G_{m, n}(x, y)}
$$

and we claim that A is a quasi-metric, that is for each $x, y, z \in B$,

$$
A(x, y) \preceq A(y, z)+A(x, z) .
$$

To show this claim, we separate the proof into three cases.

Case 1: For $2 m<n$, using Proposition 2.1, we have

$$
A(x, y) \sim|x-y|^{n-2 m}\left(|x-y|^{2} \vee(\delta(x) \delta(y))\right)^{m}
$$

We distinguish the following subcases:

- If $\delta(x) \delta(y) \leq|x-y|^{2}$, then we have

$$
A(x, y) \sim|x-y|^{n} \preceq|x-z|^{n}+|y-z|^{n} \preceq A(x, z)+A(y, z) .
$$

- The inequality $|x-y|^{2} \leq \delta(x) \delta(y)$ implies from Lemma 5.1 that $\delta(x) \sim \delta(y)$. So we deduce that: if $|x-z|^{2} \leq \delta(x) \delta(z)$ or $|y-z|^{2} \leq \delta(y) \delta(z)$, then it follows from Lemma 5.1 that $\delta(x) \sim \delta(y) \sim \delta(z)$. Hence,

$$
\begin{aligned}
A(x, y) & \sim|x-y|^{n-2 m}(\delta(x) \delta(y))^{m} \\
& \preceq(\delta(x) \delta(y))^{m}\left(|x-z|^{n-2 m}+|y-z|^{n-2 m}\right) \\
& \preceq|x-z|^{n-2 m}(\delta(x) \delta(z))^{m}+|y-z|^{n-2 m}(\delta(y) \delta(z))^{m} \\
& \preceq A(x, z)+A(y, z),
\end{aligned}
$$

If $|x-z|^{2} \geq \delta(x) \delta(z)$ and $|y-z|^{2} \geq \delta(y) \delta(z)$. Then using Lemma 5.1, we have

$$
(\delta(x) \vee \delta(z)) \preceq|x-z| \quad \text { and } \quad(\delta(y) \vee \delta(z)) \preceq|y-z|
$$

So, we have

$$
\begin{aligned}
A(x, y) & \sim|x-y|^{n-2 m}(\delta(x) \delta(y))^{m} \\
& \preceq\left(|x-z|^{n-2 m}+|y-z|^{n-2 m}\right)(\delta(x) \delta(y))^{m} \\
& \preceq|x-z|^{n-2 m}(\delta(x))^{2 m}+|y-z|^{n-2 m}(\delta(y))^{2 m} \\
& \preceq|x-z|^{n}+|y-z|^{n} \\
& \preceq A(x, z)+A(y, z) .
\end{aligned}
$$

Case 2: For $2 m=n$, using Proposition 2.1, we have

$$
\begin{equation*}
A(x, y) \sim \frac{(\delta(x) \delta(y))^{m}}{\log \left(1+\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right)} \tag{5.1}
\end{equation*}
$$

Since for each $t \geq 0, \frac{t}{1+t} \preceq \log (1+t) \preceq t$, we deduce that

$$
\begin{equation*}
|x-y|^{2 m} \preceq A(x, y) \preceq|x-y|^{2 m}+(\delta(x) \delta(y))^{m} . \tag{5.2}
\end{equation*}
$$

So we distinguish the following subcases:

- If $\delta(x) \delta(y) \leq|x-y|^{2}$, then by (1.8), we have

$$
A(x, y) \preceq|x-y|^{2 m} \preceq|x-z|^{2 m}+|y-z|^{2 m} \preceq A(x, z)+A(y, z) .
$$

- If $|x-y|^{2} \leq \delta(x) \delta(y)$, it follows from Lemma 5.1 that $\delta(x) \sim \delta(y)$.

If $|x-z|^{2} \leq \delta(x) \delta(z)$ or $|y-z|^{2} \leq \delta(y) \delta(z)$, so from Lemma 5.1, we deduce that $\delta(x) \sim \delta(y) \sim \delta(z)$. Since

$$
|x-y|^{2 m} \preceq|x-z|^{2 m}+|y-z|^{2 m} \preceq\left(|x-z|^{2 m} \vee|y-z|^{2 m}\right),
$$

we obtain that

$$
\left(\log \left(1+\frac{(\delta(x) \delta(z))^{m}}{|x-z|^{2 m}}\right) \wedge \log \left(1+\frac{(\delta(y) \delta(z))^{m}}{|y-z|^{2 m}}\right)\right) \preceq \log \left(1+\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{2 m}}\right)
$$

which together with (1.7) imply $A(x, y) \preceq A(y, z)+A(x, z)$.
If $|x-z|^{2} \geq \delta(x) \delta(z)$ and $|y-z|^{2} \geq \delta(y) \delta(z)$, then by Lemma 5.1, it follows that

$$
(\delta(x) \vee \delta(z)) \preceq|x-z| \quad \text { and } \quad(\delta(y) \vee \delta(z)) \preceq|y-z| .
$$

Hence, by (5.2) we have

$$
\begin{aligned}
A(x, y) & \preceq(\delta(x) \delta(y))^{m} \\
& \preceq(\delta(x))^{2 m}+(\delta(y))^{2 m} \\
& \preceq|x-z|^{2 m}+|y-z|^{2 m} \\
& \preceq A(x, z)+A(y, z) .
\end{aligned}
$$

Case 3: For $2 m>n$, from Proposition 2.1, we have

$$
A(x, y) \sim\left(|x-y|^{2} \vee(\delta(x) \delta(y))\right)^{1 / 2}
$$

Then the result holds by similar arguments as in case 1. The proof is complete.
Acknowledgement. The authors would like to thank the anonymous referee for his/her careful reading of our manuscript.

References

[1] Aizenman, M., Simon, B., Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure App. Math., 35, 209-271 (1982).
[2] Bachar, I., Mâagli, H., Masmoudi, S. Zribi, M.: Estimates on the Green function and singular solutions for polyharmonic nonlinear equation, to appear in Abstract and Applied Analysis.
[3] Boggio, T., Sulle funzione di Green d'ordine m, Rend. Circ. Mat. Palermo, 20, 97-135 (1905).
[4] Brezis, H., Kamin, S., Sublinear elliptic equations in \mathbb{R}^{n}, Manus. Math., 74, 87-106 (1992).
[5] Chung, K. L., Zhao, Z., From Brownian motion to Schrödinger's equation, Springer Verlag (1995).
[6] Dalmasso, R., Existence and uniqueness results for polyharmonic equations, Nonlinear Anal. TMA, 36, 131-137 (1999).
[7] Garabedian, P. R., A partial differential equation arising in conformal mapping, Pacific J. Math., 1, 485-524 (1951).
[8] Grunau, H. C., Sweers, G., Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 307, 589-626 (1997).
[9] Grunau, H. C., Sweers, G., The role of positive boundary data in the clamped plate equation, perturbation results and other generalizations, Z. Angew. Math. Phys, 49, 420-435 (1998).
[10] Helms, L. L., Introduction to Potential Theory. Wiley-Interscience, New york (1969).
[11] Kalton, N. J., Verbitsky, I. E., Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. Vol 351, no. 9, 3441-3497 (1999).
[12] Mâagli, H., Inequalities for the Riesz potentials, To appear in Archives of inequalities and applications.
[13] Mâagli, H., Mâatoug, L., Singular solutions of a nonlinear equation in bounded domains of \mathbb{R}^{2}, J.Math. Anal. Appl., 270, 230-246 (2002).
[14] Mâagli, H., Selmi, M., Inequalities for the Green function of the fractional Laplacian, to appear.
[15] Mâagli, H., Zribi, M., Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. Vol 263 no. 2, 522-542 (2001).
[16] Mâagli, H., Zribi, M., On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains of \mathbb{R}^{n}, to appear.
[17] Masmoudi, S., Zribi, M., Positive solutions of a singular nonlinear differential operator of fourth order, Nonlinear Anal. TMA, 42, 1365-1376 (2000).
[18] Selmi, M., Inequalities for the Green function in a Dini-Jordan domain in \mathbb{R}^{2}, Potential Analysis, 13, 81-102 (2000).
[19] Zeddini, N., Positive solutions for a singular nonlinear problem on a bounded domain in \mathbb{R}^{2}, Potential Analysis, 18, 97-118, (2003).
[20] Zhang, Qi S., Zhao,Z., Singular solutions of semilinear elliptic and parabolic equations, Math. Ann., 310, 777-794 (1998).
[21] Zhao, Z., Green function for Schrödinger operator and conditional Feynman-Kac gauge, J. Math. Anal. Appl., 116, 309-334 (1986).

Habib Mâagli
Département de Mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: habib.maagli@fst.rnu.tn
Faten Toumi
Département de Mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: toumifeten@yahoo.fr
Malek Zribi
Département de Mathématiques, Faculté des Sciences de Tunis, Campus universitaire, 1060 Tunis, Tunisia

E-mail address: malek.Zribi@insat.rnu.tn

[^0]: 2000 Mathematics Subject Classification. 34B27, 35J40.
 Key words and phrases. Green function, positive solution, Schauder fixed point theorem, singular polyharmonic elliptic equation.
 © 2003 Southwest Texas State University.
 Submitted April 2, 2003. Published May 20, 2003.

