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ON Γ-CONVERGENCE FOR PROBLEMS OF JUMPING TYPE

ALESSANDRO GROLI

Abstract. The convergence of critical values for a sequence of functionals
(fh) Γ-converging to a functional f∞ is studied. These functionals are related
to a classical “jumping problem”, in which the position of two real parameters
α, β plays a fundamental role. We prove the existence of at least three critical

values for fh, when α and β satisfy the usual assumption with respect to f∞,
but not with respect to fh.

1. Introduction

Let (fh) be a sequence of functionals from H1
0 (Ω) to R and f∞ a functional from

H1
0 (Ω) to R. It is well known that the convergence of (possible) minima of fh to

those of f∞ can be studied in an efficient way by the notion of Γ-convergence [7, 13]
(epiconvergence, in the language of [2]).

The problem of the convergence of critical points, on the contrary, is much less
clarified. A certain number of results is available in the literature, dealing with the
case in which fh is Γ-convergent to f∞ and satisfies suitable uniform assumptions
(see e.g. [9, 10, 11] and references therein).

In particular, let us remark that the applications to PDE’s, so far considered,
concern only functionals of the calculus of variations whose principal part is convex.

We are interested in a further case, which is not covered in the literature and
is particularly interesting for critical point theory: that of “jumping problems”. It
can be considered as a perturbation of the functional f∞ : H1

0 (Ω) → R defined as

f∞(u) =
1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx−

α

2

∫
Ω

(u+)2 dx− β

2

∫
Ω

(u−)2 dx+
∫

Ω

φ1u dx,

where β < α and φ1 is a positive eigenfunction of −
∑
Dj(A

(∞)
ij Diu) with homoge-

neous Dirichlet condition. The simplest type of perturbation, extensively considered
in the literature, amounts to consider

fh(u) =
1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx−

α

2

∫
Ω

(u+)2 dx

− β

2

∫
Ω

(u−)2 dx−
∫

Ω

G0(x, thu)
t2h

dx+
∫

Ω

φ1u dx,
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where th → +∞, and

lim
|s|→+∞

DsG0(x, s)
s

= 0 .

In such a case, very refined results have been obtained, starting from the pioneering
paper [1], (see e.g. [16, 17, 18, 19] and references therein).
More recently, some results have been obtained when

fh(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, thu)DiuDju dx−
α

2

∫
Ω

(u+)2 dx

− β

2

∫
Ω

(u−)2 dx−
∫

Ω

G0(x, thu)
t2h

dx+
∫

Ω

φ1u dx,

where th and G0 are as above (see [3, 4]). Observe that in this case the principal
part is no longer convex.

Here we are interested in a more general perturbation of the form

fh(u) =
1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u)DiuDju dx−

α

2

∫
Ω

(u+)2 dx

− β

2

∫
Ω

(u−)2 dx−
∫

Ω

G0(x, thu)
t2h

dx+
∫

Ω

φ1u dx.

Actually, for the sake of simplicity, we will consider only the case G0 = 0, being
the perturbation of the principal part the most interesting feature.

Let us mention that the result we are interested in, namely the existence of at
least three critical points for fh, is well known if β < µ

(h)
1 < µ

(h)
2 < α, where

µ
(h)
1 , µ

(h)
2 are the first two eigenvalues of −

∑
Dj(A

(h)
ij Diu), then

lim
s→+∞

a
(h)
ij (x, s) = lim

s→−∞
a
(h)
ij (x, s) = A

(h)
ij (x)

(see [4]). The point is that, under our assumptions, we have β < µ
(h)
1 . But it

may happen that α < µ
(h)
2 for any h ∈ N (see Example 3.2). Nevertheless, the

hypothesis that α > µ2, where µ2 is the second eigenvalue of −
∑
Dj(A

(∞)
ij Diu)

combined with the Γ-convergence of fh to f∞, is sufficient to ensure, for h large,
the existence of at least three critical points of fh. In some sense, we find a genuine
effect of Γ-convergence, which cannot be deduced by the usual study of the position
of β and α with respect to the spectrum of −

∑
Dj(A

(h)
ij Diu). Let us also mention

that a relevant question, in jumping problem, is the position of α and β with
respect to the Fučik spectrum (see e.g. [8]). However this seems to be important
mainly for the verification of the Palais-Smale condition, while the persistence of
the geometrical conditions on the functional under Γ-convergence is the key point
in our problem.

This paper is organized as follows. In section 2 we recall some notions of non-
smooth analysis and prove a nonsmooth version of the classical “local saddle the-
orem”. In section 3 we present the problem and the main result. Section 4 is
devoted to show some minmax estimates which allow us to prove the main theorem
in section 5.
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2. Tools of nonsmooth analysis

In this section, we recall some by-products of the nonsmooth critical point theory
developed in [6, 12]. Let X be a metric space endowed with the metric d and r > 0.
Let us set Br(u) = {v ∈ X : d(u, v) < r} and Sr(u) = {v ∈ X : d(u, v) = r}.

Definition 2.1. Let f : X → R be a continuous function and let u ∈ X. We
denote by |df |(u) the supremum of the σ′s in [0,+∞[ such that there exist δ > 0
and a continuous map H : Bδ(u)× [0, δ] → X satisfying

d(H(v, t), v) ≤ t, f(H(v, t)) ≤ f(v)− σt,

whenever v ∈ Bδ(u) and t ∈ [0, δ]. The extended real number |df |(u) is called the
weak slope of f at u.

The following two definitions are related to the notion above.

Definition 2.2. Let f : X → R be a continuous function. An element u ∈ X is
said to be critical point of f , if |df |(u) = 0. A real number c is said to be a critical
value for f , if there exists a critical point u ∈ X of f such that f(u) = c. Otherwise
c is said to be a regular value of f .

Definition 2.3. Let f : X → R be a continuous function and c ∈ R. The func-
tion f is said to satisfy the Palais-Smale condition at level c ((PS)c for short), if
every sequence (uh) in X with |df |(uh) → 0 and f(uh) → c admits a subsequence
converging in X.

The next result is an adaptation to a continuous functional of the classical local
saddle theorem (see e.g. [17]).

Theorem 2.4. Let X be a Banach space and f : X → R be a continuous function.
Assume that there exist two closed subspaces X1, X2 of X with dimX1 < +∞ and
X = X1 ⊕ X2. Let u0 ∈ X and U1, U2 be two bounded neighborhoods of 0 in
respectively X1 and X2 with U2 convex. Suppose that

sup f(u0 + ∂U1) < a = inf f(u0 + U2), b = sup f(u0 + U1) < inf f(u0 + ∂U2),

and f satisfies (PS)c for any c ∈ [a, b]. Then there exists at least a critical point
for f in f−1([a, b]).

Proof. Without loss of generality, we can suppose u0 = 0. We argue by contradic-
tion and assume that there are no critical values for f in [a, b]. Since f satisfies
(PS)c for every c ∈ [a, b], it is readily seen that, for some ε > 0, there are no critical
values for f in [a− ε, b] and that f satisfies (PS)c for any c ∈ [a− ε, b]. By [6, The-
orem 2.15] or [5, Theorem 1.1.14] there exists a continuous map η : X× [0, 1] → X
such that

η(u, 0) = u ∀u ∈ X,
η(u, t) = u ∀ t ∈ [0, 1], ∀u ∈ fa−ε,

η(u, 1) ∈ fa−ε ∀u ∈ f b,

f(η(u, t)) ≤ f(u) ∀t ∈ [0, 1], ∀u ∈ X.

Since U1 ⊂ f b, η(U1 × {1}) ⊂ fa−ε. On the other hand, since fa−ε ∩ U2 = ∅, it
follows that

η(U1 × {1}) ∩ U2 = ∅. (2.1)
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Now consider the continuous map

Φ : [−1, 1]× U1 → R×X1

(s, u) 7→ (ρU2(P2η(u, 1)) + s, P1η(u, 1))

where Pi : X → Xi (i = 1, 2) are the projections of X onto Xi and ρU2 :
X2 → [0,+∞[ is the Minkowski functional associated with U2. Since (0, 0) /∈
Φ (∂(]− 1, 1[×U1)), the Brouwer degree (see e.g. [14])

deg (Φ, ]− 1, 1[×U1, (0, 0))

is well defined. Moreover the continuous function defined by

H((s, u), t) = (ρU2(P2η(u, t)) + s, P1η(u, t))

is a homotopy between the identity map and Φ.
Since (0, 0) /∈ H (∂(]− 1, 1[×U1)× [0, 1]), it follows that

deg (Φ, ]− 1, 1[×U1, (0, 0)) = 1.

Therefore, there exists (s, u) ∈ ] − 1, 1[×U1 such that Φ(s, u) = (0, 0). Hence we
have η(u, 1) ∈ X2 and ρU2(η(u, 1)) = −s, namely ρU2(η(u, 1)) ≤ 1. Therefore,
η(u, 1) ∈ U2 and we have

η(U1 × {1}) ∩ U2 6= ∅
which contradicts (2.1). �

Let us recall the notion of Γ-convergence (epiconvergence in the language of [2])
from [13].

Definition 2.5. Consider a topological space X. For any h ∈ N ∪ {+∞}, let
gh : X → R ∪ {+∞} be a function. According to [2, 13], we write that

g∞ = Γ(X−) lim
h
gh

if the following facts hold:
(i) if (uh) is a sequence in X convergent to u, we have g∞(u) ≤ lim infh gh(uh);
(ii) for every u ∈ X, there exists a sequence (uh) in X convergent to u such

that g∞(u) = limh gh(uh).

3. Position of the problem and main result

Let Ω be a connected bounded open subset of Rn (for the sake of simplicity we
suppose n ≥ 3). We assume that, for every h ∈ N, the functions a(h)

ij : Ω× R → R
and the function A(∞)

ij : Ω → R (1 ≤ i, j ≤ n) satisfy the following conditions:

(A1) For all s ∈ R, a(h)
ij (·, s) and A(∞)

ij (·) are measurable; for a.e. x ∈ Ω, a(h)
ij (x, ·)

is of class C1; for a.e. x ∈ Ω, ∀s ∈ R, a(h)
ij (x, s) = a

(h)
ji (x, s), A(∞)

ij (x) =

A
(∞)
ji (x).

(A2) There exists C > 0 such that for each h ∈ N, for a.e. x ∈ Ω, for all s ∈ R,
for all ξ ∈ Rn, 1 ≤ i, j ≤ n,

|a(h)
ij (x, s)| ≤ C, |A(∞)

ij (x)| ≤ C,
∣∣∣ n∑

i,j=1

sDsa
(h)
ij (x, s)ξiξj

∣∣∣ ≤ C|ξ|2.
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(A3) There exists ν > 0 such that for each h ∈ N, for a.e. x ∈ Ω, for all s ∈ R,
for all ξ ∈ Rn,

n∑
i,j=1

a
(h)
ij (x, s)ξiξj ≥ ν|ξ|2,

n∑
i,j=1

A
(∞)
ij (x)ξiξj ≥ ν|ξ|2.

(A4) For each h ∈ N, there exists Rh > 0 such that for a.e. x ∈ Ω, for all s ∈ R,
for all ξ ∈ Rn,

|s| > Rh ⇒
n∑

i,j=1

sDsa
(h)
ij (x, s)ξiξj ≥ 0.

(A5) For a.e. x ∈ Ω, assume that

lim
s→+∞

a
(h)
ij (x, s) = lim

s→−∞
a
(h)
ij (x, s) = A

(h)
ij (x)

(observe that by (A4) such limits exist).
(A6) For all h ∈ N there exists uniformly Lipschitz continuous bounded functions

ψh : R → [0,+∞[ such that for a.e. x ∈ Ω, for all s ∈ R and for every
ξ ∈ Rn

n∑
i,j=1

sDsa
(h)
ij (x, s)ξiξj ≤ 2sψ′h(s)

n∑
i,j=1

a
(h)
ij (x, s)ξiξj .

Also assume that∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx

= Γ(w −H1
0 (Ω)−) lim

h

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u)DiuDju dx

(3.1)

where w −H1
0 (Ω) denotes the space H1

0 (Ω) endowed with the weak topol-
ogy. Let µk, µ(h)

k denote the eigenvalues of respectively the operators
−
∑
Dj(A

(∞)
ij Diu) and −

∑
Dj(A

(h)
ij Diu) with homogeneous Dirichlet con-

dition and φk, φ(h)
k the corresponding eigenfunctions. It is well known (see

[15]) that φ1 ∈ H1
0 (Ω)∩L∞(Ω)∩C(Ω) and that we can take φ1(x) > 0 for

every x ∈ Ω and
∫
Ω
φ2

1 dx = 1.
(A7) Assume that limh µ

(h)
1 = µ1.

Our purpose in this article is to study the existence of weak solutions of the
family of problems:

−
n∑

i,j=1

Dj(a
(h)
ij (x, u)Diu) +

1
2

n∑
i,j=1

Dsa
(h)
ij (x, u)DiuDju = αu+ − βu− − φ1,

u ∈ H1
0 (Ω),

(3.2)

where α, β are two real numbers, u+ = max{u, 0}, u− = max{−u, 0}.
Under the assumptions above, we shall prove is the following result.

Theorem 3.1. Assume that β < µ1 and α > µ2. Then there exists h in N such
that for all h ≥ h, the problem (3.2) has at least three weak solutions in H1

0 (Ω).



6 ALESSANDRO GROLI EJDE–2003/60

For α > µ
(h)
2 , this result corresponds to [4, Theorem 1.1]; however our assump-

tions do not imply that α > µ
(h)
2 for large h. As the following example shows, it

may happen that µ2 < µ
(h)
2 (and hence α ∈]µ2, µ

(h)
2 [).

Example 3.2. Let Ω =]0, π[ and define the functions a(h)
ij (x, s) such that: for

x ∈]0, π
2 [,

a
(h)
ij (x, s) =

{
γδij(x) s ∈]− h, h[,
δij(x) s ∈ R \ [−2h, 2h];

for x ∈]π
2 , π[

a
(h)
ij (x, s) =

{
ηδij(x) s ∈]− h, h[,
δij(x) s ∈ R \ [−2h, 2h],

where δij(x) = 1 if i = j, δij(x) = 0 if i 6= j and γ, η ∈ R. Then, A(h)
ij (x) = δij(x).

The eigenvalues µ(h)
k of the Dirichlet problem

−u′′ = µu,

u(0) = u(π) = 0,

are µ(h)
k = k2, for all k ≥ 1. On the other hand, all the assumptions of Theorem

3.1 are satisfied with

A
(∞)
ij (x) =

{
γδij(x) 0 < x < π

2 ,

ηδij(x) π
2 < x < π.

Hence, the eigenvalues µk of the Dirichlet problem

−
(
A

(∞)
ij (x)u′

)′
= µu,

u(0) = u(π) = 0,

for η such that √
1
η

π

4
= arctan

√
5,

and γ = 4η, are µ1 = µ
(h)
1 = 1 and since arctan

√
5 > arctan

√
3 = π

3 , it follows
that

µ2 =

(
π − arctan

√
5

arctan
√

5

)2

< 4 = µ
(h)
2 .

4. Minmax estimates

We introduce the functionals fh, f∞, f̂∞ : H1
0 (Ω) → R,

fh(u) =
1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u)DiuDju dx−

α

2

∫
Ω

(u+)2 dx− β
2

∫
Ω

(u−)2 dx+
∫

Ω

φ1u dx,

f∞(u) =
1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx−

α

2

∫
Ω

(u+)2 dx− β
2

∫
Ω

(u−)2 dx+
∫

Ω

φ1u dx,

f̂∞(u) =
1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx−

α

2

∫
Ω

u2 dx+
∫

Ω

φ1u dx.
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For later use, we also introduce gh, g∞ : H1
0 (Ω) → R as the “principal parts” of fh

and f∞:

gh(u) =
1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u)DiuDju dx,

g∞(u) =
1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx.

The following theorem provides a fundamental connection between the above
abstract notion of weak slope and the concrete notion related to our problem.

Theorem 4.1. Let u ∈ H1
0 (Ω) be a critical point of fh. Then, u is a weak solution

of (3.2).

The proof of this theorem can be found in [4, Corollary 2.8].
To apply the local saddle theorem, we shall need two ingredients: the Palais

Smale condition and some minmax estimates.

Theorem 4.2. Let β < µ1 < α. Then, for all a, b ∈ R there exists h̄ ∈ N such that
fh satisfies (PS)c for all h ≥ h̄ and every c ∈ [a, b].

Proof. In view of assumption (A7), β < µ
(h)
1 < α eventually, so we can apply [4,

Theorem 3.1] and deduce the assertion. �

For the rest of this article, we shall consider β < µ1 and µk < α ≤ µk+1 with
k ≥ 2. Define

φ1 =
φ1

α− µ1
,

Hk = span{φ1, · · · , φk}, H⊥
k = span{φk+1, · · · }.

Let ψ2, . . . , ψk ∈ C∞c (Ω). Consider the space

Ĥk = span{φ1, ψ2 · · · , ψk}.

If ψ2, . . . , ψk are sufficiently close in the H1
0−norm to φ2, . . . , φk, then H1

0 (Ω) =
Ĥk ⊕H⊥

k . Moreover, since φ1 is a critical point for f̂∞, it is readily seen that

∀ρ > 0 : sup
Ĥk∩Sρ(φ1)

f̂∞ < f̂∞(φ1). (4.1)

Lemma 4.3. There exist ε, ρ > 0 such that for all u ∈ Ĥk ∩ Bρ(φ1) the condition
u(x) ≥ εφ1(x) holds a.e. in Ω.

Proof. It is sufficient to recall that infK φ1 > 0 for every compact subset K of
Ω. �

Lemma 4.4. There exist u0, . . . , um ∈ Ĥk such that if S = conv{u0, . . . , um}, then
S is a neighborhood of φ1 and

sup {f∞(u) : u ∈ S} ≤ f∞(φ1),

sup
{
f∞(u) : u ∈ ∂Ĥk

S
}
< f∞(φ1).
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Proof. If ρ is as in Lemma 4.3, recalling (4.1), we have

sup
{
f∞(u) : u ∈ Bρ(φ1) ∩ Ĥk

}
≤ f∞(φ1),

sup
{
f∞(u) : u ∈

(
Bρ(φ1) \B ρ

2
(φ1)

)
∩ Ĥk

}
< f∞(φ1).

The assertions follow easily. �

Lemma 4.5. Let S be as in Lemma 4.4. Then, there exists R > 0 such that, if
u ∈ Ĥk ∩ S and

uh → u weakly in H1
0 (Ω), fh(uh) → f∞(u),

then lim suph ‖uh‖H1
0 (Ω) < R.

Proof. Fix u ∈ Ĥk ∩ S. In view of (3.1), there exists a sequence (uh) such that
uh → u weakly in H1

0 (Ω) and fh(uh) → f∞(u). Eventually we have

fh(uh) < sup{f∞(u) : u ∈ Ĥk ∩ S}+ 1.

Moreover we have

lim
h

{
−α

2

∫
Ω

(u+
h )2 dx− β

2

∫
Ω

(u−h )2 dx+
∫

Ω

φ1uh dx

}
= −α

2

∫
Ω

(u+)2 dx− β

2

∫
Ω

(u−)2 dx+
∫

Ω

φ1u dx.

Therefore, gh(uh), the principal part of fh(uh), is (eventually) bounded. Hence,
using (A3), we deduce the assertion. �

Let now X1 be the eigenspace associated to µk+1 and X2 = span{φk+2, . . .} so
that

H⊥
k = X1 ⊕X2.

Proposition 4.6. Let R be as in Lemma 4.5. Then there exist a finite dimensional
space X̂1 ⊆ C∞c (Ω), ρ1 > 0 and ρ2 > R such that

H1
0 (Ω) = Ĥk ⊕ X̂1 ⊕X2, (4.2)

lim inf
h

[
inf
{
fh(φ1 + u) : u ∈ ∂X̂1⊕X2

Q
}]

> f∞(φ1), (4.3)

lim inf
h

[
inf
{
fh(φ1 + u) : u ∈ Q

}]
≥ f∞(φ1), (4.4)

where Q =
(
X̂1 ∩Bρ1(0)

)
+
(
X2 ∩Bρ2(0)

)
.

Proof. Since k + 1 ≥ 2, there exists ρ1 > 0 such that

∀v ∈ X1 : φ1 + v ≥ 0 ⇒ ‖v‖H1
0 (Ω) < ρ1.

Moreover, there exists ρ2 > R such that

f∞(φ1) <
ν

4
(ρ2)2−

C

2

∫
Ω

|D(φ1+v)|2 dx−
α

2

∫
Ω

(φ1+v)
2 dx+

∫
Ω

φ1(φ1+v) dx, (4.5)

for every v ∈ X1 ∩Bρ1(0). We prove (4.2). Let {ϕ1, . . . , ϕl} be a L2−orthonormal
basis of X1 and consider a sequence {ϕ(s)

m } (m = 1, . . . , l) in C∞c (Ω) such that
ϕ

(s)
m → ϕm in H1

0 (Ω). Let

X̂
(s)
1 = span{ϕ(s)

1 , . . . , ϕ
(s)
l }
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Eventually as s→ +∞ we have

H1
0 (Ω) = Ĥk ⊕ X̂

(s)
1 ⊕X2.

For proving (4.3) we argue by contradiction. Suppose that, up to a subsequence,

lim
s
fhs

(
φ1 + vs + ws

)
≤ f∞(φ1),

with us = vs +ws ∈ ∂X̂
(s)
1 ⊕X2

Q. Up to a further subsequence, us weakly converges
to some u. Then vs → v ∈ X1, while ws → w weakly in X2, where u = v + w.
Using (3.1) we deduce that f̂∞(φ1 + v + w) ≤ f∞(φ1 + v + w) ≤ f∞(φ1). By
definition of X1 and X2 we have w = 0 and f̂∞(φ1 + v) = f∞(φ1 + v), namely that
φ1 + v ≥ 0. By the choice of ρ1, we have ‖v‖H1

0 (Ω) < ρ1. Therefore ‖vs‖H1
0 (Ω) < ρ1

and ‖ws‖H1
0 (Ω) = ρ2 eventually. Using (A2) and (A3), we get

fhs

(
φ1 + us

)
= fhs

(
φ1 + vs + ws

)
=

1
2

∫
Ω

n∑
i,j=1

a
(hs)
ij (x, φ1 + us)Di(φ1 + vs)Dj(φ1 + vs) dx

+
∫

Ω

n∑
i,j=1

a
(hs)
ij (x, φ1 + us)Di(φ1 + vs)Djws dx

+
1
2

∫
Ω

n∑
i,j=1

a
(hs)
ij (x, φ1 + us)DiwsDjws dx

− α

2

∫
Ω

((φ1 + us)+)2 dx− β

2

∫
Ω

((φ1 + us)−)2 dx+
∫

Ω

φ1(φ1 + us) dx

≥ 1
4

∫
Ω

n∑
i,j=1

a
(hs)
ij (x, φ1 + us)DiwsDjws dx

− 1
2

∫
Ω

n∑
i,j=1

a
(hs)
ij (x, φ1 + us)Di(φ1 + vs)Dj(φ1 + vs) dx

− α

2

∫
Ω

((φ1 + us)+)2 dx− β

2

∫
Ω

((φ1 + us)−)2 dx+
∫

Ω

φ1(φ1 + us) dx

≥ ν

4

∫
Ω

|Dws|2 dx−
C

2

∫
Ω

|D(φ1 + vs)|2 dx−
α

2

∫
Ω

((φ1 + us)+)2 dx

− β

2

∫
Ω

((φ1 + us)−)2 dx+
∫

Ω

φ1(φ1 + us) dx

=
ν

4
(ρ2)2 −

C

2

∫
Ω

|D(φ1 + vs)|2 dx−
α

2

∫
Ω

((φ1 + us)+)2 dx

− β

2

∫
Ω

((φ1 + us)−)2 dx+
∫

Ω

φ1(φ1 + us) dx.

Hence, as s→ +∞ we have

f∞(φ1) ≥
ν

4
(ρ2)2 −

C

2

∫
Ω

|D(φ1 + v)|2 dx− α

2

∫
Ω

(φ1 + v)2 dx+
∫

Ω

φ1(φ1 + v) dx,



10 ALESSANDRO GROLI EJDE–2003/60

which contradicts (4.5). Finally let us prove (4.4). Since

f∞(φ1) = inf
φ1⊕(X̂1⊕X2)

f∞, (4.6)

the assertion follows. �

Lemma 4.7. For any u ∈ Ĥk \{0} there exists a sequence (uh) ⊂ H1
0 (Ω) such that

(uh − u) ∈ Ĥk ⊕X2, (4.7)

uh → u weakly in H1
0 (Ω), fh(uh) → f∞(u), (4.8)

∀h ∈ N :
uh − u

φ1

∈ L∞(Ω),
uh − u

φ1

→ 0 in L∞(Ω). (4.9)

Proof. Fix u ∈ Ĥk \ {0}. In view of (3.1), there exists (ũh) such that

ũh → u weakly in H1
0 (Ω), lim

h
fh(ũh) = f∞(u). (4.10)

Consider a strictly increasing sequence (hk) ⊂ N such that

∀h ≥ hk : Ln
({
x ∈ Ω : |ũh − u| > 1

k
φ1

})
<

1
k
,

where Ln denotes the Lebesgue measure. Set

εh =

{
2 if h < h1,
1
k if hk ≤ h < hk+1.

Then εh > 0, εh → 0 and Ln
({
x ∈ Ω : |ũh − u| > εhφ1

})
< 1

k if hk ≤ h < hk+1.
In particular

lim
h
Ln
({
x ∈ Ω : |ũh − u| > εhφ1

})
= 0. (4.11)

Consider now
ǔh = u+

[(
(ũh − u) ∨ (−εhφ1)

)
∧ (εhφ1)

]
,

and denote by ΠX̂1
the projection on X̂1 associated to the decomposition (4.2). Let

vh = −ΠX̂1
(ǔh − u), then

uh = ǔh −ΠX̂1
(ǔh − u) = ǔh + vh.

satisfies all the requirements (4.7)-(4.9).
Requirement (4.7) is straightforward. Furthermore, since |ǔh − u| ≤ εhφ1 a.e.
in Ω, (4.9) follows. Since ǔh → u weakly in H1

0 (Ω), then vh → 0 strongly and
uh → u weakly in H1

0 (Ω). To show that fh(uh) → f∞(u), it suffices to prove that
gh(u) → g∞(u), namely that

lim
h

1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, uh)DiuhDjuh dx =

1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx. (4.12)

We obtain (4.12) by combining the two following facts:

lim
h

1
2

∫
Ω

[ n∑
i,j=1

a
(h)
ij (x, uh)DiuhDjuh −

n∑
i,j=1

a
(h)
ij (x, ǔh)DiǔhDj ǔh

]
dx = 0 (4.13)

and

lim
h

1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, ǔh)DiǔhDj ǔh dx =

1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx. (4.14)
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Now we prove (4.13). We have

a
(h)
ij (x, uh)DiuhDjuh − a

(h)
ij (x, ǔh)DiǔhDj ǔh

= a
(h)
ij (x, uh)Di(ǔh + vh)Dj(ǔh + vh)− a

(h)
ij (x, ǔh)DiǔhDj ǔh =

= [a(h)
ij (x, uh)− a

(h)
ij (x, ǔh)]DiǔhDj ǔh + 2a(h)

ij (x, uh)DiǔhDjvh

+ a
(h)
ij (x, uh)DivhDjvh.

Clearly, by assumption (A2),

lim
h

∫
Ω

n∑
i,j=1

a
(h)
ij (x, uh)DiǔhDjvhdx = 0,

lim
h

∫
Ω

n∑
i,j=1

a
(h)
ij (x, uh)DivhDjvhdx = 0.

On the other hand, there exists ϑ ∈]0, 1[ such that

[a(h)
ij (x, uh)− a

(h)
ij (x, ǔh)] = Dsa

(h)
ij (x, uh + ϑvh)vh = Dsa

(h)
ij (x, u+ ηφ1 + ϑvh)vh,

where η ∈ R and we have used (4.9) in the last identity. Since there exists δh > 0
(δh → 0+) such that

|vh| ≤ δh|u+ ηφ1 + ϑvh|
using (A2), we deduce that

lim
h

∫
Ω

n∑
i,j=1

[a(h)
ij (x, uh)− a

(h)
ij (x, ǔh)]DiǔhDj ǔh dx = 0;

hence (4.13) holds. To prove (4.14) denote by χF the characteristic function of a
set F . We have

1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, ǔh)DiǔhDj ǔh dx

=
1
2

∫
{x:|ũh−u|≤εhφ1}

n∑
i,j=1

a
(h)
ij (x, ũh)DiũhDj ũh dx

+
1
2

∫
{x:(ũh−u)>εhφ1}

n∑
i,j=1

a
(h)
ij (x, u+ εhφ1)Di(u+ εhφ1)Dj(u+ εhφ1) dx

+
1
2

∫
{x:(ũh−u)<−εhφ1}

n∑
i,j=1

a
(h)
ij (x, u− εhφ1)Di(u− εhφ1)Dj(u− εhφ1) dx

≤ 1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, ũh)DiũhDj ũh dx

+
1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u+ εhφ1)Di(u+ εhφ1)Dj(u+ εhφ1)χ{x:(ũh−u)>εhφ1}

dx

+
1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u− εhφ1)Di(u− εhφ1)Dj(u− εhφ1)χ{x:(ũh−u)<−εhφ1}

dx.
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Using (4.10) and (4.11) we deduce

lim sup
h

1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, ǔh)DiǔhDj ǔh dx ≤

1
2

∫
Ω

n∑
i,j=1

A
(∞)
ij (x)DiuDju dx.

Assumption (3.1) gives us the conclusion. �

Theorem 4.8. Let m ∈ Z+. For all r, ε > 0 there exists δ > 0 such that if
u0, . . . , um ∈ Ĥk ∩Br(φ1) and

∀j = 0, . . . ,m : essinf Ω
uj

φ1

≥ ε,

u
(h)
j → uj (as in Lemma 4.7),

sup
{
‖u− v

φ1

‖∞ : u, v ∈ conv{u0, . . . , um}
}
< δ,

(4.15)

then
lim sup

h

{
sup

{
fh(vh) : vh ∈ conv{u(h)

0 , . . . , u(h)
m }

}}
≤ sup{f∞(u) : u ∈ conv{u0, . . . , um}}+ ε.

(4.16)

Proof. Let r, ε > 0, u0, . . . , um, (u(h)
j ) be as in (4.15). Since u(h)

j → uj strongly in
L2(Ω), then it is sufficient to prove that

lim sup
h

{
sup

{
gh(vh) : vh ∈ conv{u(h)

0 , . . . , u(h)
m }

}}
≤ sup {g∞(u) : u ∈ conv{u0, . . . , um}}+ ε.

(4.17)

where gh and g∞ are respectively the “principal parts” of fh, f∞.
Consider f̃h : H1

0 (Ω) → R defined by

f̃h(u) =
1
2

∫
Ω

n∑
i,j=1

a
(h)
ij (x, u0)DiuDju dx.

It is readily seen that f̃h is convex. Therefore to prove (4.17) it suffices to verify
that

lim sup
h

{
sup

{
|gh(vh)− f̃h(vh)| : vh ∈ conv{u(h)

0 , . . . , u(h)
m }

}}
<
ε

2
. (4.18)

Of course, if vh ∈ conv{u(h)
0 , . . . , u

(h)
m }, we have

gh(vh)− f̃h(vh) =
1
2

∫
Ω

n∑
i,j=1

[
a
(h)
ij (x, vh)− a

(h)
ij (x, u0)

]
DivhDjvh dx. (4.19)

It is not difficult to see that, if vh ∈ conv{u(h)
0 , . . . , u

(h)
m }, then there exist δ > 0,

c, d, eh ∈ L∞(Ω), with essinfΩc ≥ ε, ‖d‖∞ < δ and ‖eh‖∞ → 0 such that

vh = u0 + (d+ eh)φ1 = (c+ d+ eh)φ1.

By Lagrange Theorem, there exists 0 < η < 1 such that

a
(h)
ij (x, vh)− a

(h)
ij (x, u0)

= φ1(d+ eh)Dsa
(h)
ij

(
x, (c+ η(d+ eh))φ1

)
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=
(d+ eh)

c+ η(d+ eh)
(
(c+ η(d+ eh))φ1

)
Dsa

(h)
ij

(
x, (c+ η(d+ eh))φ1

)
.

Therefore, if δ is small enough, by using (A2), we deduce that

lim sup
h

‖a(h)
ij (x, vh)− a

(h)
ij (x, u0)‖∞

is also small. Since f∞ is bounded in Ĥk ∩ Br(φ1), we can assume without loss of
generality that (eventually)

fh(u(h)
j ) < sup{f∞(u) : u ∈ Ĥk ∩Br(φ1)}+ 1.

So, in view of (A3) we may deduce that ‖u(h)
j ‖H1

0
is bounded; hence also ‖vh‖H1

0

is bounded. By using all these facts in (4.19) we obtain that, for δ small enough,
(4.18) holds. �

Remark 4.9. We point out that Theorem 4.8 is still valid if, in (4.15), we replace
assumption essinfΩ

uj

φ1
≥ ε with esssupΩ

uj

φ1
≤ −ε.

Now, let S be as in Lemma 4.4 and Q be as in Proposition 4.6. Let also ε > 0.
We can suppose that

sup
{
f∞(u) : u ∈ ∂Ĥk

S
}
< f∞(φ1)− 2ε, (4.20)

lim inf
h

[
inf
{
fh(φ1 + u) : u ∈ ∂X̂1⊕X2

Q
}]

> f∞(φ1) + 2ε. (4.21)

For r = ρ where ρ is introduced in Lemma 4.3 and ε given as above, take δ > 0 as
in Theorem 4.8. Let now

S =
N⋃

j=1

Sj ,

where Sj are the convex sets generated by the points u(j)
0 , . . . , u

(j)
m ∈ Ĥk ∩Br(φ1),

such that
sup

{
‖u− v

φ1

‖∞ : u, v ∈ Sj

}
< δ.

For k = 0, . . . ,m, we consider (u(j)
k,h)h the approximating sequence introduced in

Theorem 4.8 and let

Ph =
N⋃

j=1

conv{u(j)
0,h, . . . , u

(j)
m,h}.

Proposition 4.10. Take ε as above, then there exists h ∈ N such that for every
h ≥ h we have

sup
Ph

fh < inf
φ1+∂Q

fh, b1 = sup
Ph

fh < f∞(φ1) + ε,

sup
∂Ph

fh < inf
φ1+Q

fh, a1 = inf
φ1+Q

fh > f∞(φ1)− ε.

Proof. By (4.21) and (4.4) we deduce that there exists h1 ∈ N such that for every
h ≥ h1

inf
φ1+∂Q

fh > f∞(φ1) + ε, inf
φ1+Q

fh > f∞(φ1)− ε.
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Using Lemma 4.4, Theorem 4.8 and (4.20) we see that there exists h2 ∈ N such
that for every h ≥ h2 we have

sup
Ph

fh < f∞(φ1) + ε, sup
∂Ph

fh < f∞(φ1)− ε.

The assertions follow, taking h = max{h1, h2}. �

Theorem 4.11. For every ε > 0, there exists h ∈ N such that for all h ≥ h, the
functional fh has a critical point u(h)

3 with∣∣fh(u(h)
3 )− f∞(φ1)

∣∣ < ε. (4.22)

Proof. Let Π1 : H1
0 (Ω) → Ĥk be projection induced by the decomposition H1

0 (Ω) =
Ĥk ⊕ (X̂1 ⊕ X2). Then, for h large, the restriction of Π1 to Ph is an injective
map with inverse Lipschitz continuous and such that x − Π1(x) ∈ X̂1 ⊕ X2. Let
ϕh : Ĥk → X̂1 ⊕X2 be a Lipschitz continuous function such that

Π1(x) + ϕh(Π1(x)) = x ∀x ∈ Ph.

If Φh : H1
0 (Ω) → H1

0 (Ω) is defined by Φh(x) = ϕh(Π1(x))+x, then Φh is a Lipschitz
homeomorphism with inverse Lipschitz continuous. Moreover,

Φh(Π1(x)) = x ∀x ∈ Ph.

Define f̃h = fh ◦ Φh. Clearly, fh satisfies (PS)c if and only if f̃h satisfies (PS)c;
furthermore u(h) is a critical point of f̃h if and only if Φh(u(h)) is a critical point
of fh. Using Proposition 4.10, it follows that

sup
Π1(Ph)

f̃h < inf
φ1−ϕh(φ1)+∂Q

f̃h,

sup
Π1(∂Ph)

f̃h < inf
φ1−ϕh(φ1)+Q

f̃h.

We have

a1 = inf
φ1+Q

fh = inf
φ1−ϕh(φ1)+Q

f̃h, b1 = sup
Ph

fh = sup
Π1(Ph)

f̃h.

By Theorem 2.4, we deduce that there exists a critical point ũ(h)
3 for f̃h with

f̃h(ũ(h)
3 ) ∈ [a1, b1]. Therefore, there exists a critical point u(h)

3 for fh with fh(u(h)
3 ) ∈

[a1, b1]. Proposition 4.10 now gives (4.22). �

5. Proof of the main result

Theorem 5.1. Let β < µ1 and α > µ2. Then, there exist h ∈ N, ε > 0 such that
for all h ≥ h, the functional fh has at least two critical points u(h)

1 , u(h)
2 with

fh(u(h)
1 ) < fh(u(h)

2 ) < f∞(φ1)− ε.

Proof. First of all, let us point out that from the definition of f∞ and hypothesis
on α and β, it can be easily seen that there exists ρ > 0 such that

inf
Sρ

(
φ1

β−µ1

) f∞ > f∞
( φ1

β − µ1

)
.
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By [4, Lemma 4.1], there exist a continuous curve γ : [0, 1] → H1
0 (Ω), ε > 0 such

that

γ(0) =
φ1

β − µ1
, γ(1) /∈ Bρ

( φ1

β − µ1

)
, sup

s∈[0,1]

f∞(γ(s)) < f∞(φ1)− ε.

The same argument of [3, Theorem 4.2] shows that there exists h ∈ N such that for
all h ≥ h

inf
Sρ

(
φ1

β−µ1

) fh > f∞

(
φ1

β − µ1

)
.

On the other hand, the argument used in the proof of Theorem 4.8 allows us to
build a polygonal curve γh with

γh(0) ∈ Bρ

(
φ1

β − µ1

)
, γh(1) /∈ Bρ

( φ1

β − µ1

)
, sup

s∈[0,1]

fh(γh(s)) < f∞(φ1)− ε.

In view of (A7) we can follow the same argument used in the proof of [4, Theorem
4.2] and deduce the assertion. �

Proof of Theorem 3.1. By Theorem 5.1 and Theorem 4.11 we deduce that for h ≥ h
the functional fh has at least three critical points. Hence, by Theorem 4.1, when
h ≥ h, problem (3.2) has at least three distinct weak solutions. �
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