ON Γ-CONVERGENCE FOR PROBLEMS OF JUMPING TYPE

ALESSANDRO GROLI

Abstract

The convergence of critical values for a sequence of functionals $\left(f_{h}\right) \Gamma$-converging to a functional f_{∞} is studied. These functionals are related to a classical "jumping problem", in which the position of two real parameters α, β plays a fundamental role. We prove the existence of at least three critical values for f_{h}, when α and β satisfy the usual assumption with respect to f_{∞}, but not with respect to f_{h}.

1. Introduction

Let $\left(f_{h}\right)$ be a sequence of functionals from $H_{0}^{1}(\Omega)$ to \mathbb{R} and f_{∞} a functional from $H_{0}^{1}(\Omega)$ to \mathbb{R}. It is well known that the convergence of (possible) minima of f_{h} to those of f_{∞} can be studied in an efficient way by the notion of Γ-convergence $[7,13]$ (epiconvergence, in the language of [2]).

The problem of the convergence of critical points, on the contrary, is much less clarified. A certain number of results is available in the literature, dealing with the case in which f_{h} is Γ-convergent to f_{∞} and satisfies suitable uniform assumptions (see e.g. $[9,10,11]$ and references therein).

In particular, let us remark that the applications to PDE's, so far considered, concern only functionals of the calculus of variations whose principal part is convex.

We are interested in a further case, which is not covered in the literature and is particularly interesting for critical point theory: that of "jumping problems". It can be considered as a perturbation of the functional $f_{\infty}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined as
$f_{\infty}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x+\int_{\Omega} \phi_{1} u d x$,
where $\beta<\alpha$ and ϕ_{1} is a positive eigenfunction of $-\sum D_{j}\left(A_{i j}^{(\infty)} D_{i} u\right)$ with homogeneous Dirichlet condition. The simplest type of perturbation, extensively considered in the literature, amounts to consider

$$
\begin{aligned}
f_{h}(u)= & \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x \\
& -\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x-\int_{\Omega} \frac{G_{0}\left(x, t_{h} u\right)}{t_{h}^{2}} d x+\int_{\Omega} \phi_{1} u d x
\end{aligned}
$$

[^0]where $t_{h} \rightarrow+\infty$, and
$$
\lim _{|s| \rightarrow+\infty} \frac{D_{s} G_{0}(x, s)}{s}=0
$$

In such a case, very refined results have been obtained, starting from the pioneering paper [1], (see e.g. [16, 17, 18, 19] and references therein).
More recently, some results have been obtained when

$$
\begin{aligned}
f_{h}(u)= & \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, t_{h} u\right) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x \\
& -\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x-\int_{\Omega} \frac{G_{0}\left(x, t_{h} u\right)}{t_{h}^{2}} d x+\int_{\Omega} \phi_{1} u d x
\end{aligned}
$$

where t_{h} and G_{0} are as above (see $[3,4]$). Observe that in this case the principal part is no longer convex.

Here we are interested in a more general perturbation of the form

$$
\begin{aligned}
f_{h}(u)= & \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}(x, u) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x \\
& -\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x-\int_{\Omega} \frac{G_{0}\left(x, t_{h} u\right)}{t_{h}^{2}} d x+\int_{\Omega} \phi_{1} u d x .
\end{aligned}
$$

Actually, for the sake of simplicity, we will consider only the case $G_{0}=0$, being the perturbation of the principal part the most interesting feature.

Let us mention that the result we are interested in, namely the existence of at least three critical points for f_{h}, is well known if $\beta<\mu_{1}^{(h)}<\mu_{2}^{(h)}<\alpha$, where $\mu_{1}^{(h)}, \mu_{2}^{(h)}$ are the first two eigenvalues of $-\sum D_{j}\left(A_{i j}^{(h)} D_{i} u\right)$, then

$$
\lim _{s \rightarrow+\infty} a_{i j}^{(h)}(x, s)=\lim _{s \rightarrow-\infty} a_{i j}^{(h)}(x, s)=A_{i j}^{(h)}(x)
$$

(see [4]). The point is that, under our assumptions, we have $\beta<\mu_{1}^{(h)}$. But it may happen that $\alpha<\mu_{2}^{(h)}$ for any $h \in \mathbb{N}$ (see Example 3.2). Nevertheless, the hypothesis that $\alpha>\mu_{2}$, where μ_{2} is the second eigenvalue of $-\sum D_{j}\left(A_{i j}^{(\infty)} D_{i} u\right)$ combined with the Γ-convergence of f_{h} to f_{∞}, is sufficient to ensure, for h large, the existence of at least three critical points of f_{h}. In some sense, we find a genuine effect of Γ-convergence, which cannot be deduced by the usual study of the position of β and α with respect to the spectrum of $-\sum D_{j}\left(A_{i j}^{(h)} D_{i} u\right)$. Let us also mention that a relevant question, in jumping problem, is the position of α and β with respect to the Fučik spectrum (see e.g. [8]). However this seems to be important mainly for the verification of the Palais-Smale condition, while the persistence of the geometrical conditions on the functional under Γ-convergence is the key point in our problem.

This paper is organized as follows. In section 2 we recall some notions of nonsmooth analysis and prove a nonsmooth version of the classical "local saddle theorem". In section 3 we present the problem and the main result. Section 4 is devoted to show some minmax estimates which allow us to prove the main theorem in section 5 .

2. Tools of nonsmooth analysis

In this section, we recall some by-products of the nonsmooth critical point theory developed in $[6,12]$. Let X be a metric space endowed with the metric d and $r>0$. Let us set $B_{r}(u)=\{v \in X: d(u, v)<r\}$ and $S_{r}(u)=\{v \in X: d(u, v)=r\}$.

Definition 2.1. Let $f: X \rightarrow \mathbb{R}$ be a continuous function and let $u \in X$. We denote by $|d f|(u)$ the supremum of the σ^{\prime} s in $[0,+\infty[$ such that there exist $\delta>0$ and a continuous map $\mathcal{H}: B_{\delta}(u) \times[0, \delta] \rightarrow X$ satisfying

$$
d(\mathcal{H}(v, t), v) \leq t, \quad f(\mathcal{H}(v, t)) \leq f(v)-\sigma t
$$

whenever $v \in B_{\delta}(u)$ and $t \in[0, \delta]$. The extended real number $|d f|(u)$ is called the weak slope of f at u.

The following two definitions are related to the notion above.
Definition 2.2. Let $f: X \rightarrow \mathbb{R}$ be a continuous function. An element $u \in X$ is said to be critical point of f, if $|d f|(u)=0$. A real number c is said to be a critical value for f, if there exists a critical point $u \in X$ of f such that $f(u)=c$. Otherwise c is said to be a regular value of f.

Definition 2.3. Let $f: X \rightarrow \mathbb{R}$ be a continuous function and $c \in \mathbb{R}$. The function f is said to satisfy the Palais-Smale condition at level c $\left((P S)_{c}\right.$ for short), if every sequence $\left(u_{h}\right)$ in X with $|d f|\left(u_{h}\right) \rightarrow 0$ and $f\left(u_{h}\right) \rightarrow c$ admits a subsequence converging in X.

The next result is an adaptation to a continuous functional of the classical local saddle theorem (see e.g. [17]).

Theorem 2.4. Let X be a Banach space and $f: X \rightarrow \mathbb{R}$ be a continuous function. Assume that there exist two closed subspaces X_{1}, X_{2} of X with $\operatorname{dim} X_{1}<+\infty$ and $X=X_{1} \oplus X_{2}$. Let $u_{0} \in X$ and U_{1}, U_{2} be two bounded neighborhoods of 0 in respectively X_{1} and X_{2} with U_{2} convex. Suppose that

$$
\sup f\left(u_{0}+\partial U_{1}\right)<a=\inf f\left(u_{0}+\overline{U_{2}}\right), \quad b=\sup f\left(u_{0}+\overline{U_{1}}\right)<\inf f\left(u_{0}+\partial U_{2}\right)
$$

and f satisfies $(P S)_{c}$ for any $c \in[a, b]$. Then there exists at least a critical point for f in $f^{-1}([a, b])$.

Proof. Without loss of generality, we can suppose $u_{0}=0$. We argue by contradiction and assume that there are no critical values for f in $[a, b]$. Since f satisfies $(P S)_{c}$ for every $c \in[a, b]$, it is readily seen that, for some $\varepsilon>0$, there are no critical values for f in $[a-\varepsilon, b]$ and that f satisfies $(P S)_{c}$ for any $c \in[a-\varepsilon, b]$. By [6, Theorem 2.15] or [5, Theorem 1.1.14] there exists a continuous map $\eta: X \times[0,1] \rightarrow X$ such that

$$
\begin{gathered}
\eta(u, 0)=u \quad \forall u \in X, \\
\eta(u, t)=u \quad \forall t \in[0,1], \forall u \in f^{a-\varepsilon}, \\
\eta(u, 1) \in f^{a-\varepsilon} \quad \forall u \in f^{b}, \\
f(\eta(u, t)) \leq f(u) \quad \forall t \in[0,1], \quad \forall u \in X .
\end{gathered}
$$

Since $\overline{U_{1}} \subset f^{b}, \eta\left(\overline{U_{1}} \times\{1\}\right) \subset f^{a-\varepsilon}$. On the other hand, since $f^{a-\varepsilon} \cap \overline{U_{2}}=\emptyset$, it follows that

$$
\begin{equation*}
\eta\left(\overline{U_{1}} \times\{1\}\right) \cap \overline{U_{2}}=\emptyset . \tag{2.1}
\end{equation*}
$$

Now consider the continuous map

$$
\begin{aligned}
\Phi:[-1,1] \times \overline{U_{1}} & \rightarrow \mathbb{R} \times X_{1} \\
(s, u) & \mapsto\left(\rho_{U_{2}}\left(P_{2} \eta(u, 1)\right)+s, P_{1} \eta(u, 1)\right)
\end{aligned}
$$

where $P_{i}: X \rightarrow X_{i}(i=1,2)$ are the projections of X onto X_{i} and $\rho_{U_{2}}$: $X_{2} \rightarrow\left[0,+\infty\left[\right.\right.$ is the Minkowski functional associated with U_{2}. Since $(0,0) \notin$ $\Phi\left(\partial(]-1,1\left[\times U_{1}\right)\right)$, the Brouwer degree (see e.g. [14])

$$
\operatorname{deg}(\Phi,]-1,1\left[\times U_{1},(0,0)\right)
$$

is well defined. Moreover the continuous function defined by

$$
\mathcal{H}((s, u), t)=\left(\rho_{U_{2}}\left(P_{2} \eta(u, t)\right)+s, P_{1} \eta(u, t)\right)
$$

is a homotopy between the identity map and Φ.
Since $(0,0) \notin \mathcal{H}\left(\partial(]-1,1\left[\times U_{1}\right) \times[0,1]\right)$, it follows that

$$
\operatorname{deg}(\Phi,]-1,1\left[\times U_{1},(0,0)\right)=1
$$

Therefore, there exists $(s, u) \in]-1,1\left[\times U_{1}\right.$ such that $\Phi(s, u)=(0,0)$. Hence we have $\eta(u, 1) \in X_{2}$ and $\rho_{U_{2}}(\eta(u, 1))=-s$, namely $\rho_{U_{2}}(\eta(u, 1)) \leq 1$. Therefore, $\eta(u, 1) \in \overline{U_{2}}$ and we have

$$
\eta\left(U_{1} \times\{1\}\right) \cap \overline{U_{2}} \neq \emptyset
$$

which contradicts (2.1).
Let us recall the notion of Γ-convergence (epiconvergence in the language of [2]) from [13].
Definition 2.5. Consider a topological space X. For any $h \in \mathbb{N} \cup\{+\infty\}$, let $g_{h}: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a function. According to $[2,13]$, we write that

$$
g_{\infty}=\Gamma\left(X^{-}\right) \lim _{h} g_{h}
$$

if the following facts hold:
(i) if $\left(u_{h}\right)$ is a sequence in X convergent to u, we have $g_{\infty}(u) \leq \liminf _{h} g_{h}\left(u_{h}\right)$;
(ii) for every $u \in X$, there exists a sequence $\left(u_{h}\right)$ in X convergent to u such that $g_{\infty}(u)=\lim _{h} g_{h}\left(u_{h}\right)$.

3. Position of the problem and main result

Let Ω be a connected bounded open subset of \mathbb{R}^{n} (for the sake of simplicity we suppose $n \geq 3$). We assume that, for every $h \in \mathbb{N}$, the functions $a_{i j}^{(h)}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and the function $A_{i j}^{(\infty)}: \Omega \rightarrow \mathbb{R}(1 \leq i, j \leq n)$ satisfy the following conditions:
(A1) For all $s \in \mathbb{R}, a_{i j}^{(h)}(\cdot, s)$ and $A_{i j}^{(\infty)}(\cdot)$ are measurable; for a.e. $x \in \Omega, a_{i j}^{(h)}(x, \cdot)$ is of class C^{1}; for a.e. $x \in \Omega, \forall s \in \mathbb{R}, a_{i j}^{(h)}(x, s)=a_{j i}^{(h)}(x, s), A_{i j}^{(\infty)}(x)=$ $A_{j i}^{(\infty)}(x)$.
(A2) There exists $C>0$ such that for each $h \in \mathbb{N}$, for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$, for all $\xi \in \mathbb{R}^{n}, 1 \leq i, j \leq n$,

$$
\left|a_{i j}^{(h)}(x, s)\right| \leq C, \quad\left|A_{i j}^{(\infty)}(x)\right| \leq C, \quad\left|\sum_{i, j=1}^{n} s D_{s} a_{i j}^{(h)}(x, s) \xi_{i} \xi_{j}\right| \leq C|\xi|^{2}
$$

(A3) There exists $\nu>0$ such that for each $h \in \mathbb{N}$, for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$, for all $\xi \in \mathbb{R}^{n}$,

$$
\sum_{i, j=1}^{n} a_{i j}^{(h)}(x, s) \xi_{i} \xi_{j} \geq \nu|\xi|^{2}, \quad \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) \xi_{i} \xi_{j} \geq \nu|\xi|^{2}
$$

(A4) For each $h \in \mathbb{N}$, there exists $R_{h}>0$ such that for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$, for all $\xi \in \mathbb{R}^{n}$,

$$
|s|>R_{h} \Rightarrow \sum_{i, j=1}^{n} s D_{s} a_{i j}^{(h)}(x, s) \xi_{i} \xi_{j} \geq 0
$$

(A5) For a.e. $x \in \Omega$, assume that

$$
\lim _{s \rightarrow+\infty} a_{i j}^{(h)}(x, s)=\lim _{s \rightarrow-\infty} a_{i j}^{(h)}(x, s)=A_{i j}^{(h)}(x)
$$

(observe that by (A4) such limits exist).
(A6) For all $h \in \mathbb{N}$ there exists uniformly Lipschitz continuous bounded functions $\psi_{h}: \mathbb{R} \rightarrow[0,+\infty[$ such that for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$ and for every $\xi \in \mathbb{R}^{n}$

$$
\sum_{i, j=1}^{n} s D_{s} a_{i j}^{(h)}(x, s) \xi_{i} \xi_{j} \leq 2 s \psi_{h}^{\prime}(s) \sum_{i, j=1}^{n} a_{i j}^{(h)}(x, s) \xi_{i} \xi_{j}
$$

Also assume that

$$
\begin{align*}
& \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x \\
& =\Gamma\left(w-H_{0}^{1}(\Omega)^{-}\right) \lim _{h} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}(x, u) D_{i} u D_{j} u d x \tag{3.1}
\end{align*}
$$

where $w-H_{0}^{1}(\Omega)$ denotes the space $H_{0}^{1}(\Omega)$ endowed with the weak topology. Let $\mu_{k}, \mu_{k}^{(h)}$ denote the eigenvalues of respectively the operators $-\sum D_{j}\left(A_{i j}^{(\infty)} D_{i} u\right)$ and $-\sum D_{j}\left(A_{i j}^{(h)} D_{i} u\right)$ with homogeneous Dirichlet condition and $\phi_{k}, \phi_{k}^{(h)}$ the corresponding eigenfunctions. It is well known (see [15]) that $\phi_{1} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega) \cap C(\Omega)$ and that we can take $\phi_{1}(x)>0$ for every $x \in \Omega$ and $\int_{\Omega} \phi_{1}^{2} d x=1$.
(A7) Assume that $\lim _{h} \mu_{1}^{(h)}=\mu_{1}$.
Our purpose in this article is to study the existence of weak solutions of the family of problems:

$$
\begin{gather*}
-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}^{(h)}(x, u) D_{i} u\right)+\frac{1}{2} \sum_{i, j=1}^{n} D_{s} a_{i j}^{(h)}(x, u) D_{i} u D_{j} u=\alpha u^{+}-\beta u^{-}-\phi_{1} \tag{3.2}\\
u \in H_{0}^{1}(\Omega)
\end{gather*}
$$

where α, β are two real numbers, $u^{+}=\max \{u, 0\}, u^{-}=\max \{-u, 0\}$.
Under the assumptions above, we shall prove is the following result.
Theorem 3.1. Assume that $\beta<\mu_{1}$ and $\alpha>\mu_{2}$. Then there exists \bar{h} in \mathbb{N} such that for all $h \geq \bar{h}$, the problem (3.2) has at least three weak solutions in $H_{0}^{1}(\Omega)$.

For $\alpha>\mu_{2}^{(h)}$, this result corresponds to [4, Theorem 1.1]; however our assumptions do not imply that $\alpha>\mu_{2}^{(h)}$ for large h. As the following example shows, it may happen that $\mu_{2}<\mu_{2}^{(h)}$ (and hence $\left.\alpha \in\right] \mu_{2}, \mu_{2}^{(h)}[$).
Example 3.2. Let $\Omega=] 0, \pi\left[\right.$ and define the functions $a_{i j}^{(h)}(x, s)$ such that: for $x \in] 0, \frac{\pi}{2}[$,

$$
a_{i j}^{(h)}(x, s)= \begin{cases}\gamma \delta_{i j}(x) & s \in]-h, h[\\ \delta_{i j}(x) & s \in \mathbb{R} \backslash[-2 h, 2 h]\end{cases}
$$

for $x \in] \frac{\pi}{2}, \pi[$

$$
a_{i j}^{(h)}(x, s)= \begin{cases}\eta \delta_{i j}(x) & s \in]-h, h[\\ \delta_{i j}(x) & s \in \mathbb{R} \backslash[-2 h, 2 h]\end{cases}
$$

where $\delta_{i j}(x)=1$ if $i=j, \delta_{i j}(x)=0$ if $i \neq j$ and $\gamma, \eta \in \mathbb{R}$. Then, $A_{i j}^{(h)}(x)=\delta_{i j}(x)$. The eigenvalues $\mu_{k}^{(h)}$ of the Dirichlet problem

$$
\begin{gathered}
-u^{\prime \prime}=\mu u \\
u(0)=u(\pi)=0
\end{gathered}
$$

are $\mu_{k}^{(h)}=k^{2}$, for all $k \geq 1$. On the other hand, all the assumptions of Theorem 3.1 are satisfied with

$$
A_{i j}^{(\infty)}(x)= \begin{cases}\gamma \delta_{i j}(x) & 0<x<\frac{\pi}{2} \\ \eta \delta_{i j}(x) & \frac{\pi}{2}<x<\pi\end{cases}
$$

Hence, the eigenvalues μ_{k} of the Dirichlet problem

$$
\begin{gathered}
-\left(A_{i j}^{(\infty)}(x) u^{\prime}\right)^{\prime}=\mu u \\
u(0)=u(\pi)=0
\end{gathered}
$$

for η such that

$$
\sqrt{\frac{1}{\eta}} \frac{\pi}{4}=\arctan \sqrt{5}
$$

and $\gamma=4 \eta$, are $\mu_{1}=\mu_{1}^{(h)}=1$ and since $\arctan \sqrt{5}>\arctan \sqrt{3}=\frac{\pi}{3}$, it follows that

$$
\mu_{2}=\left(\frac{\pi-\arctan \sqrt{5}}{\arctan \sqrt{5}}\right)^{2}<4=\mu_{2}^{(h)}
$$

4. Minmax estimates

We introduce the functionals $f_{h}, f_{\infty}, \widehat{f}_{\infty}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$,

$$
\begin{aligned}
f_{h}(u)= & \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}(x, u) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x+\int_{\Omega} \phi_{1} u d x, \\
f_{\infty}(u)= & \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x+\int_{\Omega} \phi_{1} u d x, \\
& \widehat{f}_{\infty}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x-\frac{\alpha}{2} \int_{\Omega} u^{2} d x+\int_{\Omega} \phi_{1} u d x .
\end{aligned}
$$

For later use, we also introduce $g_{h}, g_{\infty}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ as the "principal parts" of f_{h} and f_{∞} :

$$
\begin{aligned}
& g_{h}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}(x, u) D_{i} u D_{j} u d x, \\
& g_{\infty}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x .
\end{aligned}
$$

The following theorem provides a fundamental connection between the above abstract notion of weak slope and the concrete notion related to our problem.

Theorem 4.1. Let $u \in H_{0}^{1}(\Omega)$ be a critical point of f_{h}. Then, u is a weak solution of (3.2).

The proof of this theorem can be found in [4, Corollary 2.8].
To apply the local saddle theorem, we shall need two ingredients: the Palais Smale condition and some minmax estimates.

Theorem 4.2. Let $\beta<\mu_{1}<\alpha$. Then, for all $a, b \in \mathbb{R}$ there exists $\bar{h} \in \mathbb{N}$ such that f_{h} satisfies $(P S)_{c}$ for all $h \geq \bar{h}$ and every $c \in[a, b]$.
Proof. In view of assumption (A7), $\beta<\mu_{1}^{(h)}<\alpha$ eventually, so we can apply [4, Theorem 3.1] and deduce the assertion.

For the rest of this article, we shall consider $\beta<\mu_{1}$ and $\mu_{k}<\alpha \leq \mu_{k+1}$ with $k \geq 2$. Define

$$
\begin{gathered}
\bar{\phi}_{1}=\frac{\phi_{1}}{\alpha-\mu_{1}} \\
H_{k}=\operatorname{span}\left\{\phi_{1}, \cdots, \phi_{k}\right\}, \quad H_{k}^{\perp}=\operatorname{span}\left\{\phi_{k+1}, \cdots\right\} .
\end{gathered}
$$

Let $\psi_{2}, \ldots, \psi_{k} \in C_{c}^{\infty}(\Omega)$. Consider the space

$$
\widehat{H}_{k}=\operatorname{span}\left\{\phi_{1}, \psi_{2} \cdots, \psi_{k}\right\}
$$

If $\psi_{2}, \ldots, \psi_{k}$ are sufficiently close in the H_{0}^{1}-norm to $\phi_{2}, \ldots, \phi_{k}$, then $H_{0}^{1}(\Omega)=$ $\widehat{H}_{k} \oplus H_{k}^{\perp}$. Moreover, since $\bar{\phi}_{1}$ is a critical point for \widehat{f}_{∞}, it is readily seen that

$$
\begin{equation*}
\forall \rho>0: \sup _{\widehat{H}_{k} \cap S_{\rho}\left(\bar{\phi}_{1}\right)} \widehat{f}_{\infty}<\widehat{f}_{\infty}\left(\bar{\phi}_{1}\right) . \tag{4.1}
\end{equation*}
$$

Lemma 4.3. There exist $\varepsilon, \rho>0$ such that for all $u \in \widehat{H}_{k} \cap B_{\rho}\left(\bar{\phi}_{1}\right)$ the condition $u(x) \geq \varepsilon \phi_{1}(x)$ holds a.e. in Ω.
Proof. It is sufficient to recall that $\inf _{K} \phi_{1}>0$ for every compact subset K of Ω.

Lemma 4.4. There exist $u_{0}, \ldots, u_{m} \in \widehat{H}_{k}$ such that if $S=\operatorname{conv}\left\{u_{0}, \ldots, u_{m}\right\}$, then S is a neighborhood of $\bar{\phi}_{1}$ and

$$
\begin{gathered}
\sup \left\{f_{\infty}(u): u \in S\right\} \leq f_{\infty}\left(\bar{\phi}_{1}\right), \\
\sup \left\{f_{\infty}(u): u \in \partial_{\widehat{H}_{k}} S\right\}<f_{\infty}\left(\bar{\phi}_{1}\right) .
\end{gathered}
$$

Proof. If ρ is as in Lemma 4.3, recalling (4.1), we have

$$
\begin{gathered}
\sup \left\{f_{\infty}(u): u \in \overline{B_{\rho}\left(\bar{\phi}_{1}\right)} \cap \widehat{H}_{k}\right\} \leq f_{\infty}\left(\bar{\phi}_{1}\right), \\
\sup \left\{f_{\infty}(u): u \in\left(\overline{\left.\left.B_{\rho}\left(\bar{\phi}_{1}\right) \backslash B_{\frac{\rho}{2}}\left(\bar{\phi}_{1}\right)\right) \cap \widehat{H}_{k}\right\}<f_{\infty}\left(\bar{\phi}_{1}\right) .} .\right.\right.
\end{gathered}
$$

The assertions follow easily.
Lemma 4.5. Let S be as in Lemma 4.4. Then, there exists $R>0$ such that, if $u \in \widehat{H}_{k} \cap S$ and

$$
u_{h} \rightarrow u \text { weakly in } H_{0}^{1}(\Omega), \quad f_{h}\left(u_{h}\right) \rightarrow f_{\infty}(u)
$$

then $\lim \sup _{h}\left\|u_{h}\right\|_{H_{0}^{1}(\Omega)}<R$.
Proof. Fix $u \in \widehat{H}_{k} \cap S$. In view of (3.1), there exists a sequence $\left(u_{h}\right)$ such that $u_{h} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$ and $f_{h}\left(u_{h}\right) \rightarrow f_{\infty}(u)$. Eventually we have

$$
f_{h}\left(u_{h}\right)<\sup \left\{f_{\infty}(u): u \in \widehat{H}_{k} \cap S\right\}+1
$$

Moreover we have

$$
\begin{aligned}
& \lim _{h}\left\{-\frac{\alpha}{2} \int_{\Omega}\left(u_{h}^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(u_{h}^{-}\right)^{2} d x+\int_{\Omega} \phi_{1} u_{h} d x\right\} \\
& =-\frac{\alpha}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x+\int_{\Omega} \phi_{1} u d x
\end{aligned}
$$

Therefore, $g_{h}\left(u_{h}\right)$, the principal part of $f_{h}\left(u_{h}\right)$, is (eventually) bounded. Hence, using (A3), we deduce the assertion.

Let now X_{1} be the eigenspace associated to μ_{k+1} and $X_{2}=\operatorname{span}\left\{\phi_{k+2}, \ldots\right\}$ so that

$$
H_{k}^{\perp}=X_{1} \oplus X_{2} .
$$

Proposition 4.6. Let R be as in Lemma 4.5. Then there exist a finite dimensional space $\widehat{X}_{1} \subseteq C_{c}^{\infty}(\Omega), \rho_{1}>0$ and $\rho_{2}>R$ such that

$$
\begin{align*}
& H_{0}^{1}(\Omega)=\widehat{H}_{k} \oplus \widehat{X}_{1} \oplus X_{2}, \tag{4.2}\\
& \liminf _{h}\left[\inf \left\{f_{h}\left(\bar{\phi}_{1}+u\right): u \in \partial_{\widehat{X}_{1} \oplus X_{2}} Q\right\}\right]>f_{\infty}\left(\bar{\phi}_{1}\right), \tag{4.3}\\
& \underset{h}{\liminf }\left[\inf \left\{f_{h}\left(\bar{\phi}_{1}+u\right): u \in Q\right\}\right] \geq f_{\infty}\left(\bar{\phi}_{1}\right), \tag{4.4}
\end{align*}
$$

where $Q=\left(\widehat{X}_{1} \cap \overline{B_{\rho_{1}}(0)}\right)+\left(X_{2} \cap \overline{B_{\rho_{2}}(0)}\right)$.
Proof. Since $k+1 \geq 2$, there exists $\rho_{1}>0$ such that

$$
\forall v \in X_{1}: \bar{\phi}_{1}+v \geq 0 \Rightarrow\|v\|_{H_{0}^{1}(\Omega)}<\rho_{1} .
$$

Moreover, there exists $\rho_{2}>R$ such that

$$
\begin{equation*}
f_{\infty}\left(\bar{\phi}_{1}\right)<\frac{\nu}{4}\left(\rho_{2}\right)^{2}-\frac{C}{2} \int_{\Omega}\left|D\left(\bar{\phi}_{1}+v\right)\right|^{2} d x-\frac{\alpha}{2} \int_{\Omega}\left(\bar{\phi}_{1}+v\right)^{2} d x+\int_{\Omega} \phi_{1}\left(\bar{\phi}_{1}+v\right) d x \tag{4.5}
\end{equation*}
$$

for every $v \in X_{1} \cap B_{\rho_{1}}(0)$. We prove (4.2). Let $\left\{\varphi_{1}, \ldots, \varphi_{l}\right\}$ be a L^{2}-orthonormal basis of X_{1} and consider a sequence $\left\{\varphi_{m}^{(s)}\right\}(m=1, \ldots, l)$ in $C_{c}^{\infty}(\Omega)$ such that $\varphi_{m}^{(s)} \rightarrow \varphi_{m}$ in $H_{0}^{1}(\Omega)$. Let

$$
\widehat{X}_{1}^{(s)}=\operatorname{span}\left\{\varphi_{1}^{(s)}, \ldots, \varphi_{l}^{(s)}\right\}
$$

Eventually as $s \rightarrow+\infty$ we have

$$
H_{0}^{1}(\Omega)=\widehat{H}_{k} \oplus \widehat{X}_{1}^{(s)} \oplus X_{2}
$$

For proving (4.3) we argue by contradiction. Suppose that, up to a subsequence,

$$
\lim _{s} f_{h_{s}}\left(\bar{\phi}_{1}+v_{s}+w_{s}\right) \leq f_{\infty}\left(\bar{\phi}_{1}\right)
$$

with $u_{s}=v_{s}+w_{s} \in \partial_{\widehat{X}_{1}^{(s)} \oplus X_{2}} Q$. Up to a further subsequence, u_{s} weakly converges to some u. Then $v_{s} \rightarrow v \in X_{1}$, while $w_{s} \rightarrow w$ weakly in X_{2}, where $u=v+w$. Using (3.1) we deduce that $\widehat{f}_{\infty}\left(\bar{\phi}_{1}+v+w\right) \leq f_{\infty}\left(\bar{\phi}_{1}+v+w\right) \leq f_{\infty}\left(\bar{\phi}_{1}\right)$. By definition of X_{1} and X_{2} we have $w=0$ and $\widehat{f}_{\infty}\left(\bar{\phi}_{1}+v\right)=f_{\infty}\left(\bar{\phi}_{1}+v\right)$, namely that $\bar{\phi}_{1}+v \geq 0$. By the choice of ρ_{1}, we have $\|v\|_{H_{0}^{1}(\Omega)}<\rho_{1}$. Therefore $\left\|v_{s}\right\|_{H_{0}^{1}(\Omega)}<\rho_{1}$ and $\left\|w_{s}\right\|_{H_{0}^{1}(\Omega)}=\rho_{2}$ eventually. Using (A2) and (A3), we get

$$
\begin{aligned}
& f_{h_{s}}\left(\bar{\phi}_{1}+u_{s}\right) \\
&= f_{h_{s}}\left(\bar{\phi}_{1}+v_{s}+w_{s}\right) \\
&= \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{\left(h_{s}\right)}\left(x, \bar{\phi}_{1}+u_{s}\right) D_{i}\left(\bar{\phi}_{1}+v_{s}\right) D_{j}\left(\bar{\phi}_{1}+v_{s}\right) d x \\
&+\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{\left(h_{s}\right)}\left(x, \bar{\phi}_{1}+u_{s}\right) D_{i}\left(\bar{\phi}_{1}+v_{s}\right) D_{j} w_{s} d x \\
&+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{\left(h_{s}\right)}\left(x, \bar{\phi}_{1}+u_{s}\right) D_{i} w_{s} D_{j} w_{s} d x \\
&-\frac{\alpha}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{-}\right)^{2} d x+\int_{\Omega} \phi_{1}\left(\bar{\phi}_{1}+u_{s}\right) d x \\
& \geq \frac{1}{4} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{\left(h_{s}\right)}\left(x, \bar{\phi}_{1}+u_{s}\right) D_{i} w_{s} D_{j} w_{s} d x \\
&-\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{\left(h_{s}\right)}\left(x, \bar{\phi}_{1}+u_{s}\right) D_{i}\left(\bar{\phi}_{1}+v_{s}\right) D_{j}\left(\bar{\phi}_{1}+v_{s}\right) d x \\
&-\frac{\alpha}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{+}\right)^{2} d x-\frac{\beta}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{-}\right)^{2} d x+\int_{\Omega} \phi_{1}\left(\bar{\phi}_{1}+u_{s}\right) d x \\
& \geq \frac{\nu}{4} \int_{\Omega}\left|D w_{s}\right|^{2} d x-\frac{C}{2} \int_{\Omega}\left|D\left(\bar{\phi}_{1}+v_{s}\right)\right|^{2} d x-\frac{\alpha}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{+}\right)^{2} d x \\
&-\frac{\beta}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{-}\right)^{2} d x+\int_{\Omega} \phi_{1}\left(\bar{\phi}_{1}+u_{s}\right) d x \\
&= \frac{\nu}{4}\left(\rho_{2}\right)^{2}-\frac{C}{2} \int_{\Omega}\left|D\left(\bar{\phi}_{1}+v_{s}\right)\right|^{2} d x-\frac{\alpha}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{+}\right)^{2} d x \\
&-\frac{\beta}{2} \int_{\Omega}\left(\left(\bar{\phi}_{1}+u_{s}\right)^{-}\right)^{2} d x+\int_{\Omega} \phi_{1}\left(\bar{\phi}_{1}+u_{s}\right) d x .
\end{aligned}
$$

Hence, as $s \rightarrow+\infty$ we have

$$
f_{\infty}\left(\bar{\phi}_{1}\right) \geq \frac{\nu}{4}\left(\rho_{2}\right)^{2}-\frac{C}{2} \int_{\Omega}\left|D\left(\bar{\phi}_{1}+v\right)\right|^{2} d x-\frac{\alpha}{2} \int_{\Omega}\left(\bar{\phi}_{1}+v\right)^{2} d x+\int_{\Omega} \phi_{1}\left(\bar{\phi}_{1}+v\right) d x
$$

which contradicts (4.5). Finally let us prove (4.4). Since

$$
\begin{equation*}
f_{\infty}\left(\bar{\phi}_{1}\right)=\inf _{\bar{\phi}_{1} \oplus\left(\widehat{X}_{1} \oplus X_{2}\right)} f_{\infty} \tag{4.6}
\end{equation*}
$$

the assertion follows.
Lemma 4.7. For any $u \in \widehat{H}_{k} \backslash\{0\}$ there exists a sequence $\left(u_{h}\right) \subset H_{0}^{1}(\Omega)$ such that

$$
\begin{gather*}
\left(u_{h}-u\right) \in \widehat{H}_{k} \oplus X_{2}, \tag{4.7}\\
u_{h} \rightarrow u \text { weakly in } H_{0}^{1}(\Omega), \quad f_{h}\left(u_{h}\right) \rightarrow f_{\infty}(u), \tag{4.8}\\
\forall h \in \mathbb{N}: \frac{u_{h}-u}{\bar{\phi}_{1}} \in L^{\infty}(\Omega), \quad \frac{u_{h}-u}{\bar{\phi}_{1}} \rightarrow 0 \text { in } L^{\infty}(\Omega) . \tag{4.9}
\end{gather*}
$$

Proof. Fix $u \in \widehat{H}_{k} \backslash\{0\}$. In view of (3.1), there exists $\left(\tilde{u}_{h}\right)$ such that

$$
\begin{equation*}
\tilde{u}_{h} \rightarrow u \text { weakly in } H_{0}^{1}(\Omega), \quad \lim _{h} f_{h}\left(\tilde{u}_{h}\right)=f_{\infty}(u) \tag{4.10}
\end{equation*}
$$

Consider a strictly increasing sequence $\left(h_{k}\right) \subset \mathbb{N}$ such that

$$
\forall h \geq h_{k}: \mathcal{L}^{n}\left(\left\{x \in \Omega:\left|\tilde{u}_{h}-u\right|>\frac{1}{k} \bar{\phi}_{1}\right\}\right)<\frac{1}{k}
$$

where \mathcal{L}^{n} denotes the Lebesgue measure. Set

$$
\varepsilon_{h}= \begin{cases}2 & \text { if } h<h_{1} \\ \frac{1}{k} & \text { if } h_{k} \leq h<h_{k+1}\end{cases}
$$

Then $\varepsilon_{h}>0, \varepsilon_{h} \rightarrow 0$ and $\mathcal{L}^{n}\left(\left\{x \in \Omega:\left|\tilde{u}_{h}-u\right|>\varepsilon_{h} \bar{\phi}_{1}\right\}\right)<\frac{1}{k}$ if $h_{k} \leq h<h_{k+1}$. In particular

$$
\begin{equation*}
\lim _{h} \mathcal{L}^{n}\left(\left\{x \in \Omega:\left|\tilde{u}_{h}-u\right|>\varepsilon_{h} \bar{\phi}_{1}\right\}\right)=0 \tag{4.11}
\end{equation*}
$$

Consider now

$$
\check{u}_{h}=u+\left[\left(\left(\tilde{u}_{h}-u\right) \vee\left(-\varepsilon_{h} \bar{\phi}_{1}\right)\right) \wedge\left(\varepsilon_{h} \bar{\phi}_{1}\right)\right],
$$

and denote by $\Pi_{\widehat{X}_{1}}$ the projection on \widehat{X}_{1} associated to the decomposition (4.2). Let $v_{h}=-\Pi_{\widehat{X}_{1}}\left(\check{u}_{h}-u\right)$, then

$$
u_{h}=\check{u}_{h}-\Pi_{\widehat{X}_{1}}\left(\check{u}_{h}-u\right)=\check{u}_{h}+v_{h} .
$$

satisfies all the requirements (4.7)-(4.9).
Requirement (4.7) is straightforward. Furthermore, since $\left|\check{u}_{h}-u\right| \leq \varepsilon_{h} \bar{\phi}_{1}$ a.e. in Ω, (4.9) follows. Since $\breve{u}_{h} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$, then $v_{h} \rightarrow 0$ strongly and $u_{h} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$. To show that $f_{h}\left(u_{h}\right) \rightarrow f_{\infty}(u)$, it suffices to prove that $g_{h}(u) \rightarrow g_{\infty}(u)$, namely that

$$
\begin{equation*}
\lim _{h} \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} u_{h} D_{j} u_{h} d x=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x \tag{4.12}
\end{equation*}
$$

We obtain (4.12) by combining the two following facts:

$$
\begin{equation*}
\lim _{h} \frac{1}{2} \int_{\Omega}\left[\sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} u_{h} D_{j} u_{h}-\sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, \check{u}_{h}\right) D_{i} \check{u}_{h} D_{j} \check{u}_{h}\right] d x=0 \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h} \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, \check{u}_{h}\right) D_{i} \check{u}_{h} D_{j} \check{u}_{h} d x=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x \tag{4.14}
\end{equation*}
$$

Now we prove (4.13). We have

$$
\begin{aligned}
& a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} u_{h} D_{j} u_{h}-a_{i j}^{(h)}\left(x, \check{u}_{h}\right) D_{i} \check{u}_{h} D_{j} \check{u}_{h} \\
& =a_{i j}^{(h)}\left(x, u_{h}\right) D_{i}\left(\check{u}_{h}+v_{h}\right) D_{j}\left(\check{u}_{h}+v_{h}\right)-a_{i j}^{(h)}\left(x, \check{u}_{h}\right) D_{i} \check{u}_{h} D_{j} \check{u}_{h}= \\
& =\left[a_{i j}^{(h)}\left(x, u_{h}\right)-a_{i j}^{(h)}\left(x, \check{u}_{h}\right)\right] D_{i} \check{u}_{h} D_{j} \check{u}_{h}+2 a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} \check{u}_{h} D_{j} v_{h} \\
& \quad+a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} v_{h} D_{j} v_{h} .
\end{aligned}
$$

Clearly, by assumption (A2),

$$
\begin{aligned}
& \lim _{h} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} \check{u}_{h} D_{j} v_{h} d x=0 \\
& \lim _{h} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u_{h}\right) D_{i} v_{h} D_{j} v_{h} d x=0 .
\end{aligned}
$$

On the other hand, there exists $\vartheta \in] 0,1[$ such that
$\left[a_{i j}^{(h)}\left(x, u_{h}\right)-a_{i j}^{(h)}\left(x, \check{u}_{h}\right)\right]=D_{s} a_{i j}^{(h)}\left(x, u_{h}+\vartheta v_{h}\right) v_{h}=D_{s} a_{i j}^{(h)}\left(x, u+\eta \bar{\phi}_{1}+\vartheta v_{h}\right) v_{h}$,
where $\eta \in \mathbb{R}$ and we have used (4.9) in the last identity. Since there exists $\delta_{h}>0$ ($\delta_{h} \rightarrow 0^{+}$) such that

$$
\left|v_{h}\right| \leq \delta_{h}\left|u+\eta \bar{\phi}_{1}+\vartheta v_{h}\right|
$$

using (A2), we deduce that

$$
\lim _{h} \int_{\Omega} \sum_{i, j=1}^{n}\left[a_{i j}^{(h)}\left(x, u_{h}\right)-a_{i j}^{(h)}\left(x, \check{u}_{h}\right)\right] D_{i} \check{u}_{h} D_{j} \check{u}_{h} d x=0
$$

hence (4.13) holds. To prove (4.14) denote by χ_{F} the characteristic function of a set F. We have

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, \check{u}_{h}\right) D_{i} \check{u}_{h} D_{j} \check{u}_{h} d x \\
&= \frac{1}{2} \int_{\left\{x:\left|\tilde{u}_{h}-u\right| \leq \varepsilon_{h} \bar{\phi}_{1}\right\}} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, \tilde{u}_{h}\right) D_{i} \tilde{u}_{h} D_{j} \tilde{u}_{h} d x \\
&+\frac{1}{2} \int_{\left\{x:\left(\tilde{u}_{h}-u\right)>\varepsilon_{h} \bar{\phi}_{1}\right\}} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u+\varepsilon_{h} \bar{\phi}_{1}\right) D_{i}\left(u+\varepsilon_{h} \bar{\phi}_{1}\right) D_{j}\left(u+\varepsilon_{h} \bar{\phi}_{1}\right) d x \\
&+\frac{1}{2} \int_{\left\{x:\left(\tilde{u}_{h}-u\right)<-\varepsilon_{h} \bar{\phi}_{1}\right\}} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u-\varepsilon_{h} \bar{\phi}_{1}\right) D_{i}\left(u-\varepsilon_{h} \bar{\phi}_{1}\right) D_{j}\left(u-\varepsilon_{h} \bar{\phi}_{1}\right) d x \\
& \leq \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, \tilde{u}_{h}\right) D_{i} \tilde{u}_{h} D_{j} \tilde{u}_{h} d x \\
& \quad+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u+\varepsilon_{h} \bar{\phi}_{1}\right) D_{i}\left(u+\varepsilon_{h} \bar{\phi}_{1}\right) D_{j}\left(u+\varepsilon_{h} \bar{\phi}_{1}\right) \chi_{\left\{x:\left(\tilde{u}_{h}-u\right)>\varepsilon_{h} \bar{\phi}_{1}\right\}} d x \\
&+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u-\varepsilon_{h} \bar{\phi}_{1}\right) D_{i}\left(u-\varepsilon_{h} \bar{\phi}_{1}\right) D_{j}\left(u-\varepsilon_{h} \bar{\phi}_{1}\right) \chi_{\left\{x:\left(\tilde{u}_{h}-u\right)<-\varepsilon_{h} \bar{\phi}_{1}\right\}} d x .
\end{aligned}
$$

Using (4.10) and (4.11) we deduce

$$
\limsup _{h} \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, \check{u}_{h}\right) D_{i} \check{u}_{h} D_{j} \check{u}_{h} d x \leq \frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} A_{i j}^{(\infty)}(x) D_{i} u D_{j} u d x .
$$

Assumption (3.1) gives us the conclusion.
Theorem 4.8. Let $m \in \mathbb{Z}^{+}$. For all $r, \varepsilon>0$ there exists $\delta>0$ such that if $u_{0}, \ldots, u_{m} \in \widehat{H}_{k} \cap B_{r}\left(\bar{\phi}_{1}\right)$ and

$$
\begin{gather*}
\forall j=0, \ldots, m: \quad \operatorname{essinf} \Omega \frac{u_{j}}{\bar{\phi}_{1}} \geq \varepsilon, \\
u_{j}^{(h)} \rightarrow u_{j} \quad(\text { as in Lemma 4.7), } \tag{4.15}\\
\sup \left\{\left\|\frac{u-v}{\bar{\phi}_{1}}\right\|_{\infty}: u, v \in \operatorname{conv}\left\{u_{0}, \ldots, u_{m}\right\}\right\}<\delta,
\end{gather*}
$$

then

$$
\begin{align*}
& \limsup _{h}\left\{\sup \left\{f_{h}\left(v_{h}\right): v_{h} \in \operatorname{conv}\left\{u_{0}^{(h)}, \ldots, u_{m}^{(h)}\right\}\right\}\right\} \tag{4.16}\\
& \leq \sup \left\{f_{\infty}(u): u \in \operatorname{conv}\left\{u_{0}, \ldots, u_{m}\right\}\right\}+\varepsilon
\end{align*}
$$

Proof. Let $r, \varepsilon>0, u_{0}, \ldots, u_{m},\left(u_{j}^{(h)}\right)$ be as in (4.15). Since $u_{j}^{(h)} \rightarrow u_{j}$ strongly in $L^{2}(\Omega)$, then it is sufficient to prove that

$$
\begin{align*}
& \limsup _{h}\left\{\sup \left\{g_{h}\left(v_{h}\right): v_{h} \in \operatorname{conv}\left\{u_{0}^{(h)}, \ldots, u_{m}^{(h)}\right\}\right\}\right\} \tag{4.17}\\
& \leq \sup \left\{g_{\infty}(u): u \in \operatorname{conv}\left\{u_{0}, \ldots, u_{m}\right\}\right\}+\varepsilon
\end{align*}
$$

where g_{h} and g_{∞} are respectively the "principal parts" of f_{h}, f_{∞}.
Consider $\widetilde{f}_{h}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widetilde{f}_{h}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}^{(h)}\left(x, u_{0}\right) D_{i} u D_{j} u d x
$$

It is readily seen that \widetilde{f}_{h} is convex. Therefore to prove (4.17) it suffices to verify that

$$
\begin{equation*}
\underset{h}{\limsup }\left\{\sup \left\{\left|g_{h}\left(v_{h}\right)-\widetilde{f}_{h}\left(v_{h}\right)\right|: v_{h} \in \operatorname{conv}\left\{u_{0}^{(h)}, \ldots, u_{m}^{(h)}\right\}\right\}\right\}<\frac{\varepsilon}{2} \tag{4.18}
\end{equation*}
$$

Of course, if $v_{h} \in \operatorname{conv}\left\{u_{0}^{(h)}, \ldots, u_{m}^{(h)}\right\}$, we have

$$
\begin{equation*}
g_{h}\left(v_{h}\right)-\widetilde{f}_{h}\left(v_{h}\right)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n}\left[a_{i j}^{(h)}\left(x, v_{h}\right)-a_{i j}^{(h)}\left(x, u_{0}\right)\right] D_{i} v_{h} D_{j} v_{h} d x . \tag{4.19}
\end{equation*}
$$

It is not difficult to see that, if $v_{h} \in \operatorname{conv}\left\{u_{0}^{(h)}, \ldots, u_{m}^{(h)}\right\}$, then there exist $\delta>0$, $c, d, e_{h} \in L^{\infty}(\Omega)$, with $\operatorname{essinf}_{\Omega} c \geq \varepsilon,\|d\|_{\infty}<\delta$ and $\left\|e_{h}\right\|_{\infty} \rightarrow 0$ such that

$$
v_{h}=u_{0}+\left(d+e_{h}\right) \bar{\phi}_{1}=\left(c+d+e_{h}\right) \bar{\phi}_{1} .
$$

By Lagrange Theorem, there exists $0<\eta<1$ such that

$$
\begin{aligned}
& a_{i j}^{(h)}\left(x, v_{h}\right)-a_{i j}^{(h)}\left(x, u_{0}\right) \\
& =\bar{\phi}_{1}\left(d+e_{h}\right) D_{s} a_{i j}^{(h)}\left(x,\left(c+\eta\left(d+e_{h}\right)\right) \bar{\phi}_{1}\right)
\end{aligned}
$$

$$
=\frac{\left(d+e_{h}\right)}{c+\eta\left(d+e_{h}\right)}\left(\left(c+\eta\left(d+e_{h}\right)\right) \bar{\phi}_{1}\right) D_{s} a_{i j}^{(h)}\left(x,\left(c+\eta\left(d+e_{h}\right)\right) \bar{\phi}_{1}\right)
$$

Therefore, if δ is small enough, by using (A2), we deduce that

$$
\underset{h}{\limsup }\left\|a_{i j}^{(h)}\left(x, v_{h}\right)-a_{i j}^{(h)}\left(x, u_{0}\right)\right\|_{\infty}
$$

is also small. Since f_{∞} is bounded in $\widehat{H}_{k} \cap B_{r}\left(\bar{\phi}_{1}\right)$, we can assume without loss of generality that (eventually)

$$
f_{h}\left(u_{j}^{(h)}\right)<\sup \left\{f_{\infty}(u): u \in \widehat{H}_{k} \cap B_{r}\left(\bar{\phi}_{1}\right)\right\}+1
$$

So, in view of ($A 3$) we may deduce that $\left\|u_{j}^{(h)}\right\|_{H_{0}^{1}}$ is bounded; hence also $\left\|v_{h}\right\|_{H_{0}^{1}}$ is bounded. By using all these facts in (4.19) we obtain that, for δ small enough, (4.18) holds.

Remark 4.9. We point out that Theorem 4.8 is still valid if, in (4.15), we replace assumption $\operatorname{essinf}_{\Omega} \frac{u_{j}}{\bar{\phi}_{1}} \geq \varepsilon$ with $\operatorname{esssup}_{\Omega} \frac{u_{j}}{\bar{\phi}_{1}} \leq-\varepsilon$.

Now, let S be as in Lemma 4.4 and Q be as in Proposition 4.6. Let also $\varepsilon>0$. We can suppose that

$$
\begin{gather*}
\sup \left\{f_{\infty}(u): u \in \partial_{\widehat{H}_{k}} S\right\}<f_{\infty}\left(\bar{\phi}_{1}\right)-2 \varepsilon, \tag{4.20}\\
\liminf _{h}\left[\inf \left\{f_{h}\left(\bar{\phi}_{1}+u\right): u \in \partial_{\widehat{X}_{1} \oplus X_{2}} Q\right\}\right]>f_{\infty}\left(\bar{\phi}_{1}\right)+2 \varepsilon \tag{4.21}
\end{gather*}
$$

For $r=\rho$ where ρ is introduced in Lemma 4.3 and ε given as above, take $\delta>0$ as in Theorem 4.8. Let now

$$
S=\bigcup_{j=1}^{N} S_{j},
$$

where S_{j} are the convex sets generated by the points $u_{0}^{(j)}, \ldots, u_{m}^{(j)} \in \widehat{H}_{k} \cap B_{r}\left(\bar{\phi}_{1}\right)$, such that

$$
\sup \left\{\left\|\frac{u-v}{\bar{\phi}_{1}}\right\|_{\infty}: u, v \in S_{j}\right\}<\delta .
$$

For $k=0, \ldots, m$, we consider $\left(u_{k, h}^{(j)}\right)_{h}$ the approximating sequence introduced in Theorem 4.8 and let

$$
P_{h}=\bigcup_{j=1}^{N} \operatorname{conv}\left\{u_{0, h}^{(j)}, \ldots, u_{m, h}^{(j)}\right\}
$$

Proposition 4.10. Take ε as above, then there exists $\bar{h} \in \mathbb{N}$ such that for every $h \geq \bar{h}$ we have

$$
\begin{aligned}
& \sup _{P_{h}} f_{h}<\inf _{\bar{\phi}_{1}+\partial Q} f_{h}, \quad b_{1}=\sup _{P_{h}} f_{h}<f_{\infty}\left(\bar{\phi}_{1}\right)+\varepsilon, \\
& \sup _{\partial P_{h}} f_{h}<\inf _{\bar{\phi}_{1}+Q} f_{h}, \quad a_{1}=\inf _{\bar{\phi}_{1}+Q} f_{h}>f_{\infty}\left(\bar{\phi}_{1}\right)-\varepsilon .
\end{aligned}
$$

Proof. By (4.21) and (4.4) we deduce that there exists $\bar{h}_{1} \in \mathbb{N}$ such that for every $h \geq \bar{h}_{1}$

$$
\inf _{\bar{\phi}_{1}+\partial Q} f_{h}>f_{\infty}\left(\bar{\phi}_{1}\right)+\varepsilon, \quad \inf _{\bar{\phi}_{1}+Q} f_{h}>f_{\infty}\left(\bar{\phi}_{1}\right)-\varepsilon .
$$

Using Lemma 4.4, Theorem 4.8 and (4.20) we see that there exists $\bar{h}_{2} \in \mathbb{N}$ such that for every $h \geq \bar{h}_{2}$ we have

$$
\sup _{P_{h}} f_{h}<f_{\infty}\left(\bar{\phi}_{1}\right)+\varepsilon, \quad \sup _{\partial P_{h}} f_{h}<f_{\infty}\left(\bar{\phi}_{1}\right)-\varepsilon .
$$

The assertions follow, taking $\bar{h}=\max \left\{\bar{h}_{1}, \bar{h}_{2}\right\}$.
Theorem 4.11. For every $\varepsilon>0$, there exists $\bar{h} \in \mathbb{N}$ such that for all $h \geq \bar{h}$, the functional f_{h} has a critical point $u_{3}^{(h)}$ with

$$
\begin{equation*}
\left|f_{h}\left(u_{3}^{(h)}\right)-f_{\infty}\left(\bar{\phi}_{1}\right)\right|<\varepsilon . \tag{4.22}
\end{equation*}
$$

Proof. Let $\Pi_{1}: H_{0}^{1}(\Omega) \rightarrow \widehat{H}_{k}$ be projection induced by the decomposition $H_{0}^{1}(\Omega)=$ $\widehat{H}_{k} \oplus\left(\widehat{X}_{1} \oplus X_{2}\right)$. Then, for h large, the restriction of Π_{1} to P_{h} is an injective map with inverse Lipschitz continuous and such that $x-\Pi_{1}(x) \in \widehat{X}_{1} \oplus X_{2}$. Let $\varphi_{h}: \widehat{H}_{k} \rightarrow \widehat{X}_{1} \oplus X_{2}$ be a Lipschitz continuous function such that

$$
\Pi_{1}(x)+\varphi_{h}\left(\Pi_{1}(x)\right)=x \quad \forall x \in P_{h} .
$$

If $\Phi_{h}: H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is defined by $\Phi_{h}(x)=\varphi_{h}\left(\Pi_{1}(x)\right)+x$, then Φ_{h} is a Lipschitz homeomorphism with inverse Lipschitz continuous. Moreover,

$$
\Phi_{h}\left(\Pi_{1}(x)\right)=x \quad \forall x \in P_{h}
$$

Define $\widetilde{f}_{h}=f_{h} \circ \Phi_{h}$. Clearly, f_{h} satisfies $(P S)_{c}$ if and only if \widetilde{f}_{h} satisfies $(P S)_{c}$; furthermore $u^{(h)}$ is a critical point of \widetilde{f}_{h} if and only if $\Phi_{h}\left(u^{(h)}\right)$ is a critical point of f_{h}. Using Proposition 4.10, it follows that

$$
\begin{aligned}
& \sup _{\Pi_{1}\left(P_{h}\right)} \tilde{f}_{h}<\inf _{\bar{\phi}_{1}-\varphi_{h}\left(\bar{\phi}_{1}\right)+\partial Q} \tilde{f}_{h}, \\
& \sup _{\Pi_{1}\left(\partial P_{h}\right)} \widetilde{f}_{h}<\inf _{\bar{\phi}_{1}-\varphi_{h}\left(\bar{\phi}_{1}\right)+Q} \widetilde{f}_{h} .
\end{aligned}
$$

We have

$$
a_{1}=\inf _{\bar{\phi}_{1}+Q} f_{h}=\inf _{\bar{\phi}_{1}-\varphi_{h}\left(\bar{\phi}_{1}\right)+Q} \widetilde{f}_{h}, \quad b_{1}=\sup _{P_{h}} f_{h}=\sup _{\Pi_{1}\left(P_{h}\right)} \widetilde{f}_{h} .
$$

By Theorem 2.4, we deduce that there exists a critical point $\widetilde{u}_{3}^{(h)}$ for \widetilde{f}_{h} with $\widetilde{f}_{h}\left(\widetilde{u}_{3}^{(h)}\right) \in\left[a_{1}, b_{1}\right]$. Therefore, there exists a critical point $u_{3}^{(h)}$ for f_{h} with $f_{h}\left(u_{3}^{(h)}\right) \in$ [a_{1}, b_{1}]. Proposition 4.10 now gives (4.22).

5. Proof of the main result

Theorem 5.1. Let $\beta<\mu_{1}$ and $\alpha>\mu_{2}$. Then, there exist $\bar{h} \in \mathbb{N}, \varepsilon>0$ such that for all $h \geq \bar{h}$, the functional f_{h} has at least two critical points $u_{1}^{(h)}$, $u_{2}^{(h)}$ with

$$
f_{h}\left(u_{1}^{(h)}\right)<f_{h}\left(u_{2}^{(h)}\right)<f_{\infty}\left(\bar{\phi}_{1}\right)-\varepsilon .
$$

Proof. First of all, let us point out that from the definition of f_{∞} and hypothesis on α and β, it can be easily seen that there exists $\rho>0$ such that

$$
\inf _{S_{\rho}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right)} f_{\infty}>f_{\infty}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right)
$$

By [4, Lemma 4.1], there exist a continuous curve $\gamma:[0,1] \rightarrow H_{0}^{1}(\Omega), \varepsilon>0$ such that

$$
\gamma(0)=\frac{\phi_{1}}{\beta-\mu_{1}}, \quad \gamma(1) \notin \overline{B_{\rho}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right)}, \quad \sup _{s \in[0,1]} f_{\infty}(\gamma(s))<f_{\infty}\left(\bar{\phi}_{1}\right)-\varepsilon .
$$

The same argument of [3, Theorem 4.2] shows that there exists $\bar{h} \in \mathbb{N}$ such that for all $h \geq \bar{h}$

$$
\inf _{S_{\rho}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right)} f_{h}>f_{\infty}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right) .
$$

On the other hand, the argument used in the proof of Theorem 4.8 allows us to build a polygonal curve γ_{h} with

$$
\gamma_{h}(0) \in B_{\rho}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right), \quad \gamma_{h}(1) \notin \overline{B_{\rho}\left(\frac{\phi_{1}}{\beta-\mu_{1}}\right)}, \quad \sup _{s \in[0,1]} f_{h}\left(\gamma_{h}(s)\right)<f_{\infty}\left(\bar{\phi}_{1}\right)-\varepsilon .
$$

In view of $(A 7)$ we can follow the same argument used in the proof of [4, Theorem 4.2] and deduce the assertion.

Proof of Theorem 3.1. By Theorem 5.1 and Theorem 4.11 we deduce that for $h \geq \bar{h}$ the functional f_{h} has at least three critical points. Hence, by Theorem 4.1, when $h \geq \bar{h}$, problem (3.2) has at least three distinct weak solutions.

Acknowledgment. The author wishes to thank the anonymous referee for his/her insightful comments on this paper.

References

[1] A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-247.
[2] H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, Mass. London, 1984.
[3] A. Canino, On a jumping problem for quasilinear elliptic equations, Math. Z. 226 (1997), 193-210.
[4] A. Canino, On the existence of three solutions for jumping problems involving quasilinear operators, Topol. Methods Nonlinear Anal. 18 (2001), 1-16.
[5] A. Canino, M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions 1-50 - A. Granas, M. Frigon, G. Sabidussi Eds. - Montreal (1994), NATO ASI Series - Kluwer A.P. (1995).
[6] J. N. Corvellec, M. Degiovanni, M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonl. Anal. 1 (1993), 151-171.
[7] G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhuser Boston, Inc., Boston, MA, 1993.
[8] E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Soc. Ed., 76A. (1977), 283-300.
[9] M. Degiovanni, Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl. (4) 156 (1990), 37-71.
[10] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal. 9 (1985), 1401-1443.
[11] M. Degiovanni, J. Eisner, Stability of essential values under G-convergence, Ricerche Math. 49 (2000), 319-339.
[12] M. Degiovanni, M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. (4), 167, (1994), 73-100.
[13] E. De Giorgi, T.Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850.
[14] K. Deimling, Nonlinear functional analysis, Springer Verlag, Berlin, 1985.
[15] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second order, Springer, Berlin, 1983.
[16] H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261 (1982), 493-514
[17] A. Marino, A. Micheletti, A. Pistoia, Some variationals results on semilinear elliptic problems with asymptotically nonsymmetric behaviour, Nonlinear Analysis. A tribute in honour of Giovanni Prodi Scuola Normale Superiore, Pisa (1991), 243-256.
[18] A. Marino, C. Saccon, Some variational theorems of mixed type and elliptic problems with jumping nonlinearities, Annal. Sc. Norm. Sup. di Pisa, (3-4) 25 (1997), 631-665.
[19] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 143-156.

Alessandro Groli
Department of Mathematics, University of Brescia, Via Valotti 9, 25133 Brescia, Italy E-mail address: alessandro.groli@ing.unibs.it

[^0]: 2000 Mathematics Subject Classification. 49J45, 58E05.
 Key words and phrases. Γ-convergence, jumping problems, nonsmooth critical point theory. (C)2003 Southwest Texas State University.

 Submitted February 19, 2003. Published May 23, 2003.

